文明,李明華,蔣家樂,馬學(xué)花,李容望,趙文青,崔靜,劉揚(yáng),馬富裕
氮磷鉀運(yùn)籌模式對(duì)北疆滴灌棉花生長(zhǎng)發(fā)育和產(chǎn)量的影響
文明1,2,李明華1,2,蔣家樂1,馬學(xué)花1,李容望1,趙文青3,崔靜1,2,劉揚(yáng)1,2,馬富裕1,2
1石河子大學(xué)農(nóng)學(xué)院/新疆兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,新疆石河子 832003;2現(xiàn)代農(nóng)業(yè)生產(chǎn)信息化管理與應(yīng)用技術(shù)國(guó)家地方聯(lián)合工程研究中心(新疆兵團(tuán)),新疆石河子 8320003;3南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,南京 210095
【】明確北疆滴灌棉花干物質(zhì)積累及產(chǎn)量形成對(duì)氮磷鉀綜合運(yùn)籌的響應(yīng)特征,為節(jié)省氮肥成本提供依據(jù)。以魯棉研24號(hào)為材料,在4種施氮量(506、402.5、299和195.5 kg·hm-2,分別用N1、N2、N3和N4表示)和蕾期、花鈴期4種不同磷鉀肥運(yùn)籌方式(100%+0,25%+75%,50%+50%和75%+25%,分別用PK-M1,PK-M2,PK-M3和PK-M4表示)下進(jìn)行田間試驗(yàn)。試驗(yàn)期間測(cè)定棉花葉面積指數(shù)(LAI)、干物質(zhì)積累、蕾花鈴數(shù)量及產(chǎn)量等指標(biāo)。在相同磷鉀運(yùn)籌方式下,隨著施氮量的降低,LAI的Logistic模型K’值表現(xiàn)為先上升后下降趨勢(shì),N3比N2處理高5.1%—16.5%,快速增長(zhǎng)起始期(t1)和快速增長(zhǎng)結(jié)束期(t2)均為N3處理最晚,且N3處理快速增長(zhǎng)期持續(xù)時(shí)間最長(zhǎng),N3處理比N2處理多2—12 d;N3處理生長(zhǎng)特征值GT最高,N2處理次之,N3比N2處理高5.2%—16.7%;干物質(zhì)積累量在生長(zhǎng)前期表現(xiàn)為N1>N2>N3>N4處理,在生長(zhǎng)后期表現(xiàn)為N2>N1>N3>N4處理;蕾花鈴數(shù)在全生育期表現(xiàn)為N2>N3>N1>N4處理;產(chǎn)量相對(duì)值在各施氮處理下表現(xiàn)為N2處理最高,N3處理次之,N2處理比N3處理高3.6%—6.5%。在相同施氮量下,LAI的Logistic模型K’值最高為PK-M3處理,最低為PK-M1處理,PK-M3處理比PK-M1處理高20.5%—27.4%;快速增長(zhǎng)起始期t1(2019年除外)和快速增長(zhǎng)結(jié)束期t2均為PK-M3最晚,且PK-M3處理快速增長(zhǎng)期持續(xù)時(shí)間(T)最長(zhǎng);PK-M3處理生長(zhǎng)特征值(GT)最高,PK-M2處理次之,PK-M3處理比PK-M2處理高13.0%—24.5%;干物質(zhì)積累量在生長(zhǎng)前期表現(xiàn)為PK-M2處理>PK-M3處理>PK-M4處理>PK-M1處理,生長(zhǎng)后期表現(xiàn)為PK-M3>PK-M2>PK-M4>PK-M1處理;蕾花鈴數(shù)在生長(zhǎng)前期表現(xiàn)PK-M4>PK-M3>PK-M>PK-M2處理,生長(zhǎng)后期表現(xiàn)為PK-M3>PK-M2>PK-M4>PK-M1處理;產(chǎn)量相對(duì)值表現(xiàn)為PK-M3處理最高,比其他磷鉀處理高5.2%—18.2%。所有處理中,N3PK-M3處理下LAI Logistic模型K’值和GT值最大,T最長(zhǎng),在吐絮期干物質(zhì)積累量、相對(duì)產(chǎn)量值和后期蕾花鈴數(shù)僅次于N2PK-M3處理,生殖器官干物質(zhì)分配比例高于其他處理。相關(guān)分析表明,LAI在2018年播種后109 d以后和2019年播種后120 d以后與生殖器官干物質(zhì)、干物質(zhì)總量和相對(duì)產(chǎn)量呈極顯著正相關(guān),全生育期生殖器官個(gè)數(shù)、總干物質(zhì)積累量、生殖器官干物質(zhì)與相對(duì)產(chǎn)量均為顯著或極顯著正相關(guān)。所有處理中N2PK-M3產(chǎn)量最高,N3PK-M3處理次之,N3PK-M3相對(duì)產(chǎn)量?jī)H比N2PK-M3處理降低1.5%。N3PK-M3處理與農(nóng)戶常規(guī)施氮量相比,減少25%的氮肥施用量仍能獲得較高產(chǎn)量,可能是由于推遲了棉花后期LAI到達(dá)峰值的時(shí)期,延緩了LAI下降速率,提高棉花群體干物質(zhì)生產(chǎn)能力,并促使其向生殖器官轉(zhuǎn)運(yùn),且降低蕾鈴脫落,保證后期鈴數(shù),為產(chǎn)量的形成提供物質(zhì)基礎(chǔ)。因此,本研究認(rèn)為在蕾期和花鈴期各分施50%磷鉀肥的條件下,氮肥的施用量可以降低至299 kg·hm-2,這比農(nóng)戶常規(guī)施氮降低25%,以達(dá)到減氮穩(wěn)產(chǎn)、節(jié)本增效的目的。
棉花;減量施氮;磷鉀運(yùn)籌;產(chǎn)量;葉面積指數(shù);滴灌;北疆
【研究意義】新疆是我國(guó)的主要產(chǎn)棉地區(qū),棉花作為新疆重要的經(jīng)濟(jì)作物,它的產(chǎn)量與質(zhì)量對(duì)新疆的經(jīng)濟(jì)發(fā)展和我國(guó)棉花安全有著極其重要的作用。氮、磷、鉀是棉花生長(zhǎng)不可缺少的營(yíng)養(yǎng)元素,對(duì)棉花產(chǎn)量與質(zhì)量有著重要影響[1-2]。在新疆,棉花氮肥施用量已超過實(shí)際需氮量及高產(chǎn)棉適宜施氮量,達(dá)到345—414 kg·hm-2,氮肥當(dāng)季利用率僅為27%—35%,損失率高達(dá)45%—50%,導(dǎo)致棉花產(chǎn)量和品質(zhì)不增反降,造成棉花生產(chǎn)投入成本增加,資源浪費(fèi)和環(huán)境污染等問題[3-5]。此外,棉花對(duì)磷、鉀肥的吸收高峰分別是初花期到盛鈴期(占磷吸收量的66%)和盛花期到成熟期,但目前主要以基肥形式施入土壤的磷鉀肥無法滿足棉花生長(zhǎng)中后期的需肥要求和實(shí)現(xiàn)氮磷鉀互作協(xié)同效應(yīng)最大化等問題[1,3,6],均已成為影響新疆棉花高產(chǎn)優(yōu)質(zhì)的主要原因。因此,探索適宜的氮磷鉀綜合運(yùn)籌模式以期達(dá)到高產(chǎn)優(yōu)質(zhì)與資源利用的協(xié)調(diào)?!