魏艷俠,李卓然,張斌,苑瑜瑾,于瑋瑋,常若葵,王遠宏
貝萊斯芽孢桿菌LJ02中植物免疫蛋白的篩選及其功能
魏艷俠1,李卓然1,張斌1,苑瑜瑾1,于瑋瑋1,常若葵2,王遠宏1
1天津農(nóng)學(xué)院園藝園林學(xué)院,天津 300384;2天津農(nóng)學(xué)院工程技術(shù)學(xué)院,天津 300384
【】貝萊斯芽孢桿菌()LJ02菌株能夠誘導(dǎo)黃瓜等植物產(chǎn)生免疫抗病反應(yīng)。本研究從生防菌LJ02中分離鑒定具有激發(fā)植物免疫活性的蛋白分子,通過驗證其功能,進一步解析免疫蛋白的免疫信號通路。用硫酸銨沉淀法處理LJ02菌株發(fā)酵液,離心獲得LJ02蛋白粗提物,將其經(jīng)凝膠層析后再利用半制備高效液相色譜(high performance liquid chromatography,HPLC)分離,收集不同峰值處的蛋白組分。以煙草花葉病毒(tobacco mosaic virus,TMV)為靶標進行活性組分的篩選,從而獲得具有免疫活性的組分。液相質(zhì)譜聯(lián)用儀(LC-MS)檢測分析活性組分后發(fā)現(xiàn),在組分F-23中含鞭毛蛋白(flagellin,F(xiàn)lgLJ02)。將鞭毛蛋白FlgLJ02進行原核表達并純化,經(jīng)過敏性壞死反應(yīng)(hypersensitive reaction,HR)和抗病試驗驗證其免疫功能。為確定其主要免疫信號通路,采用實時熒光定量PCR(qRT-PCR)檢測水楊酸(salicylic acid,SA)和乙烯(ethylene,ET)途徑的相關(guān)合成酶基因、以及免疫相關(guān)抗性基因、、和,通過免疫相關(guān)抗性基因的相對表達量解析鞭毛蛋白FlgLJ02免疫信號轉(zhuǎn)導(dǎo)途徑。HPLC層析分離出貝萊斯芽孢桿菌LJ02菌液產(chǎn)生的60個外泌蛋白組分(F-1—F-60),免疫煙草接種TMV后,觀察分析發(fā)現(xiàn)組分F-20、F-23、F-41、F-44具有顯著的免疫抗病效應(yīng),其中組分F-23抗TMV效果最為顯著,其抑制率為81.7%。經(jīng)過質(zhì)譜數(shù)據(jù)分析發(fā)現(xiàn)該組分包含鞭毛蛋白FlgLJ02等7種物質(zhì)。選擇鞭毛蛋白FlgLJ02為研究對象構(gòu)建表達載體,轉(zhuǎn)化大腸桿菌BL21,誘導(dǎo)表達后破碎細胞,獲得粗提蛋白。將粗提蛋白過柱、透析純化后的FlgLJ02滲入珊西煙(var.)葉片,24 h后能觀察到過敏性壞死反應(yīng)。將FlgLJ02稀釋為終濃度50、100、200 μg·ml-1的稀釋液后預(yù)處理珊西煙葉片,24 h后接種TMV,其對TMV的枯斑抑制率分別為65.6%、76.1%、88.1%。用鞭毛蛋白FlgLJ02處理珊西煙,其SA途徑和ET信號途徑的免疫抗病相關(guān)基因、、、、、、的相對表達量在24—48 h均顯著上調(diào)。貝萊斯芽孢桿菌LJ02外泌的鞭毛蛋白FlgLJ02可以激發(fā)珊西煙植株的免疫防御反應(yīng),提高煙草植株對TMV的抗病性。
貝萊斯芽孢桿菌;鞭毛蛋白;免疫蛋白;珊西煙;煙草花葉病毒
【研究意義】貝萊斯芽孢桿菌()是一類好氧產(chǎn)芽孢的革蘭氏陽性細菌,能分泌多種活性物質(zhì),直接或間接地誘導(dǎo)植物產(chǎn)生抗病性,進而減輕病原真菌、細菌和病毒等引起的多種病害[1-2]。分離貝萊斯芽孢桿菌免疫蛋白并研究其抗病功能及機制,對農(nóng)業(yè)生產(chǎn)具有重要的實踐意義和理論價值。【前人研究進展】貝萊斯芽孢桿菌是解淀粉芽孢桿菌()自植物亞種上升為種后的新命名[3]。貝萊斯芽孢桿菌通過促進植物生長、與病原菌競爭營養(yǎng)、分泌抗菌肽和抗生素以及誘導(dǎo)植物產(chǎn)生系統(tǒng)抗病性等多種機制抵御植物病原菌的侵染和危害[4-6]。貝萊斯芽孢桿菌在代謝過程中分泌某些蛋白和微生物相關(guān)分子模式(microbial-associated molecular pattern,MAMP)[1,7],這些分子能被植物細胞膜上特定受體蛋白(pattern recognition receptor,PRR)識別從而觸發(fā)PTI(PAMP-triggered immunity)反應(yīng)[8-9]。一些特定的效應(yīng)蛋白能夠觸發(fā)植物的深層免疫ETI(effector-triggered immunity),導(dǎo)致過敏性壞死反應(yīng)(hypersensitive response,HR)[10],使植株獲得系統(tǒng)抗病性[11]。植物識別免疫因子后通過多種信號傳導(dǎo)途徑激發(fā)植物多重免疫防御反應(yīng),最終使植物產(chǎn)生系統(tǒng)抗病性。水楊酸(salicylic acid,SA)是介導(dǎo)植物由局部免疫抗病反應(yīng)到獲得系統(tǒng)抗病性產(chǎn)生的重要信號分子[12]。