• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Eating and Cooking Quality of indica Rice Cultivar YK17 via Adenine Base Editing of Wxa Allele of Granule-Bound Starch Synthase I (GBSS I)

    2021-08-31 02:13:50MahmudaBinteMonsurCaoNiWeiXiangjinXieLihongJiaoGuiaiTangShaoqingNeseSreenivasuluShaoGaonengHuPeisong
    Rice Science 2021年5期

    Mahmuda Binte Monsur, Cao Ni, Wei Xiangjin, Xie Lihong, Jiao Guiai, Tang Shaoqing, Nese Sreenivasulu, Shao Gaoneng, Hu Peisong

    Letter

    Improved Eating and Cooking Quality ofRice Cultivar YK17 via Adenine Base Editing ofWxAllele of Granule-Bound Starch Synthase I (GBSS I)

    Mahmuda Binte Monsur1, #, Cao Ni1, #, Wei Xiangjin1, Xie Lihong1, Jiao Guiai1, Tang Shaoqing1, Nese Sreenivasulu2, Shao Gaoneng1, Hu Peisong1

    (State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Applied Functional Genomics Cluster, Grain Quality and Nutrition Centre, Strategic Innovation Platform, International Rice Research Institute, Los Banos 4030, the Philippines; These authors contributed equally to this work)

    Amylose content (AC) is the key determinant of eating and cooking quality (ECQ) of rice. The majorWxallele of granule-bound starch synthase I (GBSS I) inrice produces higher AC, making rice hard and dry after cooking. Recent work has improved ECQ ofrice via clustered regularly interspaced short palindromic repeats/CRISPR- associated protein 9 (CRISPR/Cas9) or cytosine base editing (CBE) techniques. However, base editing has not yet been applied to modify theWxallele ofrice. We utilized a novel precise adenine base editing (ABE) tool to generate three mutants ofcultivar Zhongjiazao 17 (YK17) with reduced AC while other ECQ parameters, such as gel consistency (GC) and alkali spreading value, were maintained. Our study demonstrated improvement of ECQ ofrice and will help rice breeders satisfy consumers.

    AC, which determines ECQ in rice, is mainly controlled by(), a gene encoding GBSS I (Teng et al, 2012; Zhang et al, 2021). Variation at thelocus is largely responsible for the diversity of AC levels (Tian et al, 2009; Biselli et al, 2014; Zhang et al, 2019). Alleles includingWx,Wx,Wx,Wx,Wx,Wx,Wx,Wxandhave been reported (Cai et al, 1998; Sato et al, 2002; Larkin and Park, 2003; Wanchana et al, 2003; Mikami et al, 2008; Liu et al, 2009; Yang et al, 2013; Li et al, 2020; Zhang et al, 2021). Higher AC and lower GC values correlate with poor taste due to hard texture, whereas moderate AC rice (15%–20%) with higher GC values (60–80 mm) leading to soft texture is preferred by most consumers worldwide (Zeng et al, 2020). Invarieties, alleleWxgives rise to 25%–30% AC (Wang et al, 1995), while invarieties alleleWxproduces 15%–18% AC (Zhang et al, 2018). The ‘Old’ natural and ‘New’ editedalleles in rice crops will be helpful in developing novel rice varieties and for further quality improvement (Huang et al, 2020a).

    Traditional successive backcrossing methods have been used to improve ECQ by introgressingWx, with moderate AC, intorice. However, traditional breeding strategies are always time-consuming and difficult to break close linkages with unfavourable traits. Recently, CRISPR/Cas9-based genomic editing techniques have been widely used for editing thegene of rice. The glutinous rice was generated by CRISPR/ Cas9-targeted mutagenesis of thegene in elite rice varieties (Zhang et al, 2018; Fei et al, 2019). Moreover, novelalleles with fine-tuned amylose levels can be created and rice grain quality can be improved by promoter editing using CRISPR/Cas9 (Huang et al, 2020b). Zeng et al (2020) reported thequantitative regulation ofexpression by CRISPR/Cas9-based promoter and 5-UTR-intron editing, improving grain quality in rice. Recently, base editing is an advanced CRISPR-based tool that ensures base conversion in a target gene (Komor et al, 2016; Gaudelli et al, 2017; Molla and Yang, 2019; Monsur et al, 2020). CBE, which converts cytosine (C) to thymine (T), has been applied successfully to fine-tune AC inrice (Xu et al, 2020). Modifying theWxallele using base editing strategies has the potential to generaterice with desirable AC to weak the textural preferences.