厩叭搜芯窟M(jìn)展】合理的氮磷鉀肥料綜合運(yùn)籌模式和適宜的施用量有利于維持棉花營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)平衡,促進(jìn)氮磷鉀吸收和利用效率,進(jìn)而提高棉花產(chǎn)量和改善品質(zhì)[7-11]。前人研究發(fā)現(xiàn),氮和鉀按照一定的比例施用可以調(diào)節(jié)棉花氮素代謝,并以此提高棉花產(chǎn)量[12-13]。磷肥和銨態(tài)氮肥的配施可以降低棉花根系土壤的pH和鹽分,增加養(yǎng)分吸收量,從而提高棉花產(chǎn)量[14]??笛牌嫉萚15]等研究表明,氮磷鉀3種肥料配合施用,可以改善棉花品質(zhì),提高單鈴重和百粒籽重。關(guān)于其他作物氮磷鉀配合施用也有類似研究,潘圣剛等[16]研究發(fā)現(xiàn)水稻成熟期氮吸收總量與磷吸收總量、鉀吸收總量具有顯著的正相關(guān)性;趙慶鑫等[17]研究發(fā)現(xiàn)在施用較多氮肥的條件下需要使用更多的鉀肥才能獲得較高產(chǎn)量,適宜的氮鉀配比可增加干物質(zhì)在塊根中的分配率;王永華等[18]研究發(fā)現(xiàn),高氮水平下磷鉀肥分施,不僅可以顯著提高作物產(chǎn)量、氮磷鉀的吸收量,還可提高磷鉀素吸收、利用效率、偏生產(chǎn)力;武慶慧等[19]研究表明合理的氮磷鉀配比可以改善花生生長(zhǎng)發(fā)育,提高干物質(zhì)積累量和養(yǎng)分積累效率,在獲得高產(chǎn)的同時(shí)可以減少養(yǎng)分投入,降低成本。目前關(guān)于如何減少棉花生產(chǎn)中的氮肥投入已經(jīng)成為研究熱點(diǎn),例如YANG等[20]通過不同時(shí)期分施氮肥發(fā)現(xiàn),盛花期施用更多的氮素可以增加棉花干物質(zhì)積累和產(chǎn)量。DU等[21]提出減少基肥投入和增加花期施用量來改善麥棉輪作區(qū)氮肥管理方式。LUO等[22]提出在不犧牲產(chǎn)量的情況下,通過高密度和滴灌措施,可將傳統(tǒng)氮肥施用量降低20%—30%。【本研究切入點(diǎn)】但是,關(guān)于通過在棉花不同時(shí)期分施磷鉀肥來滿足棉花對(duì)磷鉀營(yíng)養(yǎng)需求還缺乏系統(tǒng)研究,并且以此實(shí)現(xiàn)減氮而不減產(chǎn)更是少有報(bào)道?!緮M解決的關(guān)鍵問題】因此,本試驗(yàn)利用新疆完善的高效節(jié)水滴灌和肥水一體化管理方式可以實(shí)現(xiàn)合理施用氮肥和分施磷鉀肥,并根據(jù)棉株生長(zhǎng)變化適時(shí)和定量施用氮磷鉀肥,探究氮磷鉀綜合運(yùn)籌模式對(duì)棉花干物質(zhì)積累及產(chǎn)量形成的影響,闡述氮磷鉀綜合調(diào)控對(duì)棉花干物質(zhì)積累及產(chǎn)量的影響,結(jié)果為北疆棉花栽培管理和提高氮肥利用提供理論依據(jù)。
試驗(yàn)于2018、2019年在新疆生產(chǎn)建設(shè)兵團(tuán)第八師石河子市(44°29'N,86°1'E)進(jìn)行。土壤基礎(chǔ)肥力為堿解氮145.47 mg·kg-1、速效磷36.18 mg·kg-1、速效鉀67.30 mg·kg-1。當(dāng)?shù)貙儆诘湫偷臏貛Т箨懶詺夂?,冬季長(zhǎng)而嚴(yán)寒,夏季短而炎熱,2018年作物生長(zhǎng)季(4—10月)平均氣溫為18.65℃,降水量為211.7 mm,日照時(shí)數(shù)為2 077.3 h,2019年作物生長(zhǎng)季(4—10月)平均氣溫為20.94℃,降水量為142 mm,日照時(shí)數(shù)為1 843.08 h。
試驗(yàn)采用二因素完全隨機(jī)設(shè)計(jì)。以魯棉研24為供試品種,設(shè)置4個(gè)減氮處理,分別為506 kg·hm-2(N1)、402.5 kg·hm-2(N2)、299 kg·hm-2(N3)和195.5 kg·hm-2(N4),其中N2為當(dāng)?shù)剞r(nóng)戶傳統(tǒng)施氮量,N3在N2基礎(chǔ)上減氮25%。設(shè)置4種磷鉀肥運(yùn)籌方式:蕾期和花鈴期追施比例為100%+0(PK-M1)、25%+75%(PK-M2)、50%+50%(PK-M3)和75%+25%(PK-M4),施磷量和施鉀量分別為108 kg·hm-2和90 kg·hm-2。共16個(gè)處理,3次重復(fù),48個(gè)小區(qū),小區(qū)面積為2.25 m×15 m。所有肥料均隨水滴施,兩年施肥方案見表1。氮來源于尿素(N含量46%),磷來源于磷酸二氫銨(P2O5含量為60%),鉀來源于硫酸鉀(K2O含量為50%)。試驗(yàn)采取1膜3行3帶,等行距種植模式,行距為76 cm,株距為10 cm。
取樣與農(nóng)藝性狀數(shù)據(jù)采集:棉花盛蕾期開始分別在2018年播種后58、78、99、109、119 d和2019年65、88、107、120、156 d調(diào)查葉面積指數(shù)(LAI)、干物質(zhì)、生殖器官動(dòng)態(tài)變化,直至吐絮期。每個(gè)小區(qū)調(diào)查10株,測(cè)定并記錄蕾花鈴數(shù),再將每個(gè)小區(qū)具有代表性3株棉花從子葉以上分解成葉、莖枝和生殖器官3部分,于105℃下殺青30 min后,85℃烘干至恒重,測(cè)定干物質(zhì)。
葉面積指數(shù)(LAI)測(cè)定:每個(gè)小區(qū)隨機(jī)選取長(zhǎng)勢(shì)一致的3株棉花,然后將葉片摘下,平鋪于白紙上并拍照,后期利用MATLAB 2018提取并計(jì)算每平方米土地上的葉面積。利用如下公式求取葉面積指數(shù):
LAI(m2·m-2)=單株葉面積(m2/plant)×單位面積株數(shù)(plant)/單位土地面積(m2)
通過Logistic方程對(duì)棉花LAI進(jìn)行擬合[23]。Logistic方程的形式和特征值如下:Y=K’/[1+e(a+bt)],其中K’為葉面積最大值,t為棉花播種后天數(shù);a、b、K’為待定系數(shù)。Vm=-b K’/4為L(zhǎng)AI最大增長(zhǎng)速率;t1和t2是擬合曲線上的兩個(gè)點(diǎn),將“S”型曲線分為3段,在0-t1時(shí)間段內(nèi),LAI增長(zhǎng)速度緩慢,t1—t2時(shí)間段內(nèi)LAI增長(zhǎng)速度加快,幾乎呈線性關(guān)系,為L(zhǎng)AI快速增長(zhǎng)期,在t2以后,LAI增長(zhǎng)速率緩慢,使得LAI趨于最大值。Δt表示快速增長(zhǎng)期的長(zhǎng)短,Δt=t2-t1。GT=-b K’/4·Δt,稱“生長(zhǎng)特征值”(棉花LAI快速增長(zhǎng)達(dá)到最大值的65%以上)。