苯丙氨酸解氨酶(phenylalanine ammonia- lyase,PAL)和異分支酸合酶1(isochorismate synthase 1,ICS1)是SA合成的關(guān)鍵限速酶[13-14],二者的表達變化可以用來判斷參與SA合成的時序動態(tài)。和是植物體內(nèi)由SA信號介導(dǎo)系統(tǒng)獲得抗性(systemic acquired resistance,SAR)反應(yīng)途徑的標志基因[15-16]。乙烯(ethylene,ET)是一種氣態(tài)植物激素,在植物生長發(fā)育中起著至關(guān)重要的作用,ACS是合成乙烯前體的關(guān)鍵酶[17-18]。膜結(jié)合蛋白EIN2在乙烯信號傳導(dǎo)途徑中至關(guān)重要[19],裂解的EIN2羧基末端的核易位會介導(dǎo)乙烯信號免疫途徑的激活[20],EIN2和正調(diào)控因子EIN3協(xié)同促進抗病基因表達[21]。鞭毛蛋白是細菌特有的結(jié)構(gòu)性蛋白[22],是細菌運動的重要支架、動力元件和毒力因子[23-24],也是觸發(fā)宿主免疫的重要元件[25]。鞭毛蛋白極易被宿主的天然免疫受體TLR5識別,同時向免疫系統(tǒng)發(fā)出預(yù)警信號,繼而誘發(fā)宿主免疫反應(yīng)抵御病原體[26]。菌株VB7的鞭毛蛋白可誘導(dǎo)番茄產(chǎn)生對GBNV(groundnut bud necrosis virus)的抗性[27];超表達的擬南芥識別細菌鞭毛蛋白flg22,對輪紋病的抗性明顯提高[28];解淀粉芽孢桿菌CRN9的MAMP分子(鞭毛蛋白)能夠通過激活SA和茉莉酸(jasmonate,JA)信號通路觸發(fā)辣椒植株的免疫反應(yīng)從而抑制花生芽壞死病毒(groundnut bud necrosis virus)[29]。【本研究切入點】貝萊斯芽孢桿菌LJ02是一種防治多種作物病害的生防菌株,其發(fā)酵上清對黃瓜尖鐮孢(f. sp.)、灰葡萄孢()具有免疫抗性,能激發(fā)植物防御反應(yīng)而有效防治病害[30-32],但其免疫因子尚未被分離研究?!緮M解決的關(guān)鍵問題】通過分離純化、質(zhì)譜分析和誘導(dǎo)抗病性分析,分離貝萊斯芽孢桿菌LJ02中激發(fā)植物抗病的免疫蛋白并研究其激發(fā)植物免疫的信號傳導(dǎo)通路。
試驗于2018年7月至2020年9月在天津農(nóng)學(xué)院植物免疫與生物防治實驗室完成。
供試菌株:貝萊斯芽孢桿菌LJ02由天津農(nóng)學(xué)院植物免疫與生物防治實驗室保存,LJ02活化和發(fā)酵均用LB 培養(yǎng)基;病原:煙草花葉病毒(tobacco mosaic virus,TMV)由本實驗室保存;供試植株:珊西煙(var.)種子由本實驗室保存。珊西煙置于相對濕度65%,溫度20—25℃,16 h 光照/8 h 黑暗,光強 10 000 lx的INE800 Memmert培養(yǎng)箱生長至約2 cm時,移植于裝有預(yù)處理的營養(yǎng)土(營養(yǎng)土于烘箱中121℃干熱滅菌1 h后與蛭石按2﹕1混勻)的花盆(8 cm×8 cm)中,生長至兩片真葉待用。
表達載體pET-30a,菌株 DH5和表達菌株 BL21(DE3)由本實驗室提供。限制性內(nèi)切酶和重組酶購自Takara,純化鎳柱購自GE公司,SDS-PAGE凝膠配制試劑盒購自Applygen,其他試劑均為國產(chǎn)常規(guī)試劑。
收集 LJ02發(fā)酵液1 L,在4℃,9 500 r/min條件下離心10 min獲得LJ02上清液,將上清液冰上預(yù)冷10 min后加入5 g EDTA充分攪拌,再加入8 ml巰基乙醇和50%硫酸銨攪拌混勻,4℃冰箱靜置10 h后離心分離上清和沉淀,收集上清,沉淀用1 mmol·L-1pH=5.2、7.2、8.0、8.7 Tris-HCl依次溶解后離心取上清;制備型 HPLC分離,分離條件:Spehadex-G200柱,流動相Tris-HCl﹕甲醇=1﹕2;流速0.2 ml·min-1;檢測波長:280 nm;柱溫:25℃。觀察峰圖并收集,按出峰順序標記蛋白組分 F-1 至結(jié)束。
免疫組分篩選:選兩葉期珊西煙植株莖基部注射100 μl蛋白組分,設(shè)置Tris-HCl溶液、清水對照,每組處理5個重復(fù),24 h后在珊西煙頂2葉參照Gooding等[33]方法接種TMV并觀察記錄枯斑數(shù),以Tris-HCl 溶液為對照,計算抑制率。對抗TMV最明顯的蛋白組分經(jīng)LC-MS檢測所含蛋白成分。抑制率(%)=(對照平均枯斑數(shù)-處理平均枯斑數(shù))/對照平均枯斑數(shù)×100。
