張展軍,楊宏偉,樊志龍,于愛(ài)忠,胡發(fā)龍,殷文,范虹,郭瑤,柴強(qiáng),趙財(cái)
綠洲灌區(qū)免耕一膜兩年用玉米密植的水分承載潛力
張展軍,楊宏偉,樊志龍,于愛(ài)忠,胡發(fā)龍,殷文,范虹,郭瑤,柴強(qiáng),趙財(cái)
甘肅農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/甘肅省干旱生境作物學(xué)重點(diǎn)實(shí)驗(yàn)室,蘭州 730070
【】針對(duì)綠洲灌區(qū)資源性缺水嚴(yán)重,傳統(tǒng)玉米生產(chǎn)模式地膜用量和耗水量大等問(wèn)題,探討通過(guò)免耕一膜兩年用集成密植技術(shù)提高水分利用效率的可行性,以期為構(gòu)建試區(qū)地膜減量玉米高效生產(chǎn)技術(shù)提供理論支撐。2017—2019年,在河西綠洲灌區(qū)設(shè)置耕作措施(傳統(tǒng)覆膜CT,一膜兩年用NT)和密度(78 000株/hm2,低;103 500株/hm2,中;129 000株/hm2,高)兩因素田間試驗(yàn),研究不同處理的水分利用特征和產(chǎn)量表現(xiàn),以耗水量的多少、產(chǎn)量的高低和水分利用效率的大小為依據(jù),探索在2種耕作措施下可以承載作物最大密度的土壤水分,即水分承載潛力,明確免耕一膜兩年用對(duì)玉米密植的水分承載潛力。NT較CT土壤播前含水量和貯水量分別提高11.6%—14.0%和19.4%—26.0%,利于玉米密植。NT與CT相比,中、低密度玉米全生育期總耗水量無(wú)顯著差異,而高密度玉米全生育期總耗水量增加了4.7%;隨玉米密度增加,玉米全生育期總耗水量隨之增大,但總棵間蒸發(fā)量和蒸散比隨之下降;NT和CT條件下,高、中密度較低密度玉米全生育期總耗水量分別增加了10.7%、5.2%和7.4%、4.6%,即從耗水量角度講,NT支撐玉米高密度的水分承載潛力較CT下降。密度相同時(shí),NT和CT玉米籽粒產(chǎn)量差異不顯著;NT條件下高、中密度較低密度產(chǎn)量提高了6.1%—19.0%、10.9—25.0%,CT條件下高、中密度產(chǎn)量較低密度提高了4.8%—5.8%、8.8%—8.9%,中密度利于玉米高產(chǎn),從產(chǎn)量角度講,NT較CT支撐高密度的水分承載力未下降。相同密度下,NT和CT玉米水分利用效率無(wú)差異;密度對(duì)玉米水分利用效率影響顯著,NT與CT條件下,中密度較高、低密度水分利用效率分別提高9.8%—10.8%、6.3%—17.8%與5.9%—7.1%、4.3%—4.7%,中密度下水分利用效率最大,從水分利用效率角度講2種模式都不足以承載高密度。在綠洲灌區(qū),免耕一膜兩年用與傳統(tǒng)覆膜具有相同的通過(guò)增密獲得同等籽粒產(chǎn)量和水分利用效率的潛力,但免耕一膜兩年用玉米全生育期總耗水量較大;免耕一膜兩年用結(jié)合103 500株/hm2的密度可作為綠洲灌區(qū)地膜減量和玉米高產(chǎn)、水分高效利用技術(shù)推廣應(yīng)用。
一膜兩年用;玉米;種植密度;耗水量;水分利用效率;水分承載潛力
【研究意義】水資源嚴(yán)重匱乏是農(nóng)業(yè)生產(chǎn)的重要制約因素,如何在現(xiàn)有的水分供應(yīng)條件下發(fā)展高效節(jié)水型農(nóng)業(yè)尤為重要[1-2],開(kāi)展以水資源高效利用為前提的節(jié)水型農(nóng)業(yè)成為解決農(nóng)業(yè)缺水的迫切之需[3-4]。農(nóng)作物保持高產(chǎn)需要消耗大量水資源,對(duì)土壤水分安全帶來(lái)嚴(yán)重威脅,水分承載潛力是衡量一個(gè)地區(qū)農(nóng)田土壤水分承載作物的最大負(fù)荷,是水分所能維持作物健康生長(zhǎng)的最大密度,是衡量土壤水分安全供應(yīng)的重要依據(jù);在干旱與半干旱地區(qū),地膜覆蓋是蓄水保墑的主要農(nóng)藝措施[5],但近年來(lái)地膜大量使用已對(duì)作物和農(nóng)田生態(tài)環(huán)境造成嚴(yán)重威脅[6-7]。因此如何在地膜減量的前提下衡量農(nóng)田土壤水分承載潛力,對(duì)土壤水資源高效利用和農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義[8-9]?!厩叭搜芯窟M(jìn)展】種植密度是影響作物產(chǎn)量的關(guān)鍵因子,適度增密是玉米獲得較高目標(biāo)產(chǎn)量的有效途徑之一[10],也為玉米栽培技術(shù)的創(chuàng)新提供了方向[11]。研究指出,適宜的種植密度受品種特性[12-13]、種植模式[14]、土壤質(zhì)量[15]、水肥[4,16]等多個(gè)因素的影響。其中,水分供給充足時(shí),適當(dāng)增密使得作物總耗水與蒸騰耗水增加[17]、無(wú)效蒸發(fā)減少[13]、水分利用效率提高[4]。但供水有限時(shí),密度過(guò)大會(huì)加劇土壤水分消耗,引起土壤干燥化,導(dǎo)致土壤水分負(fù)平衡[18]。因此,合理的作物密度應(yīng)在水分承載閾值之內(nèi)。在諸多優(yōu)化土壤水分條件的農(nóng)藝措施中,地膜覆蓋能夠有效地減少表層土壤水分散失,提高水分含量[19],對(duì)提高水分承載力有重要作用[20]。但地膜使用成本過(guò)高,造成土壤污染嚴(yán)重是目前面臨的重大問(wèn)題之一[6],傳統(tǒng)覆膜技術(shù)亟需改良。而免耕一膜兩年用減少地膜的投入和機(jī)械的擾動(dòng)[21],具有與覆新膜同等的保水效果[3]。