    In this study, we focused on improving ECQ ofrice cultivars by decreasing AC via a precise ABE tool that can convert adenine (A) to guanine (G) (Li et al, 2018). We selectedrice cultivar YK17 as the super rice cultivar of China with high seed-setting rate and yield, early maturation, moderate plant morphology and good disease resistance (Barman et al, 2019). However, it produces high AC (27.3%) owning to theWxallele (Fig. S1). In our work, 10 target sites were selected randomly in the conserveddomain with glycosyl transferase activity supported by CRISPRdirect (http://crispr.dbcls.jp/) and CRISPR-GE (http://skl.scau.edu.cn/). The sgRNAs were modified into enhanced sgRNA (esgRNA) to make an optimal form for plant ABE-7 (PABE-7). Using the adenosine deaminase, nuclear localization sequences PABE-7 and esgRNA, Li et al (2018) created the efficient vector pH- PABE-7-esgRNA. The constructed plasmids were individually transformed into YK17 by the- mediated method. Independent transgenic plants were generated for each transformant and all the target sequences were sequenced. Target sites on exons 2, 6 and 8 ofWxhad mutations (Fig. 1-A and Table S1). Mutation efficiency varied from 37.50% to 69.23% in T0generation (Table S2). Sequencing results showed that homozygous mutants in three target sites, hereafter named as transgenicto(,and), were obtained in T0generation (Fig. S2), which were further used to generate the T1plants. T-DNA segregation confirmation of T0and T1plants was conducted throughselection on media (Fig. S3). Only T-DNA free plants were used for further studies (Fig. 1-B to -E). Inand, base conversion of A to G resulted in asparagine (AC) conversion to aspartate (AC), whereas in, glutamine (CG) converted to arginine (CG) (Fig. 1-A). Also, the positions of varied nucleotide (1246, 1634 and 496) and amino acid (247, 306 and 128) in consistent with three mutants are showed in Fig. 1-A. Multiple sequence alignment reflected that the mutated amino acid inwas less conserved in comparison to those inand(Fig. S4). Furthermore, five putative off-target sites were screened for each target site and no off-target effects were detected in all the T-DNA-free plants by the DNA sequencing method (Table S3).

    Brown rice from wild type YK17 had a chalkiness appearance, as didand, whereashad opaque phenotypic appearance (Fig. 1-F to -I). For confirmation, we measured the AC and found(25.6%),(16.7%) and(3.4%) had lower AC than that of wild type YK17 (27.3%) (Fig. 1-J), which was consistent with the conclusion that the varied amino acids is less conserved incompared toand. Generally, based on AC values, rice grain is classified into five groups: waxy (0%–5%), very low (5%– 12%), low (12%–20%), intermediate (20%–25%) and high (25%–33%) groups (Juliano, 1998; Zhang et al, 2018). Notably,had low AC, whereashad AC as low as glutinous rice (Fig. 1-J) and fell into the waxy category. GC values decreased slightly in(76 mm) and(77 mm) and increased in(90 mm) compared to YK17 (81 mm) (Fig. 1-K). Thus, GC values forandare in the desirable range (60–80 mm). Alkali spreading value, which stands for gelatinization temperature (GT), did not differ significantly between the wild type and mutants (Fig. 1-L). Those results indicated that the amino acid substitutions in Waxy led to ECQ alterations. In addition, we used rapid visco analysis to evaluate grain starch quality. A decreasing trend of viscosity was observed with decreasing AC (Fig. 1-M). Further, we checked total GBSS I via western blot. Compared to YK17, the mutations inandled to increased GBSS I accumulation in 10-day filling grains (Fig. 1-N), especially in, probably caused by the reduction of Waxy protein degradation. Agronomic traits like grain length, grain width and grain thickness were also measured, and most phenotypes increased in the mutants compared to wild type. However, 1000-grain weight increased only in(Table S4).

    Fig. 1. Desirable amylose content ofrice cultivar YK17 via adenine base editing ofgene.