載體構(gòu)建:菌株LJ02在NCBI的登錄號為CP024797.1,根據(jù)鞭毛蛋白(flagellin,F(xiàn)LgLJ02)的基因序列設(shè)計特異引物(F:5′GAAGGAGATATACA TATGCATCATCACCAC3′;R:5′GCTCGAGTGCGGC CGCAAGCTTTCATTAATCAAC3′),用內(nèi)切酶酶切載體pET-30a和擴增的目的片段,回收后連接、轉(zhuǎn)化到DH5中,提取質(zhì)粒、酶切和測序驗證,將構(gòu)建的載體pET-30a-FlgLJ02轉(zhuǎn)化至大腸桿菌BL21(DE3)。
誘導(dǎo)表達:挑單菌落,37℃培養(yǎng)至 OD600=0.8時,加入0.5 mmol·L-1IPTG溶液,在16℃搖床搖培16 h后,將培養(yǎng)液12 000 r/min離心5 min除上清液,加PBS 緩沖液重懸沉淀,取100 μl重懸液加等體積2×SDS sample buffer煮沸10 min,離心取上清,加入SDS-PAGE制備膠,電泳分析結(jié)果。
純化:PBS 重懸液超聲裂解后,同時以20 mmol·L-1Tris(pH 8.0),300 mmol·L-1NaCl,20 mmol·L-1咪唑緩沖液平衡Ni-IDA柱后,用50、300 mmol·L-1咪唑緩沖液洗脫目的蛋白,并收集每個洗脫組分進行SDS-PAGE分析,將目的蛋白透析到儲存液(20 mmol·L-1Tris,5%甘油,pH 8.0)中,透析后用0.22 μm濾器過濾,進行SDS-PAGE 和蛋白印記(Western blot)分析,采用 Bradford 法測定蛋白濃度。
1.4.1 FlgLJ02的HR效應(yīng)分析 選取3—4片真葉的珊西煙植株,將100 μl 200 μg·ml-1FlgLJ02表達蛋白通過滲入器滲入到頂2葉上,設(shè)置Tris甘油和清水對照,每處理5個重復(fù),24 h后觀察葉片滲入部位表型變化。
1.4.2 FlgLJ02誘導(dǎo)珊西煙抗TMV效果檢測 選兩葉期珊西煙植株,分別用50、100、200 μg·ml-1的FlgLJ02純化蛋白在煙草植株莖基部注射100 μl,設(shè)置清水、蛋白儲存液Tris甘油對照,每組處理5個重復(fù), 24 h后在頂2葉接種TMV,3 d后觀察記錄枯斑數(shù),并計算抑制率(方法同1.2)。
1.4.3 免疫抗病相關(guān)基因qRT-PCR分析 引物設(shè)計:參考GenBank(www.ncbi.nlm.nih.gov/genbank/)珊西煙數(shù)據(jù)庫中、、、、、、基因序列,以為內(nèi)參基因,設(shè)計特異性引物(表1)。樣品預(yù)處理:選兩葉期珊西煙植株,用200 μg·ml-1的FlgLJ02純化蛋白在煙草植株莖基部注射100 μl,設(shè)置清水、Tris甘油對照,每處理3個重復(fù),分別在0、12、24、36、48、96 h收集葉片,提取待測樣品總RNA(Trizol Reagent TaKaRa),反轉(zhuǎn)錄為cDNA模板(RT reagent Kit 試劑盒,TaKaRa)。反應(yīng)體系:cDNA 2 μl,目的基因上下游引物各1 μl,TB Green Premix(TaKaRa)12.5 μl,ddH2O補足25 μl。反應(yīng)程序:95℃,5 min;95℃,10 s;55℃,30 s;60℃,5 s;50個循環(huán),設(shè)置5個機械重復(fù)。采用 2-ΔΔCt計算方法[34]進行分析。
表1 實時熒光定量PCR相關(guān)表達基因的引物
免疫外泌組分通過HPLC分離,共獲得60個分離組分。將分離的60個組分分別處理珊西煙后,進行抗TMV活性檢測,3 d后觀察結(jié)果,發(fā)現(xiàn)組分F-20、F-23、F-41和F-44處理的葉部枯斑數(shù)明顯少于Tris-HCl 和清水處理的對照組,對TMV的抑制率分別為26.7%、81.7%、67.2%和61.8%(圖1),說明發(fā)酵液中存在有活性的可外泌的免疫蛋白。在4種LJ02蛋白組分中,組分F-23誘導(dǎo)的珊西煙植株對TMV抗性效果較好,據(jù)此對組分F-23中的成分進一步分析和鑒定。
經(jīng)LC-MS檢測后發(fā)現(xiàn),F(xiàn)-23蛋白成分中包含鞭毛蛋白(FlgLJ02)等7種蛋白(表2),其中FlgLJ02在蛋白庫的匹配率為1.8%,占比最高。該蛋白由306個氨基酸組成,分子量為32.6kD。與基因組數(shù)據(jù)比對分析發(fā)現(xiàn)編碼FlgLJ02的開放閱讀框918 bp,F(xiàn)lgLJ02上有一段氨基酸序列(EKLSSGLRINRAGDDAAG LAIS)與Flg22(QRLSTGSRINSAKDDAAGLQIA)相似性63.6%,具有較高的保守性。
柱上不同小寫字母表示經(jīng)單因素方差分析差異顯著(P≤0.05)。圖4-B同