產(chǎn)量及產(chǎn)量構(gòu)成:棉花完全吐絮后,在每個(gè)小區(qū)未取樣區(qū)域選取6.75 m2面積,統(tǒng)計(jì)收獲株數(shù)、單株結(jié)鈴數(shù);連續(xù)取50株吐絮鈴測(cè)其鈴重,計(jì)算籽棉產(chǎn)量。利用如下公式計(jì)算相對(duì)產(chǎn)量:
各處理相對(duì)產(chǎn)量(%)=各處理當(dāng)年產(chǎn)量(kg·hm-2)/當(dāng)年所有處理最高產(chǎn)量(kg·hm-2)。
試驗(yàn)數(shù)據(jù)采用Excel 2019和SPSS 25.0分析,利用Duncan法檢驗(yàn)處理間差異,用Sigmaplot 12.5作圖。
表1 施肥與灌溉方案
LAI是反映棉花群體質(zhì)量的重要指標(biāo),利用Logistic方程對(duì)LAI和播種后天數(shù)進(jìn)行擬合,所得參數(shù)如表2所示。兩年中LAI的K’值范圍為3.11—5.31,LAI快速增長(zhǎng)期t1和t2在播種后50—62 d和72—111 d,持續(xù)時(shí)間為15—53 d,最大增長(zhǎng)速率Vmax變化范圍為0.05—0.17 m2·m-2·d-1。相同磷鉀處理下,N3處理的K’值最高,其次為N2處理,N3處理比N2處理高5.1%— 16.5%;快速增長(zhǎng)起始期t1和快速增長(zhǎng)結(jié)束期t2均為N3處理最晚;N3處理快速增長(zhǎng)期持續(xù)時(shí)間最長(zhǎng),其次是N2處理,N3處理比N2處理多2—12 d;最大增長(zhǎng)速率Vmax表現(xiàn)為N1處理最高;N3處理生長(zhǎng)特征值GT最高,N2處理次之,N3處理比N2處理高5.2%—16.7%。相同氮處理下,PK-M3處理的K’值最高,最低為PK-M1處理,PK-M3處理比PK-M1處理高20.5%—27.4%;快速增長(zhǎng)起始期t1(2019年除外)和快速增長(zhǎng)結(jié)束期t2均為PK-M3處理最晚,且PK-M3處理快速增長(zhǎng)期持續(xù)時(shí)間最長(zhǎng);PK-M2處理最大增長(zhǎng)速率Vmax最高。PK-M3處理生長(zhǎng)特征值GT最高,PK-M2處理次之,PK-M3處理比PK-M2處理高13.0%—24.5%。所有處理中,N3PK-M3處理K’值最高,快速增長(zhǎng)起始期t1和結(jié)束期t2最晚,持續(xù)時(shí)間T最長(zhǎng),生長(zhǎng)特征值GT最高。
由圖1可知,隨著生育進(jìn)程的推進(jìn),各處理下棉花干物質(zhì)積累量呈現(xiàn)先升高再降低的趨勢(shì)。施氮量和磷鉀肥運(yùn)籌方式對(duì)棉花干物質(zhì)積累量均有顯著影響(<0.05),其互作對(duì)干物質(zhì)積累無顯著影響(>0.05)。2018和2019年棉花干物質(zhì)積累量分別在播種后109和120 d達(dá)到最大。在相同磷鉀處理下,棉花干物質(zhì)積累量分別在出苗后78 d(2018年)之前和出苗后88 d(2019年)之前,表現(xiàn)為N1>N2>N3>N4處理,后期表現(xiàn)為N2>N1>N3>N4處理。在相同氮素處理下,棉花干物質(zhì)積累量在生長(zhǎng)前期表現(xiàn)為PK-M2>PK-M3>PK-M4>PK-M1處理,出苗后109 d(2018年)和出苗后120 d(2019年)表現(xiàn)為PK-M3>PK-M2>PK-M4>PK-M1處理,其中PK-M3處理均顯著高于其他處理。在所有處理中,干物質(zhì)積累量最大為N2PK-M3處理;在出苗后119 d(2018年)和出苗后156 d(2019年),N2PK-M3處理棉花干物質(zhì)積累量在兩年中分別達(dá)到12.0和19.4 t·hm-2,比同時(shí)期的N3PK-M3處理高6.6%和5.2%,二者差異顯著(<0.05)。
表2 LAI Logistic 模型特征值
圖1 氮磷鉀綜合運(yùn)籌模式下棉花干物質(zhì)總量變化規(guī)律(2018、2019)
干物質(zhì)在各器官中的分配最終會(huì)影響產(chǎn)量的形成,生殖器官干物質(zhì)的分配比例對(duì)棉花產(chǎn)量具有更重要的影響。由圖2和圖3可知,隨著棉花生育進(jìn)程的推進(jìn),葉片和莖稈的干物質(zhì)分配比例不斷下降,生殖器官干物質(zhì)分配比例不斷上升。在相同磷鉀處理下,棉花葉片和莖稈干物質(zhì)分配比例在出苗后109 d(2018年)和出苗后120 d(2019年)之后隨施氮量的降低而降低,生殖器官干物質(zhì)分配比例隨施氮量的降低呈先上升后下降趨勢(shì),N3處理生殖器官干物質(zhì)分配比例最高,比N2處理高0.43%—0.46%。在相同氮處理下,葉片和莖稈干物質(zhì)分配比例表現(xiàn)為PK-M2處理最高,生殖器官干物質(zhì)分配比例均表現(xiàn)為PK-M3處理最高。2018年播種后119 d時(shí),在PK-M3處理下,N1、N2、N3、N4生殖器官干物質(zhì)分配比例分別為57.4%、61.8%、62.3%、60.0%;2019年播種后156 d時(shí),在PK-M3處理下,N1、N2、N3、N4處理的生殖器官干物質(zhì)分配比例分別為77.8%、79.7%、80.4%、79.6%。2018和2019年N3PK-M3處理比N2PK-M3處理分別高0.5%和0.7%。
由表3、表4可以看出,施氮量和磷鉀運(yùn)籌方式顯著影響了棉花蕾數(shù)和鈴數(shù)(2019年出苗后107 d鈴數(shù)、2019年出苗后120 d蕾數(shù)除外),二者互作對(duì)棉花蕾花鈴數(shù)無顯著影響(>0.05)。在相同磷鉀運(yùn)籌方式下,各氮處理的蕾花鈴數(shù)表現(xiàn)為N2>N3>N1>N4處理。相同氮處理下,棉花生殖器官數(shù)量在生長(zhǎng)前期和后期表現(xiàn)不一致,在2018年播種后78 d和2019年播種后88 d以前,蕾花鈴數(shù)均表現(xiàn)為PK-M4>PK-M3>PK-M1>PK-M2處理,在2018年播種后99 d和2019年播種后107 d以后,蕾鈴數(shù)均表現(xiàn)為PK-M3>PK-M2>PK-M4>PK-M1處理。2018年播種后109 d和2019年播種后120 d鈴數(shù)最高為N2PK-M3處理,比N3PK-M3處理高9.6%和12.5%,處理間差異不顯著(>0.05)。
圖2 氮磷鉀綜合運(yùn)籌模式下棉花干物質(zhì)量分配(2018)
圖3 氮磷鉀綜合運(yùn)籌模式下棉花干物質(zhì)量分配(2019)