    A, Structure of Wxand the mutations in edited T1lines. Protospacer-adjacent motifs (PAMs) include three bases (NGG) with a redunderline. The red letters indicate altered bases. Q, Glutamine; R,Arginine; N, Asparagine; D, Aspartate. B–E, Gross morphologies of the wild type YK17 and its mutants,and. Scale bars are 10 cm. F–I, Appearance and transverse sections of brown rice of YK17 and mutants. Scale bars are 1 mm. J, Amylose content. K, Gel consistency. L, Alkali spreading values of the wild type and mutants. Data are Mean ± SD (= 3) in J–L. Samples with different lowercase letters show a significant difference at< 0.05 according to the Duncan’s test. M, Pasting properties of endosperm starch of YK17 and mutants.N, Western blotting of GBSS I in YK17 and mutant rice grains at 10 d after flowering. Actin was used as an internal control.NIP, Nipponbare; YK17, Zhongjiazao 17.

    In conclusion, using an ABE tool, we created novel allelic variations withingene mutants having different AC (3.4%, 16.7% and 25.6%) with varied ECQ properties. Notably, we achieved better ECQ inwith desirable target of moderate AC (16.7%) and higher GC (77 mm), together with the improvement of viscosity, which prevents retrogradation. This study demonstrated a significant strategy for the improvement of AC inriceby introducing novel alleles through genome editing techniques, where most cultivars carry theWxallele and exhibit high AC.

    ACKNOWLEDGEMENTs

    This study was supported by the China National Key Research and Development Program (Grant No. 2020YFE0202300), the Central Public-Interest Scientific Institution Basal Research Fund of China (Grant Nos. Y2020PT07and Y2020YJ09), and the International Science & Technology Innovation Program of Chinese Academy of Agricultural Sciences, China (Grant No. CAAS-ZDRW202109). We are thankful to Prof. Gao Caixia for providing the ABE vector pH-PABE-7-esgRNA.

    SUPPLEMENTAl DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1.genotype of YK17.

    Fig. S2. Sequencing results of target loci of YK17 and three mutants (,and).

    Fig. S3. Selection of-resistant transgenic plants.

    Fig. S4. Alignment of amino acids ofWxmutants,andconserved in different plant species.

    Table S1. Primers used in this study.

    Table S2. Mutation efficiency in T0generation.

    Table S3. Identification of off-target effects.

    Table S4. Agronomic traits of YK17 and mutants (,and).

    Barman H N, Sheng Z H, Fiaz S, Zhong M, Wu Y W, Cai Y C, Wang W, Jiao G A, Tang S Q, Wei X J, Hu P S. 2019. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis ofgene through CRISPR/Cas9 system., 19(1): 109.

    Biselli C, Cavalluzzo D, Perrini R, Gianinetti A, Bagnaresi P, Urso S, Orasen G, Desiderio F, Lupotto E, Cattivelli L, Valè G. 2014. Improvement of marker-based predictability of apparent amylosecontent inrice throughallele mining., 7(1): 1.

    Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M. 1998. Aberrant splicing of intron 1 leads to the heterogeneous 5UTR and decreased expression ofgene in rice cultivars of intermediate amylose content., 14(4): 459–465.

    Fei Y Y, Yang J, Wang F Q, Fan F J, Li W Q, Wang J, Xu Y, Zhu J Y, Zhong W G. 2019. Production of two elite glutinous rice varieties by editinggene., 26(2): 118–124.

    Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage., 551: 464–471.

    Huang L C, Sreenivasulu N, Liu Q Q. 2020a.editing: Old meets new., 25(10): 963–966.

    Huang L C, Li Q F, Zhang C Q, Chu R, Gu Z W, Tan H Y, Zhao D S, Fan X L, Liu Q Q. 2020b. Creating novelalleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system., 18(11): 2164–2166.

    Juliano B O. 1998. Varietal impact on rice quality., 43(4): 207–222.

    Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage., 533: 420–424.

    Larkin P D, Park W D. 2003. Association ofgene single nucleotide polymorphisms with starch characteristics in rice (L.)., 12: 335–339.

    Li C, Zong Y, Wang Y P, Jin S, Zhang D B, Song Q N, Zhang R, Gao C X. 2018. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion., 19(1): 59.

    Li H, Li X F, Xu Y, Liu H L, He M L, Tian X J, Wang Z Y, Wu X J, Bu Q Y, Yang J. 2020. High-efficiency reduction of rice amylose content via CRISPR/Cas9-mediated base editing., 27(6): 445?448.

    Liu L L, Ma X D, Liu S J, Zhu C L, Jiang L, Wang Y H, Shen Y, Ren Y, Dong H, Chen L M, Liu X, Zhao Z G, Zhai H Q, Wan J M. 2009. Identification and characterization of a novelallele from a Yunnan rice landrace., 71: 609–626.

    Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Sujuki Y, Sano Y. 2008. Allelic diversification at thelocus in landraces of Asian rice., 116(7): 979–989.

    Molla K A, Yang Y N. 2019. CRISPR/Cas-mediated base editing: Technical considerations and practical applications., 37(10): 1121–1142.

    Monsur M B, Shao G N, Lv Y S, Ahmad S, Wei X J, Hu P S, Tang S Q. 2020. Base editing: The ever expanding clustered regularly interspaced short palindromic repeats (CRISPR) tool kit for precise genome editing in plants., 11(4): 466.

    Sato H, Suzuki Y, Sakai M, Imbe T. 2002. Molecular characterization of, a novel mutant gene for low-amylose content in endosperm of rice (L.)., 52(2): 131–135.

    Teng B, Zeng R Z, Wang Y C, Liu Z Q, Zhang Z M, Zhu H T, Ding X H, Li W T, Zhang G Q. 2012. Detection of allelic variation at thelocus with single-segment substitution lines in rice (L.)., 30(1): 583–595.

    Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. 2009. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities., 106(51): 21760–21765.

    Wanchana S, Toojinda T, Tragoonrung S, Vanavichit A. 2003. Duplicated coding sequence in theallele of tropical glutinous rice (L.)., 165(6): 1193–1199.

    Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snusted D P, Li M G, Zhang J Z, Hong M M. 1995. Post-transcriptional regulation of the ricegene., 7: 613–622.

    Xu Y, Lin Q P, Li X F, Wang F Q, Chen Z H, Wang J, Li W Q, Fan F J, Tao Y J, Jiang Y J, Wei X D, Zhang R, Zhu Q H, Bu Q Y, Yang J, Gao C X. 2020. Fine-tuning the amylose content of rice by precise base editing of thegene., 19(1): 11–13.

    Yang J, Wang J, Fan F J, Zhu J Y, Chen T, Wang C L, Zheng T Q, Zhang J, Zhong W G, Xu J L. 2013. Development of AS-PCR marker based on a key mutation confirmed by resequencing ofin milky princess and its application insoft rice (L.) breeding., 132(6): 595–603.

    Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. 2020. Quantitative regulation ofexpression by CRISPR/Cas9-based promoter and 5-UTR-intron editing improves grain quality in rice., 18(12): 2385–2387.

    Zhang C Q, Zhu J H, Chen S J, Fan X L, Li Q F, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q. 2019.Wx, the ancestral allele of ricegene., 12(8): 1157–1166.

    Zhang C Q, Yang Y, Chen S J, Liu X J, Zhu J H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. 2021. A rareallele coordinately improves rice eating and cooking quality and grain transparency.,63(5): 889–901.

    Zhang J S, Zhang H, Botella J R, Zhu J K. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of thegene in elite rice varieties., 60(5): 369–375.

    Hu Peisong (hupeisong@caas.cn); Shao Gaoneng (shaogaoneng@caas.cn)