鞭毛蛋白能夠與植物受體互作,激發(fā)植物免疫[23],筆者推測FlgLJ02同樣具備免疫效應(yīng),但其功能是否一致尚不清晰。構(gòu)建表達載體,在大腸桿菌BL21(DE3)中表達FlgLJ02,將細胞裂解后,發(fā)現(xiàn)融合蛋白存在于上清液中(圖2-A),用 50 mmol·L-1咪唑過Ni-IDA柱進行洗脫,得到融合表達的FlgLJ02,對洗脫蛋白進行透析濃縮,純化后進行SDS-PAGE和蛋白印跡western blot分析,其分子量在31—33 kD,與預(yù)測的分子量大小基本一致,得到表達蛋白終濃度為0.5 mg·ml-1(圖2-B、2-C)。
表2 組分F-23中蛋白質(zhì)譜檢測結(jié)果
A:SDS-PAGE分析FlgLJ02蛋白在 BL21(DE3)中表達情況SDS-PAGE analysis of the expression of FlgLJ02 protein in BL21(DE3);M:protein marker;1:對照(不加IPTG)Control (no IPTG);2:16℃誘導(dǎo)16 h Induction at 16℃ for 16 h;3:破碎離心后上清Supernatant after breaking cells;4:破碎離心后沉淀Precipitate after centrifugation。B:純化蛋白FlgLJ02的SDS-PAGE分析 SDS-PAGE analysis of purified protein FlgLJ02;5:BSA (1.50 μg);6:FlgLJ02純化物(1.50 μg) Purified FlgLJ02 product (1.50 μg)。C:純化蛋白的Western blot 分析Western blot analysis of purified protein
2.4.1 FlgLJ02在珊西煙上引起HR反應(yīng) 為初步判斷FlgLJ02能否產(chǎn)生免疫效應(yīng),將純化的FlgLJ02稀釋為200 μg·ml-1后取100 μl滲入珊西煙葉片,以Tris甘油和清水為對照,24 h后觀察HR表型。結(jié)果顯示,對照無明顯HR反應(yīng),但在滲入FlgLJ02的葉部周圍產(chǎn)生約0.8 cm的快速壞死斑(圖3),說明FlgLJ02能引起珊西煙HR反應(yīng)。
2.4.2 FlgLJ02免疫珊西煙抵御TMV侵染 分別用50、100、200 μg·ml-1FlgLJ02純化蛋白注射處理珊西煙24 h 后在頂2葉摩擦接種TMV,觀察其產(chǎn)生的枯斑表型(圖4-A),發(fā)現(xiàn)經(jīng)FlgLJ02處理的煙草植株葉片接種TMV后產(chǎn)生枯斑數(shù)明顯少于對照組,不同處理對TMV枯斑抑制率(圖4-B)依次為65.6%、76.1%、88.1%,且200 μg·ml-1FlgLJ02處理的植株抗TMV活性最為顯著,說明FlgLJ02能夠免疫植物且具有劑量效應(yīng)。
圖3 FlgLJ02在煙草葉片上的HR反應(yīng)
為進一步探究FlgLJ02激發(fā)珊西煙免疫抗病的信號通路,將200 μg·ml-1FlgLJ02通過莖基部注射處理珊西煙,分析系統(tǒng)葉SA途徑與抗性信號相關(guān)的標志性基因、、、的相對表達量(圖5)。、兩者表達同時上調(diào),但最大表達量較早12 h。是免疫信號傳導(dǎo)的關(guān)鍵樞紐,通過與SA結(jié)合啟動免疫抗病信號轉(zhuǎn)錄,其轉(zhuǎn)錄產(chǎn)物包括SA信號終端標志性抗病基因。、的轉(zhuǎn)錄上調(diào)進一步說明SA信號途徑參與了FlgLJ02啟動的免疫調(diào)節(jié)。
圖4 FlgLJ02誘導(dǎo)煙草對TMV的抗性
通過t檢驗確定顯著性(n=3)Significance was determined by t-test (n=3). * P<0.05; ** P<0.01 。圖6同The same as Fig. 6
ET信號轉(zhuǎn)導(dǎo)途徑是植物免疫的另一重要通路,EIN2在細胞核中與其他因子協(xié)同啟動乙烯信號傳導(dǎo)[35]。核蛋白EIN3是乙烯信號轉(zhuǎn)導(dǎo)途徑的下游因子[36]。由圖6可見,合成乙烯途徑的關(guān)鍵酶基因[37]在24 h時相對表達量極顯著上調(diào)至最大值;和在36 h時相對表達量極顯著上調(diào)至最大值,顯示了免疫信號啟動的時序性。上述結(jié)果表明ET也參與了FlgLJ02啟動的免疫抗病反應(yīng)。
圖6 FlgLJ02 誘導(dǎo)后ET通路關(guān)鍵基因的相對表達量
