• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of Upland Rice Variety by Pyramiding Drought Tolerance QTL with Two Major Blast Resistance Genes for Sustainable Rice Production

    2021-08-31 02:19:56VishalakshiBalijaUmakanthBangaleSenguttuvelPonnuvelKalyaniMakarandBarbadikarSrinivasPrasadMadamshettySanjeevaRaoDurbhaHariYadlaSheshuMadhavMaganti
    Rice Science 2021年5期

    Vishalakshi BalijaUmakanth Bangale Senguttuvel PonnuvelKalyani Makarand Barbadikar Srinivas Prasad MadamshettySanjeeva Rao DurbhaHari YadlaSheshu Madhav Maganti

    Research Paper

    Improvement of Upland Rice Variety by Pyramiding Drought Tolerance QTL with Two Major Blast Resistance Genes for Sustainable Rice Production

    Vishalakshi Balija1,6,#, Umakanth Bangale1,#, Senguttuvel Ponnuvel2, Kalyani Makarand Barbadikar1, Srinivas Prasad Madamshetty3, Sanjeeva Rao Durbha4, Hari Yadla5, Sheshu Madhav Maganti1

    (Biotechnology Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Hybrid Rice Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Plant Pathology Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Plant Physiology Division, ICAR-Indian Institute of Rice Research, Rajendra Nagar, Hyderabad 500030, India; Regional Agricultural Research Station, Professor Jayashankar Telangana State Agricultural University, Warangal 506006, India; Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India; These authors contributed equally to this work)

    Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL,qDTY, along with two major blast resistance genes i.e.andthrough marker-assisted backcross breeding. Both traits were transferred till BC2generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY), RM206 forand RM224 forExtensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) havingqDTYand two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%?96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.

    blast resistance; drought stress; marker-assisted gene pyramiding; rainfed ecosystem; upland rice

    Rice (L.) is a primary source of nutrition for more than half of the world’s population. Despite the saturation in genetic yield, demand for rice is increasing with the ever increasing population. Rice is also cultivated in around 23 million hectares of rainfed ecosystem where yields are significantly affected due to frequent occurrence of drought (Serraj et al, 2011), and blast (Dean et al, 2012), and global climate changecan further increase the drought stress (Wassmann et al,2009). Also, yield is affected due to drought spells in irrigated conditions (Bernier et al, 2009a).

    Among many QTLs identified for drought stress tolerance,qDTYoffers significant yield potential under reproductive-stage drought stress by contributing 51% genetic variance (Bernier et al, 2007). Blast disease caused by(anamorph) is another production constraint commonly observed in the rainfed ecosystem (Dean et al, 2012). So far, above 100 genes have been reported to aid in blast resistance (Devi et al, 2020). Among them, two significant blast resistance genesandconfer broad-spectrum resistance against predominant races of the pathogen in India (Mackill and Bonman, 1992; Sharma et al, 2005). Marker-assisted gene pyramiding (MAGP) is a precise, rapid and efficient method to pyramid desired genes/QTLs along with maximum recovery of recurrent parent genome within two to three backcrosses (Jamaloddin et al, 2020).

    Varalu is a popular variety cultivated in major upland areas of India. It is affected by reproductive drought stress and blast disease. Hence, this study aimed to genetic improvement of Varalu by introgressing a major yield QTL (qDTY) along with two major blast resistance genes (and) through MAGP.

    Results

    Introgression of qDTY12.1 into Varalu

    Through foreground selection, 13 F1plants from Cross-I [Varalu × Vandana near-isogenic line (NIL)], 40 BC1F1, 25 BC2F1and 26BC2F2plants were found positive forqDTY(Fig. 1). Polymorphic assay between Varalu and Vandana NIL identified 200 SSR markers, which were uniformly spread across the rice genome. Two best BC1F1plants possessing the maximum recurrent parent genome recovery (RPGR, 76.0%) andqDTYwere backcrossed to produce BC2F1, and two best BC2F1plants were used to produce BC2F2population (= 422). Finally, five BC2F2plants displaying homozygousqDTYgenomic region and high grain yield under reproductive drought stress portraying 82.0%?85.0% of RPGR were identified. The recombinant selection was performed among five BC2F2plants to minimize the linkage drag atqDTYlocus and found the recombination breakpoints (RBP) ranged from 3.6 to 4.3Mb at the proximal and distal ends, respectively (Fig. S1-A). Among them, one plant (VVN-117-34-26) with the maximum RPGR of nearly 85.0% was used for intercrossing.