    11 October 2020;

    4 March 2021

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2021.07.003

    夫妻性生交免费视频一级片| 国产永久视频网站| 成人二区视频| 国产高清国产精品国产三级 | 亚洲综合精品二区| 在线观看国产h片| 啦啦啦在线观看免费高清www| 男女下面进入的视频免费午夜| 久久久久久久久久久免费av| videos熟女内射| 亚洲国产精品成人久久小说| 丰满乱子伦码专区| 亚洲美女黄色视频免费看| 97超碰精品成人国产| 少妇 在线观看| 在线观看美女被高潮喷水网站| 免费人妻精品一区二区三区视频| 伊人久久国产一区二区| 卡戴珊不雅视频在线播放| 97超视频在线观看视频| 久久人妻熟女aⅴ| 久久国产精品男人的天堂亚洲 | 成人影院久久| 亚洲欧美日韩无卡精品| 久久久欧美国产精品| 国内精品宾馆在线| 国产成人91sexporn| 夫妻性生交免费视频一级片| 内地一区二区视频在线| 一二三四中文在线观看免费高清| 亚洲综合色惰| 免费高清在线观看视频在线观看| 伊人久久精品亚洲午夜| 国产精品人妻久久久久久| 性色av一级| 亚洲婷婷狠狠爱综合网| 男女边吃奶边做爰视频| 亚洲成人av在线免费| 国产成人精品一,二区| 欧美日韩国产mv在线观看视频 | 久久久午夜欧美精品| 在线播放无遮挡| 热re99久久精品国产66热6| 综合色丁香网| 久久久久精品久久久久真实原创| 黑丝袜美女国产一区| 伊人久久国产一区二区| 国产精品三级大全| 亚洲精品亚洲一区二区| 成人综合一区亚洲| 国产片特级美女逼逼视频| 亚洲国产精品专区欧美| 在线看a的网站| 午夜视频国产福利| 一级黄片播放器| av卡一久久| 国产一区亚洲一区在线观看| 成人美女网站在线观看视频| 国产黄片视频在线免费观看| 26uuu在线亚洲综合色| 国产av精品麻豆| 高清在线视频一区二区三区| 亚洲精品第二区| 深爱激情五月婷婷| 欧美日韩视频精品一区| 老司机影院毛片| 91狼人影院| 日韩一区二区三区影片| 妹子高潮喷水视频| 性色av一级| 免费看av在线观看网站| 亚洲图色成人| 秋霞伦理黄片| 亚洲国产精品999| 一个人看视频在线观看www免费| 99re6热这里在线精品视频| 亚洲国产日韩一区二区| 国产一区二区三区综合在线观看 | 国产精品国产av在线观看| 久久这里有精品视频免费| 国产成人午夜福利电影在线观看| 国产精品不卡视频一区二区| 内射极品少妇av片p| 成人免费观看视频高清| av.在线天堂| 国产黄色免费在线视频| 街头女战士在线观看网站| 欧美日韩视频精品一区| 精品一区二区免费观看| 777米奇影视久久| 国产亚洲最大av| 男男h啪啪无遮挡| 国产精品熟女久久久久浪| 熟女人妻精品中文字幕| 超碰97精品在线观看| 精品99又大又爽又粗少妇毛片| 亚洲国产精品国产精品| 亚洲三级黄色毛片| 欧美+日韩+精品| 黄色配什么色好看| 少妇高潮的动态图| 免费av不卡在线播放| 日韩,欧美,国产一区二区三区| 欧美激情极品国产一区二区三区 | 不卡视频在线观看欧美| 亚洲欧美日韩东京热| 欧美激情国产日韩精品一区| 在线精品无人区一区二区三 | 国产精品一区二区在线不卡| 黑人猛操日本美女一级片| 国国产精品蜜臀av免费| 欧美少妇被猛烈插入视频| 青春草亚洲视频在线观看| 欧美少妇被猛烈插入视频| 在线观看国产h片| 在线观看美女被高潮喷水网站| 日韩成人av中文字幕在线观看| 亚洲av电影在线观看一区二区三区| 黑人猛操日本美女一级片| 日韩av免费高清视频| 九色成人免费人妻av| 亚洲av男天堂| av又黄又爽大尺度在线免费看| 一区二区三区精品91| 2022亚洲国产成人精品| 日本午夜av视频| 国产精品三级大全| 2021少妇久久久久久久久久久| 欧美成人精品欧美一级黄| 18禁动态无遮挡网站| 久久久久久人妻| 高清毛片免费看| 国产精品麻豆人妻色哟哟久久| 99热这里只有是精品50| 日韩视频在线欧美| 久热这里只有精品99| 午夜视频国产福利| 欧美+日韩+精品| 亚洲成色77777| 天堂中文最新版在线下载| 日韩一本色道免费dvd| 欧美少妇被猛烈插入视频| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品| 熟女电影av网| 日韩制服骚丝袜av| 欧美另类一区| 一区二区三区免费毛片| 秋霞在线观看毛片| a级一级毛片免费在线观看| 黑丝袜美女国产一区| 日本色播在线视频| 高清av免费在线| 日韩强制内射视频| 亚洲va在线va天堂va国产| 大片电影免费在线观看免费| 国产男女内射视频| 欧美xxxx黑人xx丫x性爽| 日本黄色片子视频| 