貝萊斯芽孢桿菌LJ02是一株根際土壤生防菌,研究發(fā)現(xiàn)LJ02發(fā)酵液處理盆栽黃瓜根部能免疫黃瓜植株對灰葡萄孢產(chǎn)生明顯抗性,并誘導(dǎo)病程相關(guān)基因的表達上調(diào)[31],但LJ02中具有免疫功能的因子尚未被分離。本研究從LJ02發(fā)酵上清中分離篩選到誘導(dǎo)煙草抗TMV效果明顯的4種外泌組分,說明菌株LJ02存在多種免疫激發(fā)因子。經(jīng) LC-MS檢測發(fā)現(xiàn)組分F-23含有鞭毛蛋白FlgLJ02等7 種物質(zhì)(表2),鞭毛蛋白FlgLJ02在總組分中占比最高,確證了FlgLJ02是誘導(dǎo)煙草抗TMV的一個作用因子。組分中含有肌苷5′-單磷酸脫氫酶(inosine-5′- monophosphate dehydrogenase,IMPDH),IMPDH在生物體內(nèi)主要負責GTP的合成,在醫(yī)學(xué)領(lǐng)域常作為免疫抑制劑的靶標[38],在植物體內(nèi)是否促進GTP的合成進而彌補由植物免疫抵御病原菌造成的能量損失或者參與了其他免疫調(diào)節(jié)途徑還不清楚。另外,P型ATP酶(P-type ATPases,ATPase P)等物質(zhì)也可能具有激發(fā)珊西煙免疫抗病的作用[39]。
植物與微生物互作過程中,細菌鞭毛蛋白被植物體內(nèi)感知系統(tǒng)識別[40],植物感知到信號后,傳遞信號至下游靶標,進而啟動宿主的多層免疫機制[41-42]。本研究比對分析后發(fā)現(xiàn),鞭毛蛋白FlgLJ02與Flg22相似度>60%,且存在6個連續(xù)相似的氨基酸序列(DDAAGL),保守性相對較高。Flg22通過結(jié)合誘導(dǎo)FLS2與BAK1異構(gòu)化,激活下游的植物免疫信號傳導(dǎo)[43],F(xiàn)lgLJ02序列的保守性是保證其與受體互作傳遞信號的結(jié)構(gòu)基礎(chǔ)。Flg是植物與細菌互作誘發(fā)植物PTI的模式分子,用FlgLJ02處理煙草能夠強烈抑制TMV的侵染,并在24 h能觀察到明顯的HR 反應(yīng),HR反應(yīng)是效應(yīng)因子與抗病基因互作產(chǎn)生ETI的一種表現(xiàn)。本研究中的HR反應(yīng)可能與高劑量FlgLJ02處理煙草激發(fā)高強度的免疫反應(yīng)有關(guān)。PTI和ETI之間除了模式分子、互作的受體不同之外,另一個重要的區(qū)別在于ETI激發(fā)的免疫強度更高,是一種快速、強度大的PTI[11],試驗中雖然沒有對FlgLJ02導(dǎo)致的HR表型更進一步的分子解析,但可以推測FlgLJ02與受體結(jié)合產(chǎn)生的免疫強度高于一般的PTI,更接近于ETI。此外,不同細菌的鞭毛蛋白與植物互作激發(fā)的免疫反應(yīng)程度差異很大,例如土壤桿菌和中華根瘤菌的鞭毛蛋白激發(fā)的免疫反應(yīng)要遠弱于丁香假單胞鞭毛蛋白[41]。因此,F(xiàn)lgLJ02產(chǎn)生HR反應(yīng)也可能與其特異性有關(guān)。
高強度的免疫與SA和ET的活力冗余相關(guān)聯(lián)[44],為探索FlgLJ02是否激活了SA、ET信號通路、免疫時效及其與HR的關(guān)系,本研究持續(xù)檢測了這兩個信號通路中的關(guān)鍵基因的表達。用FlgLJ02處理珊西煙植株葉片,、在24 h表達量最高,、、、在36 h表達量上調(diào)至最高,而在48 h表達量最高,表明FlgLJ02可以提高植物經(jīng)SA和ET傳導(dǎo)的免疫強度,下游免疫相關(guān)因子促使產(chǎn)生HR反應(yīng)(圖3)。研究還發(fā)現(xiàn),在FlgLJ02處理煙草后,ET和SA信號通路的關(guān)鍵基因表達表現(xiàn)出較好的協(xié)調(diào)性和一致性,這兩個通路的協(xié)同有助于強化FlgLJ02的免疫效果,這與之前對LJ02的其他研究結(jié)果較為一致[31-32]。
從貝萊斯芽孢桿菌LJ02中分離到外泌的鞭毛蛋白FlgLJ02,該表達蛋白可使煙草產(chǎn)生過敏性反應(yīng),顯著增強對TMV的抗性,處理后SA內(nèi)源合成酶基因和表達量上調(diào),增強了免疫抗病相關(guān)基因表達;ET合成關(guān)鍵酶基因及抗病轉(zhuǎn)錄因子和表達上調(diào),表明鞭毛蛋白FlgLJ02能激活ET信號免疫途徑。因此,F(xiàn)lgLJ02可以通過SA、ET兩條信號通路激發(fā)植物產(chǎn)生免疫抗性。
[1] RABBEE M F, ALI M S, CHOI J, HWANG B S, JEONG S C, BAEK K H.: A valuable member of bioactive molecules within plant microbiomes. Molecules, 2019, 24(6): 1046.
[2] RAHMAN A, UDDIN W, WENNER N G. Induced systemic resistance responses in perennial ryegrass againstelicited by semi-purified surfactin lipopeptides and live cells of. Molecular Plant Pathology, 2015, 16(6): 546-558.