    Fig. 1. Schematic representation of marker-assisted gene pyramiding followed for introgression ofqDTYfor improvement of grain yield under reproductive stage drought stress and blast resistance genes (and) in Varalu variety.

    NIL, Near-isogenic line; BPT-LT, Elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand; RPGR, Recurrent parent genome recovery; IC, Intercross.

    Introgression of blast resistance genes into Varalu

    Ten F1plants derived from Cross-II [Varalu × BPT-LT (an elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand)], 25 BC1F1, 20 BC2F1and 34 BC2F2plants were found positive for bothand(Fig. 1). A total of 180 markers showed polymorphism betweenVaralu and BPT-LT were used for background analysis. Three best BC1F1plants possessing a maximum RPGR of 77.0% were used to generate BC2F1plants and two best BC2F1plants were used to produce BC2F2plants. Finally, six BC2F2plants showed a high resistant level to blast with 86.0%?90.0% of RPGR. The RBP of six plants atlocus was observed at 2.1 to 0.5 Mb of donor genome segment at proximal and distal ends, respectively (Fig. S1-B).In case oflocus, all the six plants showed RBP of 2.1 Mb at the proximal end, and ranged from 0.6 to 1.6 Mb at the distal end. Two BC2F2plants (VLT-175-13-10 and VLT-183-98-31) havingandin homozygous conditionwith the maximum RPGR of nearly 90.0% were forwarded for intercrossing (IC).

    Fig. 2. Graphical representation of selected pyramided lines of Varalu for donor genome introgression associated with blast resistance genesandon chromosome 11 andqDTYon chromosome 12.

    A, Atlocus, a donor segment introgression was limited to only about 0.3 Mb at the proximal end; atlocus, about 0.2 Mb donor genome was observed at the proximal end.

    B, AtqDTYlocus, a donor genomic region about 0.7 and 0.1 Mb at the proximal and distal ends, respectively, was observed in four lines on chromosome 12. Two lines (MSM-36 and MSM-60) showed limited donor segments in comparison with other lines.

    NIL, Near-isogenic line; BPT-LT, Elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand.

    Pyramiding of qDTY12.1 and blast resistance genes into Varalu

    The best homozygous BC2F2plants obtained from the two crosses were intercrossed for pyramiding the target genes/QTL (qDTY,and). The best three ICF1plants having all the three genes were selfed to generate ICF2population. Among these, 20 ICF2plants were homozygous for all the three genes (qDTY,and). Six best pyramided lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) were identified based on blast resistance and grain yield under reproductive stage drought stress (Fig. 1). Background analysis with 120 polymorphic SSR markers revealed 95.0%?96.5% of RPGR (Fig. S1-C). The recombinant selection among the six best lines revealed a segment of 0.3 and 0.2 Mb of donor genome segment at the distal and proximal ends ofandloci, respectively (Fig. 2-A). Moreover, at qDTYlocus, 0.7 and 0.1 Mb of donor genome segment was found at the proximal and distal ends, respectively (Fig. 2-B). Among the best six lines, MSM-36 and MSM-60 showed very less linkage drag in the three loci compared to the other four entries.