因此,明確免耕一膜兩年用條件下玉米栽培密度閾值且保證玉米水分高效利用的農(nóng)藝措施,是提高水分承載潛力亟需解決的問(wèn)題?!颈狙芯壳腥朦c(diǎn)】在綠洲灌區(qū),集成免耕一膜兩年用及密植技術(shù)的應(yīng)用研究較少,能否通過(guò)優(yōu)化免耕措施下作物耗水特性使其具有承載密植作物水分承載潛力,進(jìn)而明確2種耕作措施基于水分承載潛力的耐密閾值還有待研究。【擬解決的關(guān)鍵問(wèn)題】本研究將免耕一膜兩年用與密植同步集成應(yīng)用于玉米栽培中,分析不同處理玉米水分利用特征和產(chǎn)量差異,從耗水特性、產(chǎn)量表現(xiàn)和農(nóng)田水分利用效率3個(gè)方面揭示免耕一膜兩年用玉米密植的水分承載潛力,以期為構(gòu)建地膜減量和水資源高效利用技術(shù)提供理論依據(jù)。
試驗(yàn)于2017年4月至2019年10月,在甘肅農(nóng)業(yè)大學(xué)綠洲農(nóng)業(yè)綜合試驗(yàn)站進(jìn)行(37°30′N,103°5′E,海拔1 506 m)。該區(qū)灌溉水資源有限,多年平均降水量為156 mm,且主要集中在7—9月份,年蒸發(fā)量>2 000 mm。玉米作為該試驗(yàn)區(qū)主栽作物,采用覆膜種植,主要以傳統(tǒng)翻耕為主。2018與2019年玉米全生育期降水量分別為244.4 mm與171.3 mm,如圖1所示。
圖1 2018—2019年研究區(qū)降水和氣溫變化
本試驗(yàn)為裂區(qū)設(shè)計(jì),主區(qū)為2種耕作措施:傳統(tǒng)覆膜(CT),即傳統(tǒng)覆膜在玉米收獲后回收殘膜進(jìn)行深翻耕,到春季播種時(shí)再進(jìn)行旋耕耙磨后覆蓋新膜;一膜兩年用(NT),即在玉米收獲后免耕,保持地膜完整度高于70%。副區(qū)為3個(gè)種植密度,即當(dāng)?shù)爻R?guī)密度78 000株/hm2(低密度M1)、103 500株/hm2(中密度M2)、129 000株/hm2(高密度M3),共6個(gè)處理,重復(fù)3次,小區(qū)面積為42 m2(7 m×6 m)。2018年,4月21日播種,9月28日收獲;2019年,4月19日播種,9月29日收獲。供試玉米品種為“先玉335”,采用人工穴播機(jī)穴播。2017年進(jìn)行預(yù)備試驗(yàn),在地膜玉米收獲后,保留地膜70%的完整度,為2018年一膜兩年用做準(zhǔn)備;2018年試驗(yàn)中傳統(tǒng)覆膜處理玉米收獲后,免耕留膜,為2019年免耕一膜兩年用。
氮肥為尿素,施N 360 kg·hm-2,按基肥﹕大喇叭口期追肥﹕灌漿期追肥=3﹕5﹕2分施,施磷肥(磷酸二銨)180 kg P2O5·hm-2,全作基肥一次施入。基肥一膜兩年用同傳統(tǒng)覆膜一起采用穴播槍施肥,追肥時(shí)采用膜下滴灌水肥一體化技術(shù)。玉米生育期內(nèi)總灌水量為405 mm,冬儲(chǔ)灌為120 mm,灌溉及施肥制度與當(dāng)?shù)馗弋a(chǎn)田保持一致。
采用烘干法測(cè)0—30 cm土層含水量,30—60 cm、60—90 cm、90—120 cm 3個(gè)土層用水分中子儀(NMM503DR,CA,USA)測(cè)定,每個(gè)土層測(cè)3次,3次重復(fù)的平均值作為每個(gè)處理的土壤含水量。
貯水量SWS=θ×h×r×10。式中,SWS為土壤貯水量(mm),θ為土壤含水量(%),h為土層深度(cm),r為土壤容重(g·cm-3),10為單位換算系數(shù)。
耗水量采用水分平衡公式計(jì)算=+[22]。式中,為時(shí)段作物耗水量;為階段的降水量;為階段灌水量;為時(shí)段末與時(shí)段初的土壤貯水量之差,mm。由于本試驗(yàn)區(qū)水資源匱乏,土層深度1.2 m,試驗(yàn)區(qū)地下水在30 m以下,節(jié)水灌溉量較少,因而忽略了滲漏量和地下上升水的影響。
棵間蒸發(fā)量采用微型蒸滲儀(Micro-lysimeter,MLS)測(cè)定[23],每次取土?xí)r將其垂直壓入作物行間土壤內(nèi),使其頂面與地面齊平,取原狀土,然后用尼龍網(wǎng)布封底,另用PVC管做成外套,固定行間,使其表面與附近土壤持平。于玉米出苗期每3 d測(cè)定1次,微型蒸發(fā)器中土樣每減少1 g相當(dāng)于蒸發(fā)水分0.1051 mm,降雨、灌水后立即換土。
耗水結(jié)構(gòu)(E/ET)用棵間蒸發(fā)量(E)與總耗水量(ET)之比量化。
產(chǎn)量測(cè)定在玉米成熟后,以小區(qū)為單位收獲,用種子水分儀測(cè)定籽粒含水量,計(jì)算產(chǎn)量時(shí)籽粒含水量為14%。
水分利用效率WUE=GY/ET。式中,WUE為水分利用效率(kg·hm-2·mm-1),GY為籽粒產(chǎn)量(kg·hm-2),ET為生育期總耗水量(mm)。
本試驗(yàn)數(shù)據(jù)采用Microsoft Excel 2010和SPSS 21.0統(tǒng)計(jì)軟件進(jìn)行整理與統(tǒng)計(jì)分析,處理間的顯著性檢驗(yàn)采用LSD最小顯著差異法(α=0.05)、互作效應(yīng)分析。
一膜兩年用(NT)較傳統(tǒng)覆膜(CT)顯著提高了玉米播前土壤含水量和貯水量,種植密度、耕作措施×種植密度互作效應(yīng)對(duì)二者影響不顯著(表1)。2年中玉米播前土壤含水量和貯水量NT較CT分別增加11.6%—14.0%和19.4%—26.0%。說(shuō)明免耕一膜兩年用有效抑制土地休閑期水分無(wú)效蒸發(fā),儲(chǔ)蓄播前土壤水分,具有提供玉米密植水分承載潛力的水分供給優(yōu)勢(shì)。