伦精品一区二区三区| 国产一区二区三区av在线| 亚洲综合色惰| 我要看日韩黄色一级片| 国产黄色视频一区二区在线观看| 亚洲国产成人一精品久久久| 免费少妇av软件| 大陆偷拍与自拍| 欧美亚洲 丝袜 人妻 在线| 在线观看一区二区三区| 午夜激情久久久久久久| 免费大片18禁| 高清不卡的av网站| 亚洲av综合色区一区| 亚洲精品成人av观看孕妇| 国产精品国产三级国产专区5o| av视频免费观看在线观看| av在线观看视频网站免费| 国产男人的电影天堂91| 欧美xxxx性猛交bbbb| 99热这里只有是精品50| 女人久久www免费人成看片| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区精品91| 国产成人91sexporn| 有码 亚洲区| 国产av国产精品国产| 成人无遮挡网站| 亚洲国产色片| 国产视频内射| 亚洲美女搞黄在线观看| 99热这里只有是精品50| 国产午夜精品一二区理论片| 18+在线观看网站| 亚洲国产精品999| 色5月婷婷丁香| 黄色配什么色好看| 亚洲真实伦在线观看| 菩萨蛮人人尽说江南好唐韦庄| 天美传媒精品一区二区| 国产中年淑女户外野战色| 又黄又爽又刺激的免费视频.| 亚洲在久久综合| 国产乱人视频| 亚洲怡红院男人天堂| 色哟哟·www| 18禁裸乳无遮挡免费网站照片| 美女高潮的动态| 久久精品国产鲁丝片午夜精品| 久久毛片免费看一区二区三区| h日本视频在线播放| 少妇人妻一区二区三区视频| 激情五月婷婷亚洲| 免费在线观看成人毛片| 国产在线视频一区二区| 黄片wwwwww| 深爱激情五月婷婷| 欧美精品亚洲一区二区| 免费黄频网站在线观看国产| 网址你懂的国产日韩在线| 午夜福利在线观看免费完整高清在| 日韩av在线免费看完整版不卡| 黄片wwwwww| 国产亚洲欧美精品永久| 搡老乐熟女国产| 大香蕉97超碰在线| 久久久久久久国产电影| 国产成人一区二区在线| 男女边摸边吃奶| 久久99热这里只有精品18| 毛片一级片免费看久久久久| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 欧美日韩一区二区视频在线观看视频在线| 26uuu在线亚洲综合色| 久久人人爽av亚洲精品天堂 | 精品久久久噜噜| av.在线天堂| 99久久精品热视频| 男女边吃奶边做爰视频| 久久97久久精品| 在线 av 中文字幕| 国产高清三级在线| 成人亚洲欧美一区二区av| 亚洲精品,欧美精品| 男女下面进入的视频免费午夜| 一级片'在线观看视频| 能在线免费看毛片的网站| 下体分泌物呈黄色| 亚洲精品中文字幕在线视频 | 啦啦啦中文免费视频观看日本| 亚洲va在线va天堂va国产| 性色av一级| 免费黄频网站在线观看国产| 在线播放无遮挡| 欧美区成人在线视频| 免费高清在线观看视频在线观看| 精品一区二区免费观看| 99九九线精品视频在线观看视频| 一区二区三区免费毛片| 亚洲精品成人av观看孕妇| 亚洲精品一区蜜桃| 蜜桃在线观看..| 成人亚洲欧美一区二区av| 一区在线观看完整版| 亚洲自偷自拍三级| 久久精品久久精品一区二区三区| 成年人午夜在线观看视频| 18禁动态无遮挡网站| 秋霞伦理黄片| 亚洲电影在线观看av| 春色校园在线视频观看| 亚洲精品乱码久久久v下载方式| 在线看a的网站| 久久综合国产亚洲精品| 久久久久久人妻| 大话2 男鬼变身卡| 久久ye,这里只有精品| 免费在线观看成人毛片| 亚洲色图av天堂| 日韩中字成人| 国产亚洲午夜精品一区二区久久| 欧美成人a在线观看| 青春草国产在线视频| 成人美女网站在线观看视频| 国产在线免费精品| 街头女战士在线观看网站| 亚洲av福利一区| 国产av国产精品国产| 狂野欧美白嫩少妇大欣赏| 老熟女久久久| 欧美老熟妇乱子伦牲交| 91久久精品电影网| 日日撸夜夜添| 久久精品久久精品一区二区三区| 国产人妻一区二区三区在| 丝瓜视频免费看黄片| 国产精品人妻久久久久久| 寂寞人妻少妇视频99o| 日韩av免费高清视频| 18禁在线无遮挡免费观看视频| 美女高潮的动态| 久热这里只有精品99| 亚洲电影在线观看av| 最新中文字幕久久久久| 青春草亚洲视频在线观看| 国产亚洲一区二区精品| 男人添女人高潮全过程视频| 免费av不卡在线播放| 亚洲精品日韩av片在线观看| 一级毛片电影观看| 国内精品宾馆在线| 亚洲国产精品国产精品| 五月开心婷婷网| av在线观看视频网站免费| 国产精品免费大片| 18禁裸乳无遮挡免费网站照片| 熟妇人妻不卡中文字幕| 中文资源天堂在线| 中文字幕av成人在线电影| 亚洲内射少妇av| 亚洲国产最新在线播放| 极品教师在线视频| 久久亚洲国产成人精品v| 午夜福利高清视频| 亚洲自偷自拍三级| 一区二区三区乱码不卡18| tube8黄色片| 亚洲成人av在线免费| 最黄视频免费看| 舔av片在线| 精品人妻熟女av久视频| 日本欧美视频一区| 日本免费在线观看一区| 国产精品免费大片| 2021少妇久久久久久久久久久| 极品少妇高潮喷水抽搐| 九草在线视频观看| 久久99蜜桃精品久久| 一级毛片电影观看| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 亚洲精品aⅴ在线观看| 国产精品国产三级国产av玫瑰| 欧美成人a在线观看| 亚洲精品国产av蜜桃| 久久久久久久久久成人| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 亚洲欧美日韩另类电影网站 | 国产男女超爽视频在线观看| 国产精品无大码| 偷拍熟女少妇极品色| 免费观看的影片在线观看| 亚洲第一av免费看| 成人亚洲欧美一区二区av| 亚洲怡红院男人天堂| 亚洲成人手机| 欧美日韩亚洲高清精品| 国产成人freesex在线| 久久久亚洲精品成人影院| av一本久久久久| 最近的中文字幕免费完整| 成人一区二区视频在线观看| 欧美xxⅹ黑人| 欧美性感艳星| 校园人妻丝袜中文字幕| 免费看av在线观看网站| 日日摸夜夜添夜夜添av毛片| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 国产精品一二三区在线看| 91精品一卡2卡3卡4卡| 国产乱人视频| 激情五月婷婷亚洲| 少妇 在线观看| 80岁老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 国产精品爽爽va在线观看网站| 人妻少妇偷人精品九色| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站| 久久久久视频综合| 日本欧美国产在线视频| 黄色欧美视频在线观看| 国产午夜精品久久久久久一区二区三区| 欧美国产精品一级二级三级 | 在线 av 中文字幕| 国产日韩欧美在线精品| 国产精品一区二区性色av| 中文精品一卡2卡3卡4更新| 国产精品一区www在线观看| 欧美97在线视频| 22中文网久久字幕| 自拍欧美九色日韩亚洲蝌蚪91 | 91久久精品国产一区二区成人| 在线亚洲精品国产二区图片欧美 | 丰满迷人的少妇在线观看| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 亚洲欧美精品专区久久| 嫩草影院入口| 精品人妻一区二区三区麻豆| 精品国产露脸久久av麻豆| 国产成人免费观看mmmm| 高清欧美精品videossex| av专区在线播放| 22中文网久久字幕| 搡老乐熟女国产| 午夜精品国产一区二区电影| 日本免费在线观看一区| 偷拍熟女少妇极品色| 国产精品麻豆人妻色哟哟久久| 久久精品国产自在天天线| 97精品久久久久久久久久精品| av天堂中文字幕网| 色视频在线一区二区三区| 亚洲第一av免费看| 国产一区二区三区av在线| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久成人| 国产精品免费大片| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 少妇熟女欧美另类| av天堂中文字幕网| 一级二级三级毛片免费看| 免费在线观看成人毛片| 亚洲中文av在线| 丰满人妻一区二区三区视频av| 韩国av在线不卡| 久久久久久久久久久免费av| 日韩大片免费观看网站| 国产精品久久久久久久久免| 交换朋友夫妻互换小说| 一区二区三区免费毛片| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频 | 日韩亚洲欧美综合| 国产毛片在线视频| 各种免费的搞黄视频| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版| 国产av国产精品国产| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 午夜日本视频在线| 国产在视频线精品| 人人妻人人澡人人爽人人夜夜| 国产亚洲午夜精品一区二区久久| 九九爱精品视频在线观看| 国产高潮美女av| 亚洲四区av| 亚洲欧美一区二区三区黑人 | 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 晚上一个人看的免费电影| 亚洲精品aⅴ在线观看| 六月丁香七月| 色5月婷婷丁香| 2018国产大陆天天弄谢| 国产欧美日韩一区二区三区在线 | 韩国av在线不卡| 免费av不卡在线播放| 深爱激情五月婷婷| 