表3 氮磷鉀綜合運(yùn)籌模式對(duì)不同時(shí)期生殖器官變化的影響(2018)
表4 氮磷鉀綜合運(yùn)籌模式對(duì)不同時(shí)期生殖器官變化的影響(2019)
由圖4可知,兩年相對(duì)產(chǎn)量變化趨勢(shì)一致。相同磷鉀處理下,相對(duì)產(chǎn)量隨施氮量的降低表現(xiàn)為N2>N3>N1>N4處理。相同氮處理下,相對(duì)產(chǎn)量表現(xiàn)為PK-M3>PK-M2>PK-M4>PK-M1處理。總體來看,N2PK-M3處理和N3PK-M3處理在兩年內(nèi)均獲得較高的產(chǎn)量,N3PK-M3處理與N2PK-M3處理相比僅減少了1.4%和1.5%。
棉花的生長(zhǎng)發(fā)育是決定產(chǎn)量的內(nèi)在因素。由表5可見,相對(duì)產(chǎn)量與各農(nóng)藝指標(biāo)的相關(guān)性普遍在生長(zhǎng)后期達(dá)到顯著或極顯著正相關(guān)。2018年相對(duì)產(chǎn)量與LAI的相關(guān)性在播種后119 d達(dá)到最大,相關(guān)系數(shù)為0.91**;2019年相對(duì)產(chǎn)量在播種后120 d達(dá)到最大,相關(guān)系數(shù)為0.81**。生殖器官的個(gè)數(shù)是產(chǎn)量的重要因子,在生長(zhǎng)發(fā)育后期與相對(duì)產(chǎn)量的相關(guān)性均達(dá)到極顯著正相關(guān),其中鈴數(shù)與相對(duì)產(chǎn)量相關(guān)系數(shù)最高,2018年播種后109 d相關(guān)系數(shù)為0.81**,2019年在播種后120 d相關(guān)系數(shù)為0.83**。干物質(zhì)與產(chǎn)量密切相關(guān),生殖器官干物質(zhì)的積累更是直接影響產(chǎn)量的形成,在棉花的整個(gè)生育期,相對(duì)產(chǎn)量與生殖器官干物質(zhì)的相關(guān)性均為極顯著正相關(guān),相關(guān)系數(shù)均在0.8以上;相對(duì)產(chǎn)量與葉片、莖稈的干物質(zhì)相關(guān)系數(shù)較低。
圖4 氮磷鉀綜合運(yùn)籌下產(chǎn)量相對(duì)值變化規(guī)律圖(2018、2019年)
表5 相對(duì)產(chǎn)量與主要因子相關(guān)性分析
葉面積指數(shù)通常是衡量植物光合作用和生產(chǎn)力的重要指標(biāo)[24-25]。賈彪等[26]在不同氮素處理下棉花群體LAI特征參數(shù)施氮效應(yīng)的研究結(jié)果表明,施氮量對(duì)棉花LAI動(dòng)態(tài)具有調(diào)控作用。隨著氮肥施用量的增加,LAI增長(zhǎng)明顯[27]。在一定的水氮調(diào)控下,適量磷鉀肥的施用能夠使作物的葉面積指數(shù)顯著提高,增加光合面積,進(jìn)而提高棉花產(chǎn)量[28-29]。本研究中,在棉花的生長(zhǎng)前期隨著施氮量的降低,LAI呈現(xiàn)下降趨勢(shì);在棉花生長(zhǎng)的后期,N1和N2處理下降速率較快,N3處理仍保持較高水平,且N3處理顯著高于N1、N4處理,這說明過高或者過低的施氮量均會(huì)顯著降低生長(zhǎng)后期的LAI,不利于維持棉花后期較高的光合面積,這可能是由于氮肥施用過多導(dǎo)致后期棉花中下部葉片互相遮擋,生長(zhǎng)郁閉,衰老加速。相同的氮素處理下,在生長(zhǎng)前期PK-M2處理LAI高于其他處理,而在生長(zhǎng)后期則表現(xiàn)為PK-M3處理高于其他磷鉀處理,這說明磷鉀肥在蕾期和花鈴期的施用比例為50%時(shí),可以滿足其對(duì)養(yǎng)分的需求,維持棉花生長(zhǎng)后期的LAI,延緩其下降速率。N3PK-M3處理快速增長(zhǎng)期起始時(shí)間較晚,持續(xù)時(shí)間長(zhǎng),說明在一定的氮磷鉀運(yùn)籌方式下,可以使棉花生長(zhǎng)后期葉面積指數(shù)保持較高水平,這也是提高棉花后期干物質(zhì)生產(chǎn)能力的先決條件。
干物質(zhì)是作物光合產(chǎn)物的最終形態(tài),其積累與合理分配及運(yùn)轉(zhuǎn)是提高作物產(chǎn)量的關(guān)鍵[30]。在棉花各生育時(shí)期,干物質(zhì)的積累對(duì)棉花產(chǎn)量高低和品質(zhì)優(yōu)劣有直接的影響,生物量累積是以養(yǎng)分吸收為基礎(chǔ)的,它反映養(yǎng)分的有效吸收狀況[28]。氮、磷、鉀是土壤肥力的三要素,作物生長(zhǎng)發(fā)育所需的營(yíng)養(yǎng)物質(zhì)多數(shù)來源于土壤。張學(xué)昕等[31]研究表明,施用氮、磷、鉀肥均能增加棉花各器官中干物質(zhì)積累量,積累比例表現(xiàn)為鈴>莖>葉>根。張凡等[32]、李軍宏等[33]研究表明,磷鉀肥的施用有利于地上部生物量的積累與分配。本研究發(fā)現(xiàn),在棉花生長(zhǎng)前期,隨著施氮量的降低,總干物質(zhì)積累量呈下降趨勢(shì),表明棉花前期以營(yíng)養(yǎng)生長(zhǎng)為主,降低施氮量不利于光合器官的生長(zhǎng);在棉花生長(zhǎng)后期,N3處理生殖器官干物質(zhì)分配比例高于其他氮處理,這表明氮肥施用量過多會(huì)導(dǎo)致后期營(yíng)養(yǎng)生長(zhǎng)旺盛,貪青晚熟,不利于棉花產(chǎn)量提高;施氮過少會(huì)使棉花無法得到充足的養(yǎng)分積累,造成減產(chǎn)。而適當(dāng)減少施氮可以提高生殖器官干物質(zhì)分配比例,這與前人研究結(jié)果相同[34]。相同氮素處理下,在棉花生長(zhǎng)前期,PK-M2處理總干物質(zhì)積累量高于其他處理,而在生長(zhǎng)后期則表現(xiàn)為PK-M3處理最高,且PK-M3處理生殖器官分配比例高于其他處理,這可能是由于PK-M3處理這種施肥方式促進(jìn)了棉花后期營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng)的協(xié)調(diào)發(fā)展,使其擁有充足的干物質(zhì)積累[35]。N4處理下所有干物質(zhì)積累量均為最低,這和LAI表現(xiàn)相同,表明施氮量過低抑制棉花生長(zhǎng),棉花干物質(zhì)無法得到有效積累,對(duì)產(chǎn)量形成造成極為不利的影響。前人研究結(jié)果表明,減少施氮量會(huì)降低生物量,但會(huì)提高生殖器官干物質(zhì)分配比例[34],本研究也發(fā)現(xiàn)類似結(jié)果,盡管減少25%的氮肥,但是N3PK-M3處理在生長(zhǎng)后期仍獲得較高的干物質(zhì)積累,僅次于N2PK-M3處理,其生殖器官干物質(zhì)分配比例比N2PK-M3處理高,這進(jìn)一步提高了棉花的產(chǎn)量潛力。