    Performance of improved lines for yield under drought and irrigated conditions

    Among the 422 BC2F2individuals of Cross-I, 26 homozygous plants containingqDTYwith higher yields ranging from 14.8 to 23.4 g/plant, which was chosen for intercrossing. Twenty of the 800 ICF2s displayed higher grain yield per plant (14.96 to 18.74 g) than the recurrent parent (RP) (11.6 g) under reproductive stage drought stress (Table 1). Most of theintercrossed lines had higher plant height except MSM-49, which was shorter than Varalu (Table 1 and Fig. S2-A). Interestingly, the measured yield contributing traits were also superior to RP in these lines (Table 1 and Fig. S2-B). However, there was little difference in the flag leaf length and days to 50% flowering among the improved lines (Table 1). Among these, six improved lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having superior yield characteristics and similar grain type like RP in reproductive stage drought stress conditions were selected and further assessed for yield under irrigated conditions (Table 1; Fig. S2-B and-C).

    Under irrigated conditions, three lines, MSM-36, MSM-49 and MSM-60, exhibited higher grain yield (22.84, 22.40 and 22.13 g, respectively) than the recurrent parent (20.72 g) (Table 1).

    Evaluation of disease reaction in improved lines of Varalu

    The six BC2F2plants of Cross-II and 20 homozygous pyramided lines ICF2to ICF5noted ‘0’ (Fig. S3) and ‘0?2’ blast scores, respectively (Table 1 and Fig. 3), indicating high level of blast resistance.

    Moreover, MSM-36 out yielded its RP in Zone VII ofAll India Coordinated Rice Improvement Programme(AICRIP, consisting of five states, Telangana, Andhra Pradesh, Karnataka, Tamil Nadu and Kerala) with yield advantage of 18.8% and 13.8% under drought and controlled conditions, respectively. The average blast disease susceptibility index of MSM-36 at multiple locations was 2.95 compared to Varalu of 6.20 (Table S2).

    Grain quality analysis of improved lines

    In addition to the brown hull colour, long slender grain type and cooking quality parameters of the six pyramided lines were assessed and found MSM-36 and MSM-60 were particularly similar to RP (Table 2).

    Discussion

    Several drought-tolerant QTLs detected from diverse sources (Kumar et al, 2007; Vikram et al, 2011) are less exploited in breeding programmes. There is a keen interest in selecting the progenies having higher yield even under the stress, which is offered by a few QTLs likeqDTY(Bernier et al, 2009b). The effectiveness ofqDTYwas evident from the introgressions of Vandana and Sabitri under drought and irrigated conditions (Mishra et al, 2013; Kumar et al, 2014). Severe incidence of blast disease was also seen in the upland ecosystem (Asibi et al, 2019), which can be addressed by pyramiding major blast resistance genes.

    Fig. 3. Phenotypic screening of pyramided lines (Pi54 + Pi1 + qDTY) against blast disease.

    A, All the intercross derived lines and donor parent BPT-LT (an elite rice line with the genetic background of Samba Mahsuri containing two blast resistance genesand)were highly resistant whereas the recurrent parent Varalu showed susceptible against blast.

    B, Lesions were observed on the leaf surface of the recurrent parent Varalu while the pyramided lines and donor parent showed no lesion on the leaf surface.

    Table 2. Grain and cooking quality of selected pyramided lines of Varalu.

    HRR, Head rice recovery; GL, Grain length; GW, Grain width; GL/GW, Ratio of grain length to width; VOC, Very occasionally; ASV, Alkali spreading value; AC, Amylose content; GC, Gel consistency; LS, Long slender; MB, Medium bold.

    Marker-assisted breeding strategy has been employed to improve rice varieties for resistance against biotic and biotic stresses independently (Dixit et al, 2020). But few reports exist on the development of combined resistant versions to biotic and abiotic stress resistant varieties (Dixit et al, 2014, 2020; Muthu et al, 2020).