[3] FAN B, BLOM J, KLENK H P, BORRISS R.,, andform an “Operational Group” within thespecies complex. Frontiers in Microbiology, 2017, 8: 22.
[4] FAN B, WANG C, SONG X F, DING X L, WU L M, WU H J, GAO X F, BORRISS R.FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology, 2018, 9: 2491.
[5] PANDIN C, DARSONVAL M, MAYEUR C, LE COQ D, Aymerich S, Briandet R. Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agentQST713 in ancompost micromodel. Applied and Environmental Microbiology, 2019, 85(12): e00327-19.
[6] CHEN M, WANG J, LIU B, Zhu Y, Xiao R, Yang W, Ge C, Chen Z. Biocontrol of tomato bacterial wilt by the new strainFJAT-46737 and its lipopeptides. BMC Microbiology, 2020, 20(1): 160.
[7] WANG N B, LIU M J, GUO L H, YANG X F, QIU D W. A novel protein elicitor (PeBA1) froms NC6 induces systemic resistance in tobacco. International Journal of Biological Sciences, 2016, 12(6): 757-767.
[8] RANF S, GISCH N, SCHAFFER M, ILLIG T, WESTPHAL L, KNIREL Y A, SANCHEZ-CARBALLO P M, ZAHRINGER U, HUCKELHOVEN R, LEE J, SCHEEL D. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in. Nature Immunology, 2015, 16(4): 426-433.
[9] HE P, SHAN L, SHEEN J. Elicitation and suppression of microbe- associated molecular pattern-triggered immunity in plant-microbe interactions. Cellular Microbiology, 2007, 9(6): 1385-1396.
[10] NEWMAN M A, SUNDELIN T, NIELSEN J T, ERBS G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 2013, 4: 139.
[11] Naveed Z A, Wei X, Chen J, Mubeen H, Ali G S. The PTI to ETI continuum in-plant interactions. Frontiers in Plant Science, 2020, 11: 593905.
[12] KUMAR D. Salicylic acid signaling in disease resistance. Plant Science, 2014, 228: 127-134.
[13] SUMAYO M S, SON J S, GHIM S Y. Exogenous application of phenylacetic acid promotes root hair growth and induces the systemic resistance of tobacco against bacterial soft-rot pathogensubsp.. Functional Plant Biology, 2018, 45(11): 1119-1127.
[14] ZHENG X Y, ZHOU M, YOO H, PRUNDA-PAZ J L, SPIVEY N W, KAY S A, DONG X. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): 9166-9173.
[15] BACKER R, NAIDOO S, VAN DEN BERG N. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: Mechanistic insights in plant disease resistanceFrontiers in Plant Science, 2019, 10: 102.
[16] LINCOLN J E, SANCHEZ J P, ZUMSTEIN K, GILCHRIST D G. Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Molecular Plant Pathology, 2018, 19(9): 2111-2123.
[17] FRANKOWSKI K, KESY J, KOTARBA W, KOPCEWICZ J. Ethylene signal transduction pathway. Postepy Biochemii, 2008, 54(1): 99-106.
[18] PETRUZZELL L, CORAGGIO I, LEUBNER-METZGER G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase.Planta, 2000, 211(1): 144-149.
[19] ZHANG F, WANG L, QI B, ZHAO B, KO E E, RIGGAN N D, CHIN K, QIAO H. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38): 10274-10279.
[20] Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Research, 2012, 22(11): 1613-1616.
[21] AN F, ZHAO Q, JI Y, LI W, JIANG Z, YU X, ZHANG C, HAN Y, HE W, LIU Y, ZHANG S, ECKER J R, GUO H. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in. The Plant Cell, 2010, 22(7): 2384-2401.
[22] KIM M, LEE C, PARK J, JEON B Y, HONG M. Crystal structure offlagellin and structure-guided fusion-protein designs.Scientific Reports, 2018, 8(1): 5814.
[23] MOHARI B, THOMPSON M A, TRINIDAD J C, SETAYESHGAR S, FUQUA C. Multiple flagellin proteins have distinct and synergistic roles inmotility.Journal of Bacteriology, 2018, 200(23): e00327-18.
[24] BERG H C, ANDERSON R A. Bacteria swim by rotating their flagellar filaments. Nature, 1973, 245(5425): 380-382.
[25] FORSTNERIC V, IVICAK-KOCJAN K, LJUBETIC A, JERALA R, BENCINA M. Distinctive recognition of flagellin by human and mouse toll-like receptor 5. PLoS One, 2016, 11(7): e0158894.
[26] MCNAMARA N, GALLUP M, SUCHER A, MALTSEVA I, MCKEMY D, BASBAUM C. AsialoGM1 and TLR5 cooperate in flagellin-induced nucleotide signaling to activate Erk1/2. American Journal of Respiratory Cell and Molecular Biology, 2006, 34(6): 653-660.
[27] VANTHANA M, NAKKEERAN S, MALATHI V G, RENUKADEVI P, VINODKUMAR S. Induction of in planta resistance by flagellin (Flg) and elongation factor-TU (EF-Tu) of(VB7) against groundnut bud necrosis virus in tomato. Microbial Pathogenesis, 2019, 137: 103757.
[28] 劉秀霞, 梁宇寧, 張偉偉, 霍艷紅, 馮守千, 邱化榮, 何曉文, 吳樹敬, 陳學(xué)森. 超表達的擬南芥突變體識別細菌鞭毛蛋白提高對輪紋病菌的抗性. 園藝學(xué)報, 2018, 45(5): 827-844.
LIU X X, LIANG Y N, ZHANG W W, HUO Y H, FENG S Q, QIU H R, HE X W, WU S J, CHEN X S.recognizes bacterial flagellin flg22 and enhances immune resistance against apple ring rot causal fungi inmutant. Acta Horticulturae Sinica, 2018, 45(5): 827-844. (in Chinese)
[29] RAJAMANICKAM S, NAKKEERAN S. Flagellin ofworks as a resistance inducer against groundnut bud necrosis virus in chilli (L.). Archives of Virology, 2020, 165(7): 1585-1597.
[30] 谷醫(yī)林, 王遠宏, 常若葵, 李寧, 李娟, 徐明珠. 解淀粉芽孢桿菌LJ1誘導(dǎo)黃瓜抗白粉病的研究. 農(nóng)藥學(xué)學(xué)報, 2013, 15(3): 293-298.
GU Y L, WANG Y H, CHANG R K, LI N, LI J, XU M Z. Characterization of powdery mildew resistance induced byLJ1 in cucumber. Chinese Journal of Pesticide Science, 2013, 15(3): 293-298. (in Chinese)
[31] 柴慶凱, 張斌, 常若葵, 劉慧芹, 田小衛(wèi), 王遠宏. 解淀粉芽孢桿菌LJ02對黃瓜抗灰霉病菌的生防效果及其誘導(dǎo)抗性機理的初步研究. 植物病理學(xué)報, 2019, 49(6): 828-835.
CHAI Q K, ZHANG B, CHANG R K, LIU H Q, TIAN X W, WANG Y H. Preliminary study on the effect of the induced resistance in cucumber withLJ02 against. Acta Phytopatholgica Sinica, 2019, 49(6): 828-835. (in Chinese)
[32] LI Y L, GU Y L, LI J, XU M Z, WEI Q, WANG Y H. Biocontrol agentLJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology, 2015, 6: 883.
[33] GOODING G V, HEBERT T T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology, 1967, 57(11): 1285.
[34] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod. Methods, 2001, 25(4): 402-408.