施氮量顯著影響棉花蕾花鈴個(gè)數(shù),施氮過多或過少都會(huì)導(dǎo)致棉花蕾鈴的減少[36]。不同的磷肥和鉀肥用量可以分別提高棉花單株鈴數(shù)和棉花的光合性能,提高棉花的成鈴數(shù),進(jìn)而提高棉花產(chǎn)量[37-39]。
本研究中,N2和N3處理能夠獲得較高的蕾鈴數(shù),這表明過高或過低施用氮肥會(huì)導(dǎo)致棉花器官營(yíng)養(yǎng)失調(diào),造成蕾鈴脫落,合理的氮肥施用量可以保持較高的蕾鈴數(shù)。在棉花的生長(zhǎng)前期,相同施氮量下,各磷鉀處理表現(xiàn)為PK-M4處理最大,而在生長(zhǎng)后期,PK-M4處理急劇下降,PK-M3處理蕾鈴數(shù)保持較高水平,這可能是由于PK-M4處理在前期使蕾花鈴過度生長(zhǎng),導(dǎo)致后期營(yíng)養(yǎng)供應(yīng)不足,蕾鈴脫落;而PK-M3處理可以協(xié)調(diào)棉花營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng),減少棉花蕾鈴脫落。N2PK-M3處理和N3PK-M3處理在生長(zhǎng)后期均獲得較高的鈴數(shù),這為提高棉花產(chǎn)量奠定基礎(chǔ)。
在一定范圍內(nèi)施用氮肥能顯著提高棉花的產(chǎn)量,施氮量對(duì)棉花產(chǎn)量具有較大影響[22,40]。適宜的施氮量有利于棉株干物質(zhì)積累,增加單鈴重及單株鈴數(shù),進(jìn)而提高棉花產(chǎn)量[41-43]。王嬌等[44]研究結(jié)果表明,在北疆棉田中合理施用磷鉀肥可顯著提高棉花的單鈴重和單株鈴數(shù),施磷鉀處理與未施磷鉀處理相比較,籽棉產(chǎn)量提高了近1/3,因此磷鉀肥對(duì)于棉花產(chǎn)量的影響也至關(guān)重要。本研究中,在相同磷鉀運(yùn)籌方式下,N2處理平均產(chǎn)量最高,說明氮肥施用過高或過低都會(huì)導(dǎo)致棉花減產(chǎn),這與劉連濤[26]等研究結(jié)果相同,這是由于過高的施氮量導(dǎo)致營(yíng)養(yǎng)生長(zhǎng)過剩而生殖生長(zhǎng)受到抑制,使得棉花成鈴數(shù)減少,棉花產(chǎn)量不升反降;而過低的施氮量導(dǎo)致養(yǎng)分供應(yīng)不足,不利于棉花產(chǎn)量的提升[7]。在相同施氮量下,PK-M3處理產(chǎn)量最高,這同樣說明磷鉀肥在蕾期和花鈴期各施用50%可以協(xié)調(diào)棉花營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng),提高棉花產(chǎn)量。
在所有處理中,N3PK-M3處理的棉花相對(duì)產(chǎn)量與N2PK-M3處理相比略有降低,但處理間差異不顯著,且從各指標(biāo)相關(guān)性分析來看,LAI、生殖器官個(gè)數(shù)、生殖器官干物質(zhì)以及干物質(zhì)總量在生長(zhǎng)后期均和相對(duì)產(chǎn)量呈顯著或極顯著正相關(guān),因此可以推斷N3PK-M3處理下LAI在棉花生長(zhǎng)后期保持較高水平,延長(zhǎng)了光能利用時(shí)間,促進(jìn)了棉花群體干物質(zhì)的生產(chǎn),且協(xié)調(diào)營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng),保證棉花有充足的營(yíng)養(yǎng)體和光合面積,促使干物質(zhì)向生殖器官轉(zhuǎn)運(yùn),并且在后期降低蕾鈴脫落,保證較高的鈴數(shù),為產(chǎn)量的形成提供物質(zhì)基礎(chǔ)。綜上,在不犧牲產(chǎn)量的情況下,蕾期和花鈴期各施用50%的磷鉀肥時(shí),可將農(nóng)戶常規(guī)氮肥施用量(N2處理)減少25%,這對(duì)棉花生產(chǎn)可持續(xù)發(fā)展和農(nóng)民節(jié)本增收具有重要意義。
本研究中,減量施氮和不同磷鉀肥運(yùn)籌方式均對(duì)棉花LAI、蕾鈴數(shù)、干物質(zhì)積累與分配、相對(duì)產(chǎn)量產(chǎn)生顯著影響。在蕾期和花鈴期各施用50%的磷鉀肥時(shí),可將農(nóng)戶常規(guī)施氮量(N2處理)減少25%,不會(huì)顯著降低棉花產(chǎn)量,這是由于在該施肥管理模式下,棉花生長(zhǎng)后期仍保持較高的LAI,提高了群體干物質(zhì)生產(chǎn)能力,并促使干物質(zhì)產(chǎn)物向生殖器官轉(zhuǎn)運(yùn),降低蕾鈴脫落,保證鈴數(shù),為棉花產(chǎn)量奠定物質(zhì)基礎(chǔ),因此能夠達(dá)到減氮穩(wěn)產(chǎn)、節(jié)本增效的目的。
[1] 王克如, 李少昆, 曹連莆, 宋光杰, 陳剛, 曹栓柱. 新疆高產(chǎn)棉田氮、磷、鉀吸收動(dòng)態(tài)及模式初步研究. 中國(guó)農(nóng)業(yè)科學(xué), 2003, 36(7): 775-780.
WANG K R, LI S K, CAO L P, SONG G J, CHEN G, CAO S Z. A preliminary study on dynamics and models of N, P, K absorption in high yield cotton in Xinjiang. Scientia Agricultura Sinica, 2003, 36(7): 775-780. (in Chinese)
[2] 龔江, 李君, 謝海霞, 王海江, 侯振安, 呂新. 膜下滴灌條件水、氮、密度耦合效應(yīng)對(duì)棉花產(chǎn)量的影響. 新疆農(nóng)業(yè)科學(xué), 2010, 47(10): 1943-1946.
GONG J, LI J, XIE H X, WANG H J, HOU Z N, Lü X. Effects of water, nitrogen and density coupling on the yield of hybrid cotton under film drip irrigation. Xinjiang Agricultural Sciences, 2010, 47(10): 1943-1946. (in Chinese)
[3] 郭金強(qiáng), 危常州, 侯振安, 李俊華. 施氮量對(duì)膜下滴灌棉花氮素吸收、積累及其產(chǎn)量的影響. 新疆農(nóng)業(yè)科學(xué), 2008, 45(4): 691-694.