    RPGRs of the two backcrosses (Cross-I and Cross-II) and intercross were 82.0%?85.0%, 86.0%?90.0% and 95.0%?96.5%, respectively, which were higher than the reported introgression studies (Khan et al, 2018; Chukwu et al, 2019; Swathi et al, 2019). Moreover, the improved lines displayed very close recombination breakpoints at both ends of the three loci, indicating less donor genome introgression. Anyaohaet al (2019) improved the rainfed rice variety FUNAABOR-2 for grain yield under drought stress by introgressingqDTYandqDTYusing marker-assisted selection with the minimum linkage drag of about 0.8 Mb.Likeandpyramided Tellahamsa lines (Jamaloddin et al, 2020), individuals of backcross population having both the genes noted higher resistance score of 0 than the individuals with only(0?2) or(2?3). Thus,might provide broad spectrum resistance than(Patroti et al, 2019). The NILs possessing two genes or single gene can be used as donors for the deployment in the rice improvement programme. Like Sabitri linesunder lowland reproductive stage drought stress (Mishra et al, 2013), the backcross population having properly delimitedqDTYregion of Dixit et al (2012) showed higher grain yield than the lines possessing either one.

    Due to proper phenotypic selection, the mean grain yields of pyramided lines under drought (16.53 g) and irrigated (20.71 g) conditions were higher than the RP (11.60 g and 20.72 g) (Table 1).The results indicated that agro-morphological and cooking quality characters of the improved lines of Varalu were similar to RP except MSM-49 with shorter plant height and lower alkali spreading value. Under the reproductive stage drought stress and irrigated conditions, MSM-36 and MSM-60 were identified as the best lines with high grain yield and desirable cooking quality (Table 2), and MSM-36 noted superior performance in the Zone VII of AICRIP trial.

    The present study combined a major drought QTL (qDTY) and two major blast resistance genes (and) into the genetic background of upland rice variety Varalu. Two best improved Varalu lines, MSM-36 and MSM-60 possessing high yield under drought stress and blast resistance along with > 96% RPGR are expected to replace Varalu. These lines did not show any yield penalty under irrigated condition and can be disseminated for cultivation in drought- prone niches of India.

    methods

    Rice materials

    The long slender and early maturing (90?95 d) elite rice variety, Varalu (WGL-20471 × CR-544-1-2), was used as the recurrent parent. Vandana NIL and BPT-LT were used as donors for drought (qDTY) (Bernier et al, 2007) and blast (two resistance genesand), respectively. Two independent crosses. Varalu × Vandana NIL (Cross-I) and Varalu × BPT-LT (Cross-II) were made followed by selection of positive lines and backcrossing with Varalu up to BC2F2and intercrossing at BC2F2for pyramiding both traits. The selected lines possessingqDTY +were advanced through the pedigree method from ICF3to ICF5for field evaluation of agronomical traits against blast and reproductive stage drought stress (Fig. 1).

    DNA extraction and genotyping

    Genomic DNA was isolated from 21-day-old seedlings of the parents, F1, backcross and intercross generations (Murray and Thompson, 1980). Devi et al (2015) procedure was used for PCR amplification. The foreground selection ofqDTYwas done using peak marker as well as linked markers RM511, RM28099 (forqDTY), RM28130 and RM28163 (forqDTY), while RM206 for, RM224 for(Dixit et al, 2012; Patroti et al, 2019) (Table S1). A set of 635 SSR markers covering every 2?5 Mb interval were selected (http://rice. plantbiology.msu.edu/) for background selection. The identified polymorphic markers between the donors and the recurrent parent were utilized for background selection in backcross and intercross populations. The assessment of RPGR was done based on the SSR marker data using the Graphical Genotypes (GGTs) V2.0 software.

    Screening of derived lines under reproductive stage drought stress

    Backcross and intercross derived populations were screened for reproductive stage drought stress (Venuprasad et al, 2007) at the research farm, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India, in a random block design with 20 cm × 20 cm row spacing. Agro-morphological traits like plant height, number of tillers per plant, number of panicles per plant, flag leaf length, days to 50% flowering, 1000-grain weight and grain yield were measured.

    Screening for blast

    The blast screening of all the backcross and intercross lines of Varalu was done in a uniform blast nursery at ICAR-IIRR (Umakanth et al, 2017) using Standard Evaluation System with 0?9 scales (IRRI, 2002).