[35] ALONSO J M, HIRAYAMA T, ROMAN G, NOURIZADEH S, ECKER J R. EIN2, a bifunctional transducer of ethylene and stress responses in.Science, 1999, 284(5423): 2148-2152.
[36] SOLANO R, STEPANOVA A, CHAO Q, ECHER J R. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and Development, 1998, 12(23): 3703-3714.
[37] WANG S, HAN K, PENG J, ZHAO J, JIANG L, LU Y, ZHENG H, LIN L, CHEN J, YAN F. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in. Molecular Plant Pathology, 2019, 20(7): 990-1004.
[38] SHAH C P, KHARKAR P S. Inosine 5′-monophosphate dehydrogenase inhibitors as antimicrobial agents: recent progress and future perspectives. Future Science Medicinal Chemistry, 2015, 7(11): 1415-1429.
[39] SHUKLA D, HUDA K M, BANU M S, Gill S S, TUTEJA R, TUTEJA N. OsACA6, a P-type 2B Ca2+ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Planta, 2014, 240(4): 809-824.
[40] LU Y, SWARTZ J R. Functional properties of flagellin as a stimulator of innate immunity. Scientific Reports, 2016, 6: 18379.
[41] FELIX G, DURAN J D, VOLKO S, BOLLER T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999, 18(3): 265-276.
[42] LOPEZ M, MIRANDA E, RAMOS C, GARCIA H, NEIRA- CATTILLO A. Activation of early defense signals in seedlings oftreated with chitin nanoparticles.Plants, 2020, 9(5): 607.
[43] LU D, WU S, GAO X, ZHANG Y, SHAN L, HE P. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1): 496-501.
[44] TSUDA K, SATO M, STODDARD T, GLAZEBROOK J, KATAGIRI F. Network properties of robust immunity in plants. PLoS Genetics, 2009, 5(12): e1000772.
Screening and Function of Plant Immune Proteins fromLJ02
WEI YanXia1, LI ZhuoRan1, ZHANG Bin1, YUAN YuJin1, YU WeiWei1, CHANG RuoKui2, WANG YuanHong1
1Department of Horticulture, Tianjin Agricultural University, Tianjin 300384;2College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384
【】LJ02 induces the immune response of cucumbers and other crops. The objective of this study is to screen and identify the immune proteins of LJ02, and further analyze the immune signalling pathways by verifying their functions.【】The LJ02 fermentation broth was precipitated with ammonium sulfate precipitation method, and the crude proteins of LJ02 were obtained by centrifugation. Then crude proteins were gel chromatographed and separated by high performance liquid chromatography (HPLC) to collect protein components at different peaks. The immune components were tested with tobacco mosaic virus(TMV) to obtain the immune components in plant. Liquid-phase mass spectrometry (LC-MS) detection and analysis revealed that the component F-23 contained flagellin (FlgLJ02). Purified recombinant protein FlgLJ02producedfromexpressionsystem was infiltrated into tobacco leaves and its immune function was verified by hypersensitive reaction (HR) and immune resistance analysis. Real-time fluorescent quantitative PCR (qRT-PCR) was used to detect salicylic acid (SA) and ethylene (ET) key synthetase genes,,and immune-related resistance genes,,andThe relative expression of its immune-related resistance genes was tested to identify the FlgLJ02-induced immune signal transduction pathway.【】Sixty exocrine protein components (from F-1 to F-60) of LJ02 were separated from HPLC, and components F-20, F-23, F-41, F-44 had strong immune effect against TMV in tobacco, among which, component F-23 showed the most significant anti-TMV effect, with an inhibition rate of 81.7%. Further mass spectrometry analysis found that this component contained flagellin FlgLJ02and other 6 substances. The FlgLJ02expression vector was constructed, and then transformed intoBL21, the cells were broken after inducing the expression of FlgLJ02. The crude protein was eluted with Ni column purification, further dialyzed, then injected FlgLJ02into tobacco leaves, hypersensitive reactions appeared about 24 h. Tobacco leaves was infiltrated with 50, 100 and 200 μg·ml-1FlgLJ02, and then TMV was inoculated 24 hours post FlgLJ02inoculation (hpi). The inhibition rate of FlgLJ02against TMV was 65.6%, 76.1% and 88.1%, respectively. The qRT-PCR determined that the expressions of SA and ET via defense-related genes,,,,,,and【】The FlgLJ02secreted by theLJ02 activates the SA and ET signalling immune pathway, thereby improving plants disease resistance to TMV.
; flagellin; immune protein;var.;tobacco mosaic virus (TMV)
10.3864/j.issn.0578-1752.2021.16.008
2020-12-03;
2021-01-11
國家重點研發(fā)計劃(SQ2017ZY060083)、天津市蔬菜現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團隊(ITTVrS2019011)
魏艷俠,E-mail:1486981814@qq.com。通信作者王遠宏,E-mail:wangyh@tjau.edu.cn。通信作者常若葵,E-mail:changrl@163.com
(責任編輯 岳梅)