国产av一区二区精品久久 | 亚洲欧美日韩卡通动漫| 成人美女网站在线观看视频| 视频区图区小说| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 在线观看av片永久免费下载| 一级a做视频免费观看| 国产精品99久久99久久久不卡 | 欧美激情极品国产一区二区三区 | 亚洲精品乱久久久久久| 亚洲成人一二三区av| 1000部很黄的大片| 国模一区二区三区四区视频| 日韩国内少妇激情av| 亚洲自偷自拍三级| 如何舔出高潮| 三级国产精品欧美在线观看| 校园人妻丝袜中文字幕| 免费黄频网站在线观看国产| 国产精品秋霞免费鲁丝片| 久热久热在线精品观看| 日韩欧美 国产精品| 卡戴珊不雅视频在线播放| 国产精品人妻久久久久久| 大片电影免费在线观看免费| 精品亚洲成国产av| 免费观看a级毛片全部| 亚洲人与动物交配视频| 国产有黄有色有爽视频| 日韩成人av中文字幕在线观看| 久久久久久久亚洲中文字幕| 免费播放大片免费观看视频在线观看| 简卡轻食公司| 人体艺术视频欧美日本| 啦啦啦视频在线资源免费观看| 日日摸夜夜添夜夜添av毛片| 中文精品一卡2卡3卡4更新| 国产精品一区www在线观看| kizo精华| 欧美另类一区| 99热这里只有是精品50| 成人国产麻豆网| 亚洲欧美日韩另类电影网站 | 最近中文字幕2019免费版| 亚洲av电影在线观看一区二区三区| 亚洲图色成人| 亚洲成人中文字幕在线播放| 中文乱码字字幕精品一区二区三区| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 男女边吃奶边做爰视频| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品伦人一区二区| 亚洲真实伦在线观看| 欧美成人a在线观看| 91狼人影院| 国产成人免费观看mmmm| 内地一区二区视频在线| 国产一区二区在线观看日韩| 亚洲精品国产av蜜桃| 亚洲欧洲国产日韩| 久久久久久久大尺度免费视频| 亚洲精品自拍成人| 成年人午夜在线观看视频| 久久热精品热| 美女cb高潮喷水在线观看| 女性生殖器流出的白浆| 最近中文字幕高清免费大全6| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 高清在线视频一区二区三区| 草草在线视频免费看| 欧美成人精品欧美一级黄| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 午夜免费观看性视频| 欧美精品国产亚洲| 国产69精品久久久久777片| h日本视频在线播放| 亚洲精品国产成人久久av| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 久久久色成人| 成人亚洲欧美一区二区av| 一区二区三区免费毛片| .国产精品久久| 国产精品久久久久久av不卡| 亚洲最大成人中文| 久久6这里有精品| 日韩,欧美,国产一区二区三区| av在线播放精品| 国产欧美亚洲国产| 久久99热这里只频精品6学生| 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 中文资源天堂在线| 丰满迷人的少妇在线观看| av视频免费观看在线观看| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 在线观看三级黄色| 大又大粗又爽又黄少妇毛片口| 国产精品三级大全| 中文字幕制服av| 欧美bdsm另类| av黄色大香蕉| 成人国产麻豆网| 久热久热在线精品观看| 精华霜和精华液先用哪个| 国产爽快片一区二区三区| 草草在线视频免费看| 国产爽快片一区二区三区| av国产免费在线观看| 一级av片app| av在线观看视频网站免费| 久久人人爽人人片av| 亚洲精品久久久久久婷婷小说| 一级黄片播放器| 亚洲精品,欧美精品| 国产乱来视频区| 亚洲精品,欧美精品| 51国产日韩欧美| 久久99精品国语久久久| 人妻系列 视频| 国产一区二区三区av在线| 嘟嘟电影网在线观看| 亚洲天堂av无毛| 国产欧美日韩一区二区三区在线 | 日韩欧美精品免费久久| 老司机影院毛片| 中文字幕精品免费在线观看视频 | 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 在线观看免费日韩欧美大片 | 国产亚洲5aaaaa淫片| 青春草国产在线视频| 国产 一区精品| 免费黄网站久久成人精品| 亚洲综合色惰| 在线观看一区二区三区激情| xxx大片免费视频| 99久久精品一区二区三区| 久久久久人妻精品一区果冻| 99国产精品免费福利视频| 女人十人毛片免费观看3o分钟|