GUO J Q, WEI C Z, HOU Z A, LI J H. Effect of N rates on N uptake, accumulation and yield of cotton with drip irrigation under membrane. Xinjiang Agricultural Sciences, 2008, 45(4): 691-694. (in Chinese)
[4] 李新偉, 呂新, 張澤, 陳劍, 石宏剛, 田敏. 棉花氮素營(yíng)養(yǎng)診斷與追肥推薦模型. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2014, 45(12): 209-214.
LI X W, Lü X, ZHANG Z, CHEN J, SHI H G, TIAN M. Diagnosis of nitrogen nutrition and recommended model of topdressing for cotton. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 209-214. (in Chinese)
[5] 賴波, 湯明堯, 柴仲平, 陳波浪, 李青軍, 董巨河, 王飛, 田長(zhǎng)彥. 新疆農(nóng)田化肥施用現(xiàn)狀調(diào)查與評(píng)價(jià). 干旱區(qū)研究, 2014, 31(6): 1024-1030.
LAI B, TANG M Y, CHAI Z P, CHEN B L, LI Q J, DONG J H, WANG F, TIAN C Y. Investigation and evaluation of the chemical fertilizer application situation of farmland in Xinjiang. Arid Zone Research, 2014, 31(6): 1024-1030. (in Chinese)
[6] 李宗泰, 陳二影, 張美玲, 趙慶龍, 許曉龍, 姬紅, 宋憲亮, 孫學(xué)振. 施鉀方式對(duì)棉花葉片抗氧化酶活性、產(chǎn)量及鉀肥利用效率的影響. 作物學(xué)報(bào), 2012, 38(3): 487-494.
LI Z T, CHEN E Y, ZHANG M L, ZHAO Q L, XU X L, JI H, SONG X L, SUN X Z. Effect of potassium application methods on antioxidant enzyme activities, yield, and potassium use efficiency of cotton. Acta Agronomica Sinica, 2012, 38(3): 487-494. (in Chinese)
[7] CHEN B L, YANG H K, SONG W C, LIU C Y, XU J A, ZHAO W Q, ZHOU Z G. Effect of N fertilization rate on soil alkali-hydrolyzable N, subtending leaf N concentration, fiber yield, and quality of cotton. The Crop Journal, 2016, 4(4): 323-330.
[8] DEEPA G S, ALADAKATTI Y R. Effect of nutrient levels and split application of nitrogen and potassium on yield, economics and fiber quality parameters of interspecific Bt cotton. Journal of Farm Sciences, 2016, 29(2): 203-207.
[9] DEEPA G S, ALADAKATTI Y R. Effect of varied nutrient levels and time of application of nitrogen and potassium on uptake of nutrients in interspecificcotton hybrid. Journal of Farm Sciences, 2017, 30(1): 56-60.
[10] HU W, ZHAO W Q, YANG J S, OOSTERHUIS D M, LOKA D A, ZHOU Z G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (L.) boll during the boll development stage. Plant Physiology and Biochemistry, 2016, 101: 113-123.
[11] HU W, COOMER T D, LOKA D A, OOSTERHUIS D M, ZHOU Z G. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiology and Biochemistry, 2017, 115: 408-417.
[12] ALI S, HAFEEZ A, MA X L, TUNG S A, CHATTHA M S, SHAH A N, LUO D, AHMAD S, LIU J H, YANG G Z. Equal potassium- nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (L.) in Yangtze River valley of China. Industrial Crops and Products, 2019, 129: 231-241.
[13] ALI S, HAFEEZ A, MA X L, TUNG S A, YANG G Z. Relative potassium ratio balanced the carbon-nitrogen assimilation in cotton leaf under reducing nitrogen application. Journal of Soil Science and Plant Nutrition, 2020, 20(2): 761-774.
[14] WANG X X, LIU S L, ZHANG S M, LI H B, MAIMAITIAILI B, FENG G, RENGEL Z. Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Field Crops Research, 2018, 217: 75-81.
[15] 康雅萍, 樊嵐蓉, 康艷, 安平. 氮磷鉀不同配比對(duì)棉花產(chǎn)量的影響. 陜西農(nóng)業(yè)科學(xué), 2010, 56(6): 33-34.
KANG Y P, FAN L R, KANG Y, AN P. Effect of different ratio of N, P, K on cotton yield. Shaanxi Journal of Agricultural Sciences, 2010, 56(6): 33-34. (in Chinese)
[16] 潘圣剛, 翟晶, 曹湊貴, 蔡明歷, 王若涵, 黃勝奇, 李進(jìn)山. 氮肥運(yùn)籌對(duì)水稻養(yǎng)分吸收特性及稻米品質(zhì)的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(3): 522-527.
PAN S G, ZHAI J, CAO C G, CAI M L, WANG R H, HUANG S Q, LI J S. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice. Plant Nutrition and Fertilizer Science, 2010, 16(3): 522-527. (in Chinese)
[17] 趙慶鑫, 江燕, 史春余, 司成成, 史文卿, 王新建, 柳洪鵑, 史衍璽. 氮鉀互作對(duì)甘薯氮鉀元素吸收、分配和利用的影響及與塊根產(chǎn)量的關(guān)系. 植物生理學(xué)報(bào), 2017, 53(5): 889-895.
ZHAO Q X, JIANG Y, SHI C Y, SI C C, SHI W Q, WANG X J, LIU H J, SHI Y X. Effect of nitrogen-potassium interaction on absorption and translocation of nitrogen and potassium in sweetpotato and the root yield. Plant Physiology Journal, 2017, 53(5): 889-895. (in Chinese)
[18] 王永華, 黃源, 辛明華, 苑沙沙, 康國(guó)章, 馮偉, 謝迎新, 朱云集, 郭天財(cái). 周年氮磷鉀配施模式對(duì)砂姜黑土麥玉輪作體系籽粒產(chǎn)量和養(yǎng)分利用效率的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(6): 1031-1046.
WANG Y H, HUANG Y, XIN M H, YUAN S S, KANG G Z, FENG W, XIE Y X, ZHU Y J, GUO T C. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Scientia Agricultura Sinica, 2017, 50(6): 1031-1046. (in Chinese)
[19] 武慶慧, 汪洋, 趙亞南, 李瑞珂, 司玉坤, 黃玉芳, 葉優(yōu)良, 張福鎖. 氮磷鉀配比對(duì)潮土區(qū)高產(chǎn)夏播花生產(chǎn)量、養(yǎng)分吸收和經(jīng)濟(jì)效益的影響. 中國(guó)土壤與肥料, 2019(2): 98-104.
WU Q H, WANG Y, ZHAO Y N, LI R K, SI Y K, HUANG Y F, YE Y L, ZHANG F S. Effects of NPK ratio on yield, nutrient absorption and economic benefit of high-yielding summer peanut in a fluvo-aquic soil. Soil and Fertilizer Sciences in China, 2019(2): 98-104. (in Chinese)
[20] YANG G Z, TANG H Y, NIE Y C, ZHANG X L. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. European Journal of Agronomy, 2011, 35(3): 164-170.
[21] DU X B, CHEN B L, ZHANG Y X, ZHAO W Q, SHEN T Y, ZHOU Z G, MENG Y L. Nitrogen use efficiency of cotton (L.) as influenced by wheat-cotton cropping systems. European Journal of Agronomy, 2016, 75: 72-79.
[22] LUO Z, LIU H, LI W P, ZHAO Q A, DAI J L, TIAN L W, DONG H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018, 218: 150-157.