    Screening of improved lines under irrigated conditions

    Twenty-five-day-old seedlings of selected lines along with the parents were transplanted in the lowland irrigated plot in a random block design with 150 cm × 20 cm row spacing. Irrigation was given twice a week and all the agro- morphological traits measured in drought plot were also recorded. Further, two best lines (MSM-36 and MSM-60) were also screened across 10 different AICRIP locations under reproductive stage drought stress and irrigated conditions (http://www.icar-iirr.org/aicrip.htm).

    Quality analysis

    The harvested seeds of the selected lines in triplicate and their parents were shade dried up to 12%?14% moisture content. Intact milled grains were used to determine grain type by length to width ratio (IRRI, 2004) and alkali spreading value (Juliano et al, 1990). Milled grains ground to 100 mesh powders were analyzed for gel consistency (Cagampang, 1973) and amylose content (Juliano, 1971).

    Statistical analysis

    The Duncan’s multiple range test was carried out to compare significant difference of improved lines with recurrent parent for agro-morphological traits using XLSTAT (Version 2020.5).The coefficient of variation, standard deviation and standard error of the mean were calculated by using the MS Excel package to determine the significant variation between the lines.

    AcknowledgEment

    The authors acknowledge the Department of Biotechnology, New Delhi, India for providing funds for carrying out the research work.

    Supplemental DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    Fig. S1. Graphical representation of BC2F2selected lines.

    Fig. S2. Phenotypes of improved lines.

    Fig. S3. Blast phenotypic screening of BC2F2selected lines of Cross-II (Varalu × BPT-LT) and their parents.

    Table S1. Details of SSR markers used for foreground selection.

    Table S2. Performance of best pyramided lines under drought and controlled conditions in national trials (Zone VII).

    Anyaoha C O, Fofana M, Gracen V, Tongoona P, Mande S. 2019. Introgression of two drought QTLs into FUNAABOR-2 early generation backcross progenies under drought stress at reproductivestage., 26(1): 32?41.

    Asibi A E,ChaiQ,Coulter J A. 2019. Rice blast: A disease with implications for global food security.,9(8): 451.

    Bernier J, Kumar A, Venuprasad R, Spaner D, Atlin G N. 2007. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice., 47(2): 507?516.

    Bernier J,Serraj R,Kumar A,Venuprasad R,Impa S,Gowda V R, Oane R, Spaner D, Atlin G. 2009a. The large-effect drought- resistance QTLincreases water uptake in upland rice.,110: 139?146.

    Bernier J, Kumar A, Venuprasad R, Spaner D, Verlukar S, Mandal N P, Sinha P K, Peeraju P, Dongre P R, Mahto R N, Atlin G. 2009b. Characterization of the effect of a QTL for drought resistance in rice,over a range of environments in the Philippines and eastern India., 166(2): 207?217.

    Cagampang G B, Perez C M, Juliano B O. 1973. A gel consistency test for eating quality of rice., 24(12):1589?1594.

    Chukwu S C, Rafii Y M, Ramlee S I, Ismail S I, Oladosu Y, Okporie E, Onyishi G, Utobo E, Ekwu L, Swaray S, Jalloh M. 2019. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (L.)., 33(1): 440?455.

    Dean R, van Kan J A L, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J,Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top 10 fungal pathogens in molecular plant pathology.,13(4): 414?430.

    Devi S J S R, Kuldeep S, Umakanth B, Vishalakshi B, Renuka P, Sudhakar K V, Prasad M S,Viraktamath B C, Ravindrababu V, Madhav M S. 2015. Development and identification of novel rice blast resistant sources and their characterization using molecular markers., 22(6): 300?308.

    Devi S J S R, Singh K, Umakanth B, Vishalakshi B, Rao K V S, Suneel B, Sharma S K, Kadambari G K M, Prasad M S, Senguttvel P, Divya P S, Madhav M S. 2020. Identification and characterization of a large effect QTL fromrevealed(t) as putative candidate gene for rice blast resistance., 13:17.