一膜兩年用較傳統(tǒng)覆膜顯著提高了玉米收獲后的土壤含水量和貯水量,種植密度對(duì)收獲后土壤含水量和貯水量影響顯著,但耕作措施與種植密度的互作效應(yīng)不顯著(表1)。低密度下玉米收獲期土壤含水量和貯水量NT較CT顯著增加14.8%和12.7%,中密度下NT較CT顯著增加12.3%和10.4%,高密度下NT較CT增加6.3%和7.6%。相同耕作措施下,玉米收獲后土壤含水量低密度較中、高密度增加8.7%、14.2%,中密度較高密度增加5.1%;貯水量低密度較中、高密度增加10.2%、15.1%,中密度較高密度增加4.4%。
免耕一膜兩年用較傳統(tǒng)覆膜未增加玉米總耗水量,玉米總耗水量隨種植密度的增加而升高,耕作措施和種植密度二者互作效應(yīng)不顯著(表1)。中、低密度下總耗水量在NT和CT條件下差異不顯著,而高密度下總耗水量NT較CT顯著增加4.7%。CT條件下,玉米總耗水量高、中密度較低密度分別增大7.4%和4.6%;NT條件下,總耗水量高、中密度較低密度分別增大10.7%、5.2%,高密度較中密度顯著增加5.2%。說(shuō)明免耕一膜兩年用較傳統(tǒng)覆膜處理,高密度玉米耗水較大,對(duì)土壤水分安全造成威脅,不具有支撐高密度的水分承載力。
表1 不同耕作措施及種植密度下玉米的耗水特性
CTM1、CTM2、CTM3代表傳統(tǒng)覆膜的低、中、高密度;NTM1、NTM2、NTM3代表一膜兩年用的低、中、高密度。表中的含水量和貯水量均為0—120 cm土層。NS、**分別表示無(wú)顯著差異及在0.01水平上差異顯著。同一列數(shù)字后的不同小寫字母表示在0.05水平上差異顯著
CTM1, CTM2, CTM3represent the low, medium, and high density of conventional plastic film mulching; NM1, NM2, NM3represent the low, medium, and high density of no-tillage with plastic film mulching for 2-year. The soil water content and soil water storage is 0-120 cm soil layer in the table. NS, ** mean non-significant or significant at<0.01, respectively. Different lowercase letters in a column represent significant differences at 0.05 level
耕作措施對(duì)玉米各生育階段棵間蒸發(fā)量影響顯著,同一耕作措施下玉米各生育階段日棵間蒸發(fā)量低密度高于高、中密度(圖2)。玉米播種至拔節(jié)期,高、中、低密度下NT較CT棵間蒸發(fā)量增加17.0%、15.6%、15.7%。拔節(jié)期后,高、中、低密度下NT較CT棵間蒸發(fā)量降低5.9%、5.4%、4.8%。在玉米生長(zhǎng)初期幼苗較小,一膜兩年用保水效果低于新膜,但隨著生育進(jìn)程的推進(jìn)植株生長(zhǎng)較快,耕作措施對(duì)日棵間蒸發(fā)影響不顯著。
耕作措施對(duì)總棵間蒸發(fā)量影響不顯著,隨種植密度增加總棵間蒸發(fā)量逐漸減小,二者對(duì)總棵間蒸發(fā)量的互作效應(yīng)不顯著(圖3)。高、中、低密度下,玉米全生育期棵間蒸發(fā)量在NT和CT條件下差異不顯著;耕作措施相同時(shí),總棵間蒸發(fā)量高、中密度較低密度分別顯著降低12.5%、8.8%,高密度和中密度之間沒(méi)有顯著差異??梢?jiàn),免耕一膜兩年用具有同傳統(tǒng)覆膜相同的支撐密植作物的水分條件。
耕作措施對(duì)總蒸散比影響不顯著,總蒸散比隨種植密度的增加而下降,耕作措施和種植密度二者對(duì)其互作效應(yīng)不顯著(圖4)。高、中、低密度下,總蒸散NT較CT并無(wú)顯著差異;同一耕作措施下,高、中密度較低密度蒸散比顯著降低19.9%、12.9%,高密度與中密度差異不顯著。說(shuō)明免耕一膜兩年用較傳統(tǒng)覆膜具有同等支撐密植作物生產(chǎn)的有效水分優(yōu)勢(shì)。
耕作措施對(duì)玉米籽粒產(chǎn)量影響不顯著,隨著種植密度增加籽粒產(chǎn)量增加,耕作措施和種植密度對(duì)籽粒產(chǎn)量互作效應(yīng)不顯著(圖5)。NT和CT條件下,玉米籽粒產(chǎn)量在高、中、低密度下差異顯著;CT條件下,高、中密度較低密度玉米籽粒產(chǎn)量顯著增加4.8%—5.8%、8.8%—8.9%;NT條件下,高、中密度較低密度玉米籽粒產(chǎn)量顯著增加6.1%—19.0%、10.9%—25.0%,但2019年中密度較高密度籽粒產(chǎn)量顯著提高4.5%。說(shuō)明中密度玉米栽培具有較高增產(chǎn)潛力,且免耕一膜兩年用較傳統(tǒng)覆膜承載密植的水分承載潛力并未下降。
圖2 不同耕作措施和種植密度處理下玉米全生育期日棵間蒸發(fā)動(dòng)態(tài)
不同小寫字母表示處理間差異顯著(P<0.05)。下同
圖4 不同耕作措施及種植密度下玉米總蒸散比
耕作措施對(duì)水分利用效率影響不顯著,而種植密度對(duì)水分利用效率影響顯著,耕作措施和種植密度二者互作效應(yīng)不顯著(圖6)。高、中、低密度下,水分利用效率在NT和CT條件下差異不顯著;CT條件下,中密度較高、低密度水分利用效率提高5.9%—7.1%、4.3%—4.7%,NT條件下,中密度較高、低密度水分利用效率提高9.8%—10.8%、6.3%—17.8%??梢?jiàn),2種耕作措施下,中密度處理具有較高水分利用效率,且一膜兩年用與傳統(tǒng)覆膜支撐高密植作物的水分承載潛力下降。