[23] 張賓, 趙明, 董志強(qiáng), 李建國(guó), 陳傳永, 孫銳. 作物高產(chǎn)群體LAI動(dòng)態(tài)模擬模型的建立與檢驗(yàn). 作物學(xué)報(bào), 2007, 33(4): 612-619.
ZHANG B, ZHAO M, DONG Z Q, LI J G, CHEN C Y, SUN R. Establishment and test of LAI dynamic simulation model for high yield population. Acta Agronomica Sinica, 2007, 33(4): 612-619. (in Chinese)
[24] WELLS R. Soybean growth response to plant density: relationships among canopy photosynthesis, leaf area, and light interception. Crop Science, 1991, 31(3): 755-761.
[25] LOOMIS R S, WILLIAMS W A. Maximum crop productivity: an Extimate1. Crop Science, 1963, 3(1): 67-72.
[26] 賈彪, 錢瑾, 馬富裕. 氮素對(duì)膜下滴灌棉花葉面積指數(shù)的影響. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(2): 79-87.
JIA B, QIAN J, MA F Y. Simulating effects of nitrogen on leaf area index of cotton under mulched drip irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 79-87. (in Chinese)
[27] 劉連濤, 孫紅春, 張永江, 李存東. 氮素對(duì)棉花群體生理指標(biāo)的影響. 中國(guó)棉花, 2013, 40(4): 9-12.
LIU L T, SUN H C, ZHANG Y J, LI C D. Effects of nitrogen to cotton population physiological indices. China Cotton, 2013, 40(4): 9-12. (in Chinese)
[28] 戴婷婷, 盛建東, 陳波浪. 磷肥不同用量對(duì)棉花干物質(zhì)及氮磷鉀吸收分配的影響. 棉花學(xué)報(bào), 2010, 22(5): 466-470.
DAI T T, SHENG J D, CHEN B L. Effect of different phosphorus fertilizer rate on dry matter accumulation and the absorption and distribution of nitrogen, phosphorous, potassium of cotton. Cotton Science, 2010, 22(5): 466-470. (in Chinese)
[29] 溫立玉, 宋希云, 劉樹堂. 水肥耦合對(duì)夏玉米不同生育期葉面指數(shù)和生物量的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2014, 30(21): 89-94.
WEN L Y, SONG X Y, LIU S T. Effect of water and fertilizer coupling on foliar index and biomass at different growth stages of summer maize. Chinese Agricultural Science Bulletin, 2014, 30(21): 89-94. (in Chinese)
[30] 李杰, 馬騰飛, 郭蕾, 古力努爾·艾哈塔爾, 郭峰, 張鵬忠, 帕爾哈提·買買提, 婁善偉. 哈密地區(qū)棉花品種生長(zhǎng)發(fā)育特征及產(chǎn)量構(gòu)成差異研究. 西南農(nóng)業(yè)學(xué)報(bào), 2020, 33(3): 509-515.
LI J, MA T F, GUO L, AIHATAER G, GUO F, ZHANG P Z, MAIMAITI P, LOU S W. Different characteristics on development and yield composition of cotton varieties in Hami prefecture. Southwest China Journal of Agricultural Sciences,2020, 33(3): 509-515. (in Chinese)
[31] 張學(xué)昕, 劉淑英, 王平, 周麗萍. 不同氮磷鉀配施對(duì)棉花干物質(zhì)積累、養(yǎng)分吸收及產(chǎn)量的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2012, 21(8): 107-113.
ZHANG X X, LIU S Y, WANG P, ZHOU L P. Effects of different fertilizations on cotton dry matter accumulation, nutrients uptake and yield. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(8): 107-113. (in Chinese)
[32] 張凡, 睢寧, 余超然, 劉瑞顯, 楊長(zhǎng)琴, 宋光雷, 孟亞利, 周治國(guó). 小麥秸稈還田和施鉀對(duì)棉花產(chǎn)量與養(yǎng)分吸收的效應(yīng). 作物學(xué)報(bào), 2014, 40(12): 2169-2175.
ZHANG F, SUI N, YU C R, LIU R X, YANG C Q, SONG G L, MENG Y L, ZHOU Z G. Effects of wheat straw returning and potassium fertilizer application on yield and nutrients uptake of cotton. Acta Agronomica Sinica, 2014, 40(12): 2169-2175. (in Chinese)
[33] 李軍宏, 王遠(yuǎn)遠(yuǎn), 李楠楠, 王軍, 羅宏海. 水磷供應(yīng)對(duì)棉花根系生長(zhǎng)、分布及生物量的影響. 江蘇農(nóng)業(yè)科學(xué), 2020, 48(3): 95-101.
LI J H, WANG Y Y, LI N N, WANG J, LUO H H. Effects of water and phosphorus supply on cotton root growth, distribution and biomass. Jiangsu Agricultural Sciences2020, 48(3): 95-101. (in Chinese)
[34] DONG H Z, LI W J, ENEJI A E, ZHANG D M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research, 2012, 126: 137-144.
[35] LI Z Y, FONTANIER C, DUNN B L. Physiological response of potted sunflower (L) to precision irrigation and fertilizer. Scientia Horticulturae, 2020, 270:109417.
[36] 鄧忠, 翟國(guó)亮, 呂謀超, 馮俊杰, 王曉森, 宗潔, 蔡九茂. 施肥策略對(duì)新疆棉花產(chǎn)量、品質(zhì)與水氮利用的影響. 排灌機(jī)械工程學(xué)報(bào), 2017, 35(10): 897-902.
DENG Z, ZHAI G L, Lü M C, FENG J J, WANG X S, ZONG J, CAI J M. Effect of fertilization modes on cotton yield, quality, and water-nitrogen utilization in Xinjiang. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(10): 897-902. (in Chinese)
[37] 鄧忠, 翟國(guó)亮, 王曉森, 宗潔, 馮俊杰, 蔡九茂, 呂謀超. 灌溉和施氮策略對(duì)滴灌施肥棉花蕾鈴脫落的影響. 灌溉排水學(xué)報(bào), 2017, 36(8): 1-6.
DENG Z, ZHAI G L, WANG X S, ZONG J, FENG J J, CAI J M, Lü M C. Application schedule of N-P-K in drip fertigation affects abscission of cotton bolls. Journal of Irrigation and Drainage, 2017, 36(8): 1-6. (in Chinese)
[38] 張海鵬, 馬健, 文俊, 周桃華. 施鉀對(duì)不同轉(zhuǎn)基因棉花品種光合特性及產(chǎn)量和品質(zhì)的影響. 棉花學(xué)報(bào), 2012, 24(6): 548-553.
ZHANG H P, MA J, WEN J, ZHOU T H. Effects of potassium application on the photosynthetic characteristics, yield, and fiber properties of different transgenic cotton varieties. Cotton Science, 2012, 24(6): 548-553. (in Chinese)
[39] KHAN A, WANG L S, ALI S, TUNG S A, HAFEEZ A, YANG G Z. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Research, 2017, 214: 164-174.
[40] 董合林, 李鵬程, 劉愛忠, 劉敬然, 李永旗, 王曉茹, 王剛. 河南植棉區(qū)施氮量對(duì)麥棉兩熟產(chǎn)量及氮肥利用率的影響. 棉花學(xué)報(bào), 2014, 26(1): 73-80.