    Dixit S, Swamy B M,Vikram P, AhmedH U, Cruz M S, AmanteM,Atri D, Leung H, Kumar A. 2012. Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought severities.,125(1): 155?169.

    Dixit S, Huang B E, Sta Cruz M T, Maturan P T, Ontoy J C E, Kumar A. 2014. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: An integrated approach., 9(10):e109574.

    DixitS, SinghU M, SinghA K, AlamS, VenkateshwarluC, NachimuthuV V, YadavS, AbbaiR, SelvarajR, DeviM N, RamayyaP J, BadriJ, Ram T, LakshmiJ, LakshmideviG, Vidhya L R KJ, PadmakumariA P, LahaG S, PrasadM S, SeetalamM, Singh V K,Kumar A. 2020. Marker assisted forwardbreeding to combine multiple biotic-abiotic stress resistance/tolerance in rice., 13:29.

    IRRI. 2002. Standard Evaluation System for Rice. Los Banos, Manila, the Philippine: International Rice Research Institute.

    IRRI. 2004. Standard Evaluation System for Rice. Los Banos, Manila, the Philippine: International Rice Research Institute.

    Jamaloddin M, Durga Rani C V, Swathi G, Anuradha C, Vanisri S, Rajan C P D, Krishnam Raju S, Bhuvaneshwari V, Jagadeeswar R, Laha G S, Prasad M S, Satyanarayana P V, Cheralu C, Rajani G, Ramprasad E, Sravanthi P, Arun Prem Kumar N, Aruna Kumari K, Yamini K N, Mahesh D, Sanjeev Rao D, Sundaram R M, Sheshu MadhavM. 2020. Marker assisted gene pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety ‘Tellahamsa’., 15(6): e0234088.

    Juliano B O. 1971. A simplified assay for milled rice amylose., 16(11): 334?360.

    Juliano B O, Perez C M, Kaushik R, Khush G S. 1990. Some grain properties of IR36-based starch mutants., 42(7): 256?260.

    Khan G H, Shikari A B, Vaishnavi R, Najeeb S, Padder B A, Bhat Z A, ParrayG A, BhatA M, Kumar R, Singh N K. 2018. Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji., 8(1):4091.

    Kumar A, Dixit S, Ram T, Yadaw R B, Mishra K K, Mandal N P. 2014. Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches., 65(21): 6265–6278.

    Kumar R, Venuprasad R, Atlin G N. 2007. Genetic analysis of rainfed lowland rice drought tolerance under naturally occurring stress in eastern India: Heritability and QTL effects., 103(1): 42–52.

    Mackill D J, Bonman J M. 1992. Inheritance of blast resistance in near isogenic lines of rice., 82(7): 746–749.

    MishraK K, VikramP,YadawR B,Swamy B P M,DixitS,StaruzM T G,MarkerS, Kumar A. 2013.: A locus with a consistent effect on grain yield under drought in rice.,14:12.

    Murray H G, Thompson W F. 1980. Rapid isolation of high molecular weight DNA., 8(19): 4321–4325.

    Muthu V, Abbai R, Nallathambi J, Rahman H, Ramasamy S, Kambale R, Thulasinathan T, Ayyenar B, Muthurajan R. 2020. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding., 15(1): e0227421.

    Patroti P, Vishalakshi B, Umakanth B, Suresh J, Senguttuvel P, Madhav M S. 2019. Marker-assisted pyramiding of major blast resistance genes in Swarna-Sub1, an elite rice variety (L.)., 215(11): 179.

    Serraj R, McNally K L, Slamet-Loedin I, Kohli A, Haefele S M, Atlin G, Kumar A. 2011. Drought resistance improvement in rice: An integrated genetic and resource management strategy., 14(1): 1?14.

    Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V, Pandit A, SinghA, GaikwadK, UpretiH C, Singh N K. 2005. High-resolution mapping, cloning and molecular characterization of thePi-kgene of rice, which confers resistance to., 274(6): 569–578.