免耕提高了玉米生育時(shí)期土壤含水量和貯水量,改善了播前土壤水分環(huán)境,提高土壤保水能力,滿足玉米生長(zhǎng)前期對(duì)水分的需求[24-25]。同時(shí)研究表明,一膜兩年覆蓋有效提高播前土壤含水量[21],本研究與其結(jié)果一致。以上研究得出免耕一膜兩年用較傳統(tǒng)覆膜顯著提高播前土壤含水量和貯水量11.6%—14.0%和19.4%—26.0%,由于前茬作物收獲后土地休閑期間免耕一膜兩年用減少了地表裸露,降低土壤水分無(wú)效蒸發(fā),保墑蓄水,提高耕層土壤的含水量[3,26],具有提高水分承載潛力的水分供給優(yōu)勢(shì)。
圖6 不同耕作措施及種植密度下水分利用效率
免耕有效降低作物生育期的總耗水量,對(duì)協(xié)調(diào)系統(tǒng)的降耗有顯著的效果[27-28],有研究指出一膜兩年用降低玉米拔節(jié)前的耗水量,具有與傳統(tǒng)覆膜相當(dāng)?shù)谋KЧ鸞3,29]。本研究表明中、低密度下一膜兩年用較傳統(tǒng)覆膜未增加作物總耗水量,說(shuō)明一膜兩年用具有與傳統(tǒng)覆膜相同的支撐密植作物水分承載潛力的效應(yīng)。密度是影響作物生育期總耗水的關(guān)鍵因素之一,玉米全生育期耗水量與密度成正比[4,30]。本研究中,相同耕作措施下耗水量隨密度增加而顯著升高,其原因可能是種植密度增加導(dǎo)致作物群體增大,提高植物的蒸騰作用,導(dǎo)致作物的耗水量增加[4]。
降低棵間蒸發(fā)有效防止土壤無(wú)效水分散失,提高水分利用效率[31-32]。研究表明免耕減少作物生育前期棵間蒸發(fā),增大作物生育后期蒸散比[33]。本研究中玉米拔節(jié)期前,一膜兩年用日棵間蒸發(fā)量高于傳統(tǒng)覆膜,拔節(jié)期后日棵間蒸發(fā)量低于傳統(tǒng)覆膜,一膜兩年用同傳統(tǒng)覆膜具有支撐密植作物生產(chǎn)的水分優(yōu)勢(shì),是因?yàn)樵谏捌谧魑锷L(zhǎng)緩慢,新膜的覆蓋程度大于舊膜,減少了土壤水分的無(wú)效蒸散,但隨著生育進(jìn)程推進(jìn)植株生長(zhǎng)較快,耕作措施對(duì)棵間蒸發(fā)影響不顯著,一膜兩年用均衡作物生育前期和生育后期棵間蒸發(fā)量。有研究指出,增加種植密度可以減少作物的棵間蒸發(fā)[4,13]。本研究中隨著種植密度的增加,棵間蒸發(fā)和蒸散比呈下降趨勢(shì),其原因可能是作物蒸散比與葉面積指數(shù)呈負(fù)相關(guān)關(guān)系,增加作物種植密度可以調(diào)控葉面積指數(shù),減少無(wú)效蒸散[34]。
相關(guān)研究指出在有限灌水條件下,一膜兩年用玉米產(chǎn)量與傳統(tǒng)覆膜相當(dāng)[21]。本研究中在種植密度一致時(shí),一膜兩年用具有同傳統(tǒng)覆膜相當(dāng)?shù)拿苤苍霎a(chǎn)潛力,可見(jiàn)一膜兩年處理在環(huán)境保護(hù),作物生長(zhǎng)等方面適用。種植密度的調(diào)控可以改善作物水分利用效率,提高作物產(chǎn)量[35]。研究表明在適宜密度范圍內(nèi)作物產(chǎn)量隨著密度增加而增加[4,36],超出此密度閾值會(huì)導(dǎo)致玉米單株的生長(zhǎng)空間減小,進(jìn)而玉米群體內(nèi)個(gè)體之間對(duì)光資源和水資源等生態(tài)因子需求加劇,個(gè)體之間競(jìng)爭(zhēng)劇烈,造成玉米產(chǎn)量降低[37]。王巧梅等[4]研究結(jié)果指出,玉米密度在99 000株/hm2達(dá)到最大的增產(chǎn)潛力,再增加種植密度時(shí)產(chǎn)量將不能顯著增加。本研究中傳統(tǒng)覆膜下,玉米籽粒產(chǎn)量中密度顯著高于低密度,中密度與高密度的籽粒產(chǎn)量差異不顯著;在2019年一膜兩年用處理下,中密度下的籽粒產(chǎn)量顯著高于高密度和低密度,主要原因可能是一膜兩年用高密度作物在生育前期群體生長(zhǎng)速率較快,耗水較大,導(dǎo)致土壤水分虧缺,影響玉米生育后期地上部生長(zhǎng)發(fā)育,導(dǎo)致干物質(zhì)向籽粒轉(zhuǎn)移減少,引起產(chǎn)量降低。由此得出中密栽培增產(chǎn)潛力更大,且一膜兩年用較傳統(tǒng)覆膜未降低高密作物的水分承載力。
地膜覆蓋能夠通過(guò)提高作物產(chǎn)量進(jìn)而提高作物水分利用效率[38],一膜兩年用具有與傳統(tǒng)覆膜相當(dāng)?shù)乃掷眯蔥3]。有研究指出,高密度作物提高了水分利用效率[39],但也有研究表明,相比較高密度,中密度下作物水分利用效率達(dá)到最大[4]。本研究中一膜兩年用具有與傳統(tǒng)覆膜相同的水分利用效果,在相同耕作措施下中密度的水分利用效率最高。由此可以得出中密度可以有效地提高水分利用效率,且免耕一膜兩年用與傳統(tǒng)覆膜支撐高密作物的水分承載潛力下降。
綠洲灌區(qū)免耕一膜兩年用較傳統(tǒng)覆膜未降低作物密植的水分承載潛力。與傳統(tǒng)覆膜相比,一膜兩年用顯著提高了玉米播前土壤含水量和貯水量,提供了作物密植的水分條件。一膜兩年用較傳統(tǒng)覆膜未增加玉米全生育期耗水量、總的蒸散量和蒸散比;在相同耕作措施下,作物總耗水量隨種植密度增加而升高;作物總棵間蒸發(fā)量、蒸散比隨密度增加而降低。在耕作措施下籽粒產(chǎn)量差異不顯著,中密度(103 500株/hm2)具有更大增產(chǎn)潛力;水分利用效率在耕作措施下沒(méi)有差異,中密度下水分利用效率達(dá)到最高。在水資源緊缺的綠洲灌區(qū),免耕一膜兩年用和中密度可作為綠洲灌區(qū)地膜減量和玉米高產(chǎn)、水資源高效利用的一項(xiàng)措施。
[1] 楊飛, 李愛(ài)寧, 周翠萍, 黃家英. 兼業(yè)程度、農(nóng)業(yè)水資源短缺感知與農(nóng)戶節(jié)水技術(shù)采用行為—基于陜西省農(nóng)戶的調(diào)查數(shù)據(jù). 節(jié)水灌溉, 2019(5): 113-116.
YANG F, LI A N, ZHOU C P, HUANG J Y. Part-time employment, agricultural water shortage perception and water-saving technology adoption behavior of farmers—Based on the survey data of farmers in Shaanxi province. Water Saving Irrigation, 2019(5): 113-116. (in Chinese)
[2] 伍維模, 董合林, 王萍, 陳康謂, 危常洲. 水分與氮素對(duì)南疆膜下滴灌棉花水分利用效率與蒸騰速率的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2006, 15(1): 11-15.
WU W M, DONG H L, WANG P, CHEN K W, WEI C Z. The effects of water and nitrogen on water use efficiency and transpiration rate in mulched-cotton by drip irrigation in South-Xinjiang. Acta Agriculturae Boreali-Occidentalis Sinica, 2006, 15(1): 11-15. (in Chinese)
[3] 張乃旭, 趙財(cái), 趙良霞, 蔡莉娟, 王一帆, 柴強(qiáng). 綠洲灌區(qū)一膜覆兩年玉米的節(jié)水潛力. 作物學(xué)報(bào), 2018, 44(6): 876-885.
ZHANG N X, ZHAO C, ZHAO L X, CAI L J, WANG Y F, CHAI Q. Water-saving potential for biennial mulched corn with same plastic film in oasis irrigation area. Acta Agronomica Sinica, 2018, 44(6): 876-885. (in Chinese)
[4] 王巧梅, 樊志龍, 趙彥華, 殷文, 柴強(qiáng). 綠洲灌區(qū)不同密度玉米群體的耗水特性研究. 作物學(xué)報(bào), 2017, 43(9): 1347-1356.
WANG Q M, FAN Z L, ZHAO Y H, YIN W, CHAI Q. Effect of planting density on water consumption characteristics of maize in oasis irrigation area. Acta Agronomica Sinica, 2017, 43(9): 1347-1356. (in Chinese)
[5] 孫仕軍, 朱振闖, 陳志君, 楊丹, 張旭東. 不同顏色地膜和種植密度對(duì)春玉米田間地溫、耗水及產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(19): 3323-3336.
SUN S J, ZHU Z C, CHEN Z J, YANG D, ZHANG X D. Effects of different colored plastic film mulching and planting density on soil temperature, evapotranspiration and yield of spring maize. Scientia Agricultura Sinica, 2019, 52(19): 3323-3336. (in Chinese)
[6] 樊志龍, 趙財(cái), 劉暢, 于愛(ài)忠, 殷文, 胡發(fā)龍, 柴強(qiáng). 一膜兩年用少耕輪作對(duì)水氮減投小麥產(chǎn)量形成的促進(jìn)效應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(19): 3651-3662.
FAN Z L, ZHAO C, LIU C, YU A Z, YIN W, HU F L, CHAI Q. Enhanced effect of two years plastic film mulching with reduced tillage on grain yield formation of wheat rotation under reduced irrigation and N application. Scientia Agricultura Sinica, 2018, 51(19): 3651-3662. (in Chinese)
[7] 嚴(yán)昌榮, 梅旭榮, 何文清, 鄭盛華. 農(nóng)用地膜殘留污染的現(xiàn)狀與防治. 農(nóng)業(yè)工程學(xué)報(bào), 2006, 22(11): 269-272.
YAN C R, MEI X R, HE W Q, ZHENG S H. Present situation of residue pollution of mulching plastic film and controlling measures. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(11): 269-272. (in Chinese)
[8] 郭忠升, 邵明安. 土壤水分植被承載力研究成果在實(shí)踐中的應(yīng)用. 自然資源學(xué)報(bào), 2009, 24(12): 2187-2193.
GUO Z S, SHAO M A. Use of the theory of soil water carrying capacity for vegetation in practice. Journal of Natural Resources, 2009, 24(12): 2187-2193. (in Chinese)
[9] 謝軍紅, 柴強(qiáng), 李玲玲, 張仁陟, 牛伊寧, 羅珠珠, 蔡立群. 黃土高原半干旱區(qū)不同覆膜連作玉米產(chǎn)量的水分承載時(shí)限研究. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(8): 1558-1568.
XIE J H, CHAI Q, LI L L, ZHANG R Z, NIU Y N, LUO Z Z, CAI L Q. The time loading limitation of continuous cropping maize yield under different plastic film mulching modes in semi-arid region of Loess Plateau of China. Scientia Agricultura Sinica, 2015, 48(8): 1558-1568. (in Chinese)
[10] 陳傳永, 侯玉虹, 孫銳, 朱平, 董志強(qiáng), 趙明. 密植對(duì)不同玉米品種產(chǎn)量性能的影響及其耐密性分析. 作物學(xué)報(bào), 2010, 36(7): 1153-1160.
CHEN C Y, HOU Y H, SUN R, ZHU P, DONG Z Q, ZHAO M. Effects of planting density on yield performance and density-tolerance analysis for maize hybrids. Acta Agronomica Sinica, 2010, 36(7): 1153-1160. (in Chinese)
[11] 周婷婷, 李軍, 司政邦. 種植密度與品種類型對(duì)渭北旱地春玉米產(chǎn)量和光能利用的影響. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 43(11): 54-62.
ZHOU T T, LI J, SI Z B. Effects of planting density and variety on growth and RUE of spring maize in Weibei highland. Journal of Northwest A & F University(Natural Science Edition), 2015, 43(11): 54-62. (in Chinese)
[12] TOLLENAAR M, LEE E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 75(2/3): 161-169.
[13] 王小林, 張歲岐, 王淑慶. 不同密度下品種間作對(duì)玉米水分平衡的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2013, 21(2): 171-178.
WANG X L, ZHANG S Q, WANG S Q. Effects of cultivars intercropping on maize water balance under different planting densities.Chinese Journal of Eco-Agriculture, 2013, 21(2): 171-178. (in Chinese)
[14] LIU C A, JIN S L, ZHOU L M, JIA Y, LI F M, XIONG Y C, LI X G. Effects of plastic film mulch and tillage on maize productivity and soil parameters. European Journal of Agronomy, 2009, 31(4): 241-249.
[15] KUCHARIK C J. Contribution of planting date trends to increased maize yields in the Central United States. Agronomy Journal, 2008, 100(2): 328-336.
[16] 張平良, 郭天文, 劉曉偉, 李書田, 曾駿, 譚雪蓮, 董博. 密度和施氮量互作對(duì)全膜雙壟溝播玉米產(chǎn)量、氮素和水分利用效率的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2019, 25(4): 579-590.
ZHANG P L, GUO T W, LIU X W, LI S T, ZENG J, TAN X L, DONG B. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 579-590. (in Chinese)
[17] 張冬梅, 張偉, 陳瓊, 黃學(xué)芳, 姜春霞, 韓彥龍, 劉恩科, 池寶亮. 種植密度對(duì)旱地玉米植株性狀及耗水特性的影響. 玉米科學(xué), 2014, 22(4): 102-108.
ZHANG D M, ZHANG W, CHEN Q, HUANG X F, JIANG C X, HAN Y L, LIU E K, CHI B L. Effects of planting density on plant traits and water consumption characteristics of dryland maize. Journal of Maize Sciences, 2014, 22(4): 102-108. (in Chinese)
[18] 樊廷錄, 李永平, 李尚中, 劉世新, 王淑英, 馬明生. 旱作地膜玉米密植增產(chǎn)用水效應(yīng)及土壤水分時(shí)空變化. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(19): 3721-3732.
FAN T L, LI Y P, LI S Z, LIU S X, WANG S Y, MA M S. Grain yield and water use efficiency and soil water changes of dryland corn with film mulching and close planting. Scientia Agricultura Sinica, 2016, 49(19): 3721-3732. (in Chinese)
[19] 翟治芬, 趙元忠, 景明, 張建華, 盧艷敏. 秸稈和地膜覆蓋下春玉米農(nóng)田騰發(fā)特征研究. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2010, 18(1): 62-66.
ZHAI Z F, ZHAO Y Z, JING M, ZHANG J H, LU Y M. Evapotranspiration characteristics of spring maize under film and straw mulch.Chinese Journal of Eco-Agriculture, 2010, 18(1): 62-66. (in Chinese)
[20] WANG Y P, LI X G, ZHU J, FAN C Y, KONG X J, TURNER N C, SIDDIQUE K H M, LI F M. Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agricultural and Forest Meteorology, 2016, 220: 160-169.
[21] 趙財(cái), 陳桂平, 柴強(qiáng), 殷文, 劉暢. 不同灌水水平下一膜兩年覆蓋的玉米農(nóng)田土壤水分和經(jīng)濟(jì)效益分析. 干旱地區(qū)農(nóng)業(yè)研究, 2017, 35(3): 1-6.
ZHAO C, CHEN G P, CHAI Q, YIN W, LIU C. Soil moisture and economic benefits of maize field by 2 years plastic film mulching under different irrigation levels.Agricultural Research in the Arid Areas, 2017, 35(3): 1-6. (in Chinese)
[22] CHAI Q, GAN Y T, TURNER N C, ZHANG R Z, YANG C, NIU Y N, SIDDIQUE K H M. Water-saving innovations in Chinese agriculture. Advances in Agronomy, 2014, 126: 149-201.