DONG H L, LI P C, LIU A Z, LIU J R, LI Y Q, WANG X R, WANG G. Effect of nitrogen application rate on yield and nitrogen use efficiency of WheatCotton double cropping in the Henan cotton region. Cotton Science, 2014, 26(1): 73-80. (in Chinese)
[41] 李飛, 郭利雙, 李景龍, 肖才升. 施氮水平對(duì)油棉連作棉花氮磷鉀吸收、分配與利用的影響. 華北農(nóng)學(xué)報(bào), 2018, 33(3): 196-202.
LI F, GUO L S, LI J L, XIAO C S. Effects of nitrogen application rate on NPK uptake, distribution and utilization of direct seeding cotton after rape harvest. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 196-202. (in Chinese)
[42] 董合林, 王潤(rùn)珍, 李鵬程, 劉愛忠. 不同施氮水平及氮磷鉀肥配施對(duì)棉花產(chǎn)量與氮肥利用率的影響.中國(guó)棉花學(xué)會(huì)2010年年會(huì)論文匯編, 2010: 285-287.
DONG H L, WANG R Z, LI P C, LIU A Z. Effect of N application rates and N, P and K combinations on cotton yield and N utilization. China Society of Cotton Sci-Tech Proceedings of 2010 Annual Meeting of CSCS, 2010: 285-287. (in Chinese)
[43] 張旺鋒, 李蒙春, 勾玲, 杜亮. 北疆高產(chǎn)棉花養(yǎng)分吸收特性的研究. 棉花學(xué)報(bào), 1998(2): 88-95.
ZHANG W F, LI M C, GOU L, DU L. Study on the nutrient absorbtion characters of cotton with higher productivity in north Xinjiang. Acta Gossypii Sinica, 1998(2): 88-95. (in Chinese)
[44] 王嬌, 佀傳亞, 張成, 殷志峰, 徐文修, 馬曉勇. 不同施鉀量對(duì)陸地棉干物質(zhì)積累、養(yǎng)分吸收和產(chǎn)量的影響. 新疆農(nóng)業(yè)科學(xué), 2012, 49(12): 2163-2169.
WANG J, SI C Y, ZHANG C, YIN Z F, XU W X, MA X Y. Effect of different amounts of potassium on dry matter accumulation, nutrient absorption and yield of land cotton. Xinjiang Agricultural Sciences, 2012, 49(12): 2163-2169. (in Chinese)
Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang
WEN Ming1, 2, LI MingHua1, 2, JIANG JiaLe1, MA XueHua1, LI RongWang1, ZHAO WenQing3, CUI Jing1,2, LIU Yang1,2, MA FuYu1,2
1School of Agriculture, Shihezi University/The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang;2National & Local Joint Engineering Research Center of Information Management and Application Technology for Modern Agricultural Production ( XPCC) , Shihezi 832003, Xinjiang;3College of Agronomy, Nanjing Agricultural University, Nanjing 210095
【】The aim of this study was to clarify the response of reduced nitrogen (N) application with different phosphorus (P) and potassium (K) managements (PK-M) on drip-irrigated cotton growth, dry matter accumulation and yield formation in Northern Xinjiang, so as to provide a theroe base for reduced N application with cost saving. 【】Field experiments were conducted by using Lumianyan 24 under four N application rates (506, 402.5, 299 and 195.5 kg·hm-2designated as N1, N2, N3 and N4, respectively), and four different PK-Ms during squaring stage and bloom-bolling stage (100%+0, 25%+75%, 50%+50% and 75%+25% designated as PK-M1, PK-M2, PK-M3 and PK-M4, respectively). The leaf area index (LAI), dry matter accumulation and distribution, reproductive organs dynamic changes and yield were assayed during experiment period. 【】Under the same PK-M treatment, the K’ value of LAI’s Logistic model showed a trend of first increasing and then decreasing with the decrease of nitrogen application rate; the K’ value under N3 was 5.1%-16.5% higher than that under N2, and which in the fast accumulation period in initiated (t1) and terminated (t2) days were the latest under N3; which in the duration of fast accumulation period (T) was the longest, and N3 was 2-12 days longer than N2. The growth characteristic value (GT) under N3 was the highest, followed by N2, and N3 was 5.2%-16.7% higher than that under N2. The dry matter accumulation in the early growth period was N1>N2>N3>N4 treatment, and in the late period was N2>N1>N3>N4 treatment. The number of reproductive organs was N2>N3>N1>N4 treatment during the growth period. The relative yield value under N2 was the highest, followed by N3 treatment, which under N2 was 3.6%-6.5% higher than that under N3. Under the same N application rate, the K’ value of LAI logistic model under PK-M3 was the highest and PK-M1 was the lowest, and PK-M3 was 20.5%-27.4% higher than PK-M1; the fast accumulation period in initiated (t1) (except in 2019) and terminated (t2) days were both the latest under PK-M3. The growth characteristic value (GT) under PK-M3 was the highest, followed by PK-M2, and PK-M3 was 13.0-24.5% higher than PK-M2. The dry matter accumulation in the growth period was PK-M2>PK-M3>PK-M4>PK-M1 treatment, and it was PK-M3>PK-M2>PK-M4>PK-M1 treatment in the late growth period; the number of squares and bolls in the early growth period was PK-M4>PK-M3>PK-M1>PK-M2 treatment, while it was PK-M3>PK-M2>PK-M4>PK-M1 treatment in the late growth period; the relative yield value was the highest in PK-M3, which was 5.2%-18.2% higher than PK-Ms. Among all the treatments, the K’ value and GT value of the LAI Logistic model under N3PK-M3 was the largest, and T was the longest. The plant dry matter, relative yield value and the number of squares and bolls in the late period were second only to N2PK-M3, and the reproductive organs dry distribution ratio was higher than other treatments. Correlation analysis showed that LAI had a significant positive correlation with reproductive organ dry matter, plant dry matter and relative yield value at the late growth period, however, the number of reproductive organs, plant dry matter and reproductive organs were significant positive correlation with relative yield throughout the growth period. Among all treatments, the yield under N2PK-M3was the highest, followed by N3PK-M3, and the relative yield value in N3PK-M3 treatment was 1.5% lower than N2PK-M3 without significant difference. 【】The N3PK-M3 could obtain higher yield by reducing 25% N application compared with the conventional N application rate of farmers, which might due to delaying the peak of LAI at the later growth period, delaying the decline rate of LAI, increasing the dry matter production capacity of cotton population, improving cotton production capacity of dry matter, promoting assimilates transfer to reproductive organs, and reducing the shedding of squares and bolls, which provided the material basis for the formation of cotton yield.
cotton; reduced application of nitrogen; operation of phosphorus and potassium; yield; leaf area index (LAI); drip-irrigation; Northern Xinjiang
10.3864/j.issn.0578-1752.2021.16.010
2020-09-25;
2020-11-25
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0201900)、國(guó)家自然科學(xué)基金-地區(qū)基金(31860346)、兵團(tuán)財(cái)政科技計(jì)劃(2020AB017)、石河子大學(xué)高層次人才科研啟動(dòng)項(xiàng)目(RCSX2018B09)、石河子大學(xué)新疆生產(chǎn)建設(shè)兵團(tuán)綠洲生態(tài)重點(diǎn)實(shí)驗(yàn)室開放課題發(fā)展基金(201802)
文明,E-mail:wmalaer@qq.com。通信作者劉揚(yáng),E-mail:ly.0318@163.com。通信作者馬富裕,E-mail:1469633844@qq.com
(責(zé)任編輯 李云霞)