    Swathi G, Durga Rani C V, Jamaloddin M, Sheshu Madhav M, Vanisree S, Anuradha C, Ranjit Kumar N, Aruna Prem Kumar N, Aruna Kumari K, Bhogadhi S C, Ramprasad E, Sravanthi P, Krishinam Raju S, Bhuvaneswari V, Rajan C P D, Jagadeeswar R. 2019. Marker-assisted introgression of the major bacterial blight resistance genes,and, and blast resistance gene,, into the popular rice variety, JGL1798., 39:58.

    Venuprasad R, Lafitte H R, Atlin G N. 2007. Response to direct selection for grain yield under drought stress in rice., 47:285–293.

    Vikram P, Swamy B P M, Dixit S, Ahmed H U, Sta Cruz M T, Singh A K, Kumar A. 2011., a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds., 12:89.

    Wassmann R, Jagadish S V K, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh R K, Heuer S. 2009. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation., 102: 91?133.

    14 August 2020;

    8 January 2021

    Sheshu Madhav Maganti (sheshu24@gmail.com; sheshu_24@yahoo.com)

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2021.07.009

    (Managing Editor: Wu Yawen)

    级片在线观看| 欧美激情国产日韩精品一区| 国产精品一区二区在线观看99 | 亚洲国产精品sss在线观看| 亚洲精品乱久久久久久| 欧美成人一区二区免费高清观看| 九九爱精品视频在线观看| 国产激情偷乱视频一区二区| 免费av观看视频| 噜噜噜噜噜久久久久久91| 亚洲精品,欧美精品| 久久久久久久久久久免费av| 一级毛片aaaaaa免费看小| 最近2019中文字幕mv第一页| 床上黄色一级片| 亚洲国产精品sss在线观看| 床上黄色一级片| 午夜福利视频1000在线观看| 亚洲av成人精品一区久久| 黄色日韩在线| 久久久久久伊人网av| 91久久精品国产一区二区成人| 一级av片app| 国产亚洲精品av在线| 国产乱人视频| 国产一区二区亚洲精品在线观看| 日韩一区二区三区影片| 国产成人一区二区在线| 美女大奶头视频| 亚洲av电影在线观看一区二区三区 | 久久av网站| 免费高清在线观看视频在线观看| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 国产成人精品一,二区| 一级毛片黄色毛片免费观看视频| 精品午夜福利在线看| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 久久99一区二区三区| 精品久久蜜臀av无| 色婷婷久久久亚洲欧美| 国产色婷婷99| 亚洲一码二码三码区别大吗| 精品一区在线观看国产| 免费看av在线观看网站| 国产精品.久久久| 中文欧美无线码| 两个人看的免费小视频| 蜜桃国产av成人99| 国产在线视频一区二区| 国产成人91sexporn| 男男h啪啪无遮挡| 熟妇人妻不卡中文字幕| 国产av码专区亚洲av| 日日撸夜夜添| a 毛片基地| 久久这里有精品视频免费| 欧美精品一区二区大全| 久久热在线av| 九九爱精品视频在线观看| 久久精品人人爽人人爽视色| 黑人高潮一二区| 我要看黄色一级片免费的| 国产精品久久久av美女十八| 国产成人精品无人区| 日韩av免费高清视频| 水蜜桃什么品种好| 国产精品人妻久久久久久| av网站免费在线观看视频| 大片电影免费在线观看免费| 国产精品一二三区在线看| 亚洲成av片中文字幕在线观看 | 亚洲综合色惰| 欧美 亚洲 国产 日韩一| 国产一区有黄有色的免费视频| 成年美女黄网站色视频大全免费| www.