[23] 孫宏勇, 劉昌明, 張永強(qiáng), 張喜英. 微型蒸發(fā)器測(cè)定土面蒸發(fā)的試驗(yàn)研究. 水利學(xué)報(bào), 2004, 35(8): 114-118.
SUN H Y, LIU C M, ZHANG Y Q, ZHANG X Y. Study on soil evaporation by using micro-lysimeter.Journal of Hydraulic Engineering, 2004, 35(8): 114-118. (in Chinese)
[24] 趙亞麗, 薛志偉, 郭海斌, 穆心愿, 李潮海. 耕作方式與秸稈還田對(duì)冬小麥-夏玉米耗水特性和水分利用效率的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(17): 3359-3371.
ZHAO Y L, XUE Z W, GUO H B, MU X Y, LI C H. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Scientia Agricultura Sinica, 2014, 47(17): 3359-3371. (in Chinese)
[25] 刁生鵬, 高日平, 高宇, 任永峰, 趙沛義, 袁偉, 高學(xué)峰. 內(nèi)蒙古黃土高原秸稈還田對(duì)玉米農(nóng)田土壤水熱狀況及產(chǎn)量的影響. 作物雜志, 2019, 35(6): 83-89.
DIAO S P, GAO R P, GAO Y, REN Y F, ZHAO P Y, YUAN W, GAO X F. Effects of straw returning on soil hydrothermal and yield of maize in Loess Plateau of Inner Mongolia.Crops, 2019, 35(6): 83-89. (in Chinese)
[26] 彭文英. 免耕措施對(duì)土壤水分及利用效率的影響. 土壤通報(bào), 2007(2): 379-383.
PENG W Y. Effect of no-tillage on soil water regime and water use efficiency. Chinese Journal of Soil Science, 2007(2): 379-383. (in Chinese)
[27] 胡發(fā)龍, 柴強(qiáng), 甘延太, 殷文, 趙財(cái), 馮福學(xué). 少免耕及秸稈還田小麥間作玉米的碳排放與水分利用特征. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(1): 120-131.
HU F L, CHAI Q, GAN Y T, YIN W, ZHAO C, FENG F X. Characteristics of soil carbon emission and water utilization in wheat/ maize intercropping with minimal/zero tillage and straw retention. Scientia Agricultura Sinica, 2016, 49(1): 120-131. (in Chinese)
[28] 殷文, 陳桂平, 柴強(qiáng), 趙財(cái), 馮福學(xué), 于愛(ài)忠, 胡發(fā)龍, 郭瑤. 前茬小麥秸稈處理方式對(duì)河西走廊地膜覆蓋玉米農(nóng)田土壤水熱特性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(15): 2898-2908.
YIN W, CHEN G P, CHAI Q, ZHAO C, FENG F X, YU A Z, HU F L, GUO Y. Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi corridor. Scientia Agricultura Sinica, 2016, 49(15): 2898-2908. (in Chinese)
[29] 蔡莉娟, 趙財(cái), 馮福學(xué), 于愛(ài)忠, 劉暢, 柴強(qiáng). 一膜覆二年和灌水量對(duì)玉米間作豌豆水分利用效率的影響. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018, 53(1): 29-34, 41.
CAI L J, ZHAO C, FENG F X, YU A Z, LIU C, CHAI Q. Effects of plastic film mulching for two years and irrigation amount on water use efficiency of maize-pea intercropping system.Journal of Gansu Agricultural University, 2018, 53(1): 29-34, 41. (in Chinese)
[30] 劉泉汝, 郎坤, 趙丹丹, 沈加印, 李全起, 韓惠芳. 秸稈覆蓋和種植密度對(duì)夏玉米水分利用的影響. 排灌機(jī)械工程學(xué)報(bào), 2013, 31(12): 1089-1094.
LIU Q R, LANG K, ZHAO D D, SHEN J Y, LI Q Q, HAN H F. Effects of straw mulching and plant density on water utilization of summer maize. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(12): 1089-1094. (in Chinese)
[31] 王新兵, 侯海鵬, 周寶元, 孫雪芳, 馬瑋, 趙明. 條帶深松對(duì)不同密度玉米群體根系空間分布的調(diào)節(jié)效應(yīng). 作物學(xué)報(bào), 2014, 40(12): 2136-2148.
WANG X B, HOU H P, ZHOU B Y, SUN X F, MA W, ZHAO M. Effect of strip subsoiling on population root spatial distribution of maize under different planting densities. Acta Agronomica Sinica, 2014, 40(12): 2136-2148. (in Chinese)
[32] 滕園園, 趙財(cái), 柴強(qiáng), 胡發(fā)龍, 馮福學(xué). 氮肥后移對(duì)玉米間作豌豆耗水特性的調(diào)控效應(yīng). 作物學(xué)報(bào), 2016, 42(3): 446-455.
TENG Y Y, ZHAO C, CHAI Q, HU F L, FENG F X. Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system.Acta Agronomica Sinica, 2016, 42(3): 446-455. (in Chinese)
[33] 張海林, 陳阜, 秦耀東, 朱文珊. 覆蓋免耕夏玉米耗水特性的研究. 農(nóng)業(yè)工程學(xué)報(bào), 2002, 18(2): 36-40.
ZHANG H L, CHEN F, QIN Y D, ZHU W S. Water consumption characteristics for summer corn under no-tillage with mulch.Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 36-40. (in Chinese)
[34] 王健, 蔡煥杰, 康燕霞, 陳鳳. 夏玉米棵間土面蒸發(fā)與蒸發(fā)蒸騰比例研究. 農(nóng)業(yè)工程學(xué)報(bào), 2007, 23(4): 17-22.
WANG J, CAI H J, KANG Y X, CHEN F. Ratio of soil evaporation to the evapotranspiration for summer maize field.Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(4): 17-22. (in Chinese)
[35] HAUGGAARD-NIELSEN H, ANDERSEN M K, JORNSGAARD B, JENSEN E S. Density and relative frequency effects on competitive interactions and resource use in pea–barley intercrops. Field Crops Research, 2006, 95(2/3): 256-267.
[36] 李豪圣, 宋健民, 劉愛(ài)峰, 程敦公, 王西芝, 杜長(zhǎng)林, 趙振東, 劉建軍. 播期和種植密度對(duì)超高產(chǎn)小麥‘濟(jì)麥22’產(chǎn)量及其構(gòu)成因素的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2011, 27(5): 243-248.
LI H S, SONG J M, LIU A F, CHENG D G, WANG X Z, DU C L, ZHAO Z D, LIU J J. Effect of sowing time and planting density on yield and components of ‘Jimai22’ with super-high yield.Chinese Agricultural Science Bulletin, 2011, 27(5): 243-248. (in Chinese)
[37] SANGOI L, GRACIETTI M A, RAMPAZZO C, BIANCHETTI P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 2002, 79(1): 39-51.
[38] 董孔軍, 楊天育, 何繼紅, 任瑞玉, 張磊. 西北旱作區(qū)不同地膜覆蓋種植方式對(duì)谷子生長(zhǎng)發(fā)育的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2013, 31(1): 36-40.
DONG K J, YANG T Y, HE J H, REN R Y, ZHANG L. Effects of different film mulching and planting patterns on growth and development of millet in dry-farming area of northwest China. Agricultural Research in the Arid Areas, 2013, 31(1): 36-40. (in Chinese)
[39] 李儒, 崔榮美, 賈志寬, 韓清芳, 路文濤, 侯賢清. 不同溝壟覆蓋方式對(duì)冬小麥土壤水分及水分利用效率的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(16): 3312-3322.
LI R, CUI R M, JIA Z K, HAN Q F, LU W T, HOU X Q. Effects of different furrow-ridge mulching ways on soil moisture and water use efficiency of winter wheat. Scientia Agricultura Sinica, 2011, 44(16): 3312-3322. (in Chinese)
Water-carrying Potential of No-tillage with plastic film mulching for 2-Year coupled with Maize High-density Planting in Oasis Irrigation Area
ZHANG ZhanJun, YANG HongWei, Fan ZhiLong, Yu AiZhong, HU FaLong, YIN Wen, FAN Hong, GUO Yao, CHAI Qiang, ZHAO Cai
College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070
【】In view of the serious water resources shortage in the arid oasis irrigation region, and the large amount of plastic film and water consumption in the traditional maize production mode, this study investigated the feasibility of no-tillage with plastic film mulching for 2-year coupled with high-density planting to improve water use efficiency, so as to provide the theoretical base for the high-efficient maize production technology under plastic film reduction condition in this area.【】A field experiment was conducted in Hexi Corridor oasis irrigation region in 2017-2019 under 2 different tillage patterns, including conventional plastic film mulching (CT) and no-tillage with plastic film mulching for 2-year (NT), and 3 planting densities, including low density (78000 plants/hm2), medium density (103500 plants/hm2), and high density (129000 plants/hm2). Water use characteristics and maize yield performance under various treatments were investigated to explore the soil moisturethat could carrythemaximumdensityof crops under the two cultivation measures, that is, the water-carrying potential. Based on the amount of water consumption, the level of yield and the size of water use efficiency, the water-carrying potential of no-tillage with plastic film mulching for 2-year to high-density planting were clarified.】Compared with CT, NT increased soil water content and soil water storage before sowing by 11.6%-14.0% and 19.4%-26.0%, respectively, implying a beneficial effect on maize high-density planting. There was no significant difference of total water consumption in the whole growth period of maize between NT and CT under medium and low planting densities, while NT increased total water consumption by 4.7% compared with CT under high planting density. The total water consumption of maize increased with increasing of planting density, but total evaporation and E/ET decreased. Compared with low planting density, the high and medium planting densities increased the total water consumption of maize by 10.7% and 5.2% under NT, and by 7.4% and 4.6% under CT, respectively, which indicated that no-tillage with plastic film mulching for 2-year reduced the water-carrying potential for high density planting of maize, compared with conventional tillage. There was no significant difference in maize grain yield between NT and CT with the same planting density level. Compared with low planting density, the high and medium planting densities increased grain yield by 6.1%-19.0% and 10.9%-25.0% under NT, and by 4.8%-5.8% and 8.8%-8.9% under CT, respectively. In terms of grain yield performance, no-tillage with plastic film mulching for 2-year did not reduce the water-carrying potential for high-density planting of maize, compared with conventional tillage. There was no significant difference in water use efficiency between NT and CT with the same planting density level. Compared with high and low planting density levels, the medium planting density increased the water use efficiency by 9.8%-10.8% and 6.3%-17.8% under NT, and by 5.9%-7.1% and 4.3%-4.7% under CT, respectively. The water use efficiency of medium planting density was the highest among those treatments. Considering the water use efficiency difference, neither NT nor CT was suitable to support high-density planting of maize.【】No-tillage with plastic film mulching for 2-year had the same potential as conventional tillage for improving grain yield and water use efficiency by increasing planting density in the arid oasis irrigation region. Whereas, the total water consumption of maize under no-tillage with two-year plastic film mulching was higher than that under CT. Consequently, No-tillage with plastic film mulching for 2-year in combination with planting density at 103 500 plants/hm2could be used as a practical technology to reduce plastic film input, improve grain yield and enhance water use efficiency of maize in oasis irrigation region.
no-tillage with plastic film mulching for 2-year; maize; planting density; water consumption; water use efficiency; water- carrying potential
10.3864/j.issn.0578-1752.2021.16.004
2020-11-19;
2021-01-05
甘肅省科技計(jì)劃項(xiàng)目(20JR5RA037)、中央引導(dǎo)地方科技發(fā)展專項(xiàng)資金
張展軍,E-mail:zzjlucky2020@163.com。通信作者柴強(qiáng),E-mail:chaiq@gsau.edu.cn。通信作者趙財(cái),E-mail:zhaoc@gsau.edu.cn
(責(zé)任編輯 楊鑫浩)