熟女人妻精品国产 | 免费观看a级毛片全部| 女人精品久久久久毛片| 男女啪啪激烈高潮av片| 男女啪啪激烈高潮av片| 最近中文字幕2019免费版| 日韩,欧美,国产一区二区三区| 不卡视频在线观看欧美| 成人手机av| 午夜免费鲁丝| 内地一区二区视频在线| 黑丝袜美女国产一区| 一本—道久久a久久精品蜜桃钙片| 又黄又粗又硬又大视频| 国产成人午夜福利电影在线观看| 五月伊人婷婷丁香| 国产精品久久久久成人av| 久久国产精品男人的天堂亚洲 | 欧美 日韩 精品 国产| 精品酒店卫生间| www.色视频.com| 一本大道久久a久久精品| 精品国产一区二区三区四区第35| 这个男人来自地球电影免费观看 | 国产激情久久老熟女| 久久久久网色| 少妇被粗大的猛进出69影院 | 欧美日韩av久久| 国产精品国产av在线观看| 18在线观看网站| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| 日韩欧美精品免费久久| 青春草视频在线免费观看| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 国产在线一区二区三区精| 午夜福利在线观看免费完整高清在| 一边亲一边摸免费视频| 亚洲成人一二三区av| 女人久久www免费人成看片| 日日撸夜夜添| 欧美日韩综合久久久久久| 日韩精品有码人妻一区| 亚洲欧美中文字幕日韩二区| 久久久久精品人妻al黑| 亚洲国产欧美在线一区| 成人二区视频| 在线天堂最新版资源| 午夜激情久久久久久久| 99热这里只有是精品在线观看| 精品少妇黑人巨大在线播放| 各种免费的搞黄视频| 国产精品久久久久久精品电影小说| 18+在线观看网站| 国产 一区精品| 久久午夜福利片| 国产免费又黄又爽又色| 亚洲精品,欧美精品| 黄色毛片三级朝国网站| 午夜免费观看性视频| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 精品人妻在线不人妻| 午夜av观看不卡| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 波多野结衣一区麻豆| 久久精品国产综合久久久 | 在线观看美女被高潮喷水网站| 国产深夜福利视频在线观看| 婷婷色麻豆天堂久久| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 999精品在线视频| 久久精品人人爽人人爽视色| 久久ye,这里只有精品| 欧美日韩亚洲高清精品| 高清黄色对白视频在线免费看| 欧美性感艳星| 国产乱人偷精品视频| 国产免费一级a男人的天堂| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 免费观看av网站的网址| 国产亚洲最大av| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 黄片播放在线免费| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 国产精品久久久久成人av| 亚洲欧美成人精品一区二区| 亚洲国产av新网站| 国产精品一区www在线观看| 欧美+日韩+精品| 国产成人91sexporn| 日韩 亚洲 欧美在线| 久久精品国产亚洲av涩爱| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 欧美少妇被猛烈插入视频| 国产精品蜜桃在线观看| 边亲边吃奶的免费视频| 午夜免费鲁丝| 精品一区二区三卡| 日韩精品有码人妻一区| a级毛色黄片| 人人妻人人澡人人爽人人夜夜| 午夜激情久久久久久久| 韩国精品一区二区三区 | 欧美亚洲日本最大视频资源| 亚洲av欧美aⅴ国产| 看免费av毛片| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄| av不卡在线播放| 人人妻人人爽人人添夜夜欢视频| 2018国产大陆天天弄谢| 日日啪夜夜爽| 91国产中文字幕| 精品久久久精品久久久| kizo精华| 美女国产视频在线观看| 亚洲成人一二三区av| 永久网站在线| 热re99久久国产66热| 一区二区日韩欧美中文字幕 | 人妻系列 视频| 欧美最新免费一区二区三区| 国产成人av激情在线播放| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 2021少妇久久久久久久久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 欧美精品一区二区大全| 热re99久久国产66热| 久久毛片免费看一区二区三区| 亚洲欧美成人综合另类久久久| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 多毛熟女@视频| av线在线观看网站| 国产极品天堂在线| 大香蕉97超碰在线| 精品酒店卫生间| 激情五月婷婷亚洲| av黄色大香蕉| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 一级毛片黄色毛片免费观看视频| 免费观看性生交大片5| 男人添女人高潮全过程视频| 精品人妻偷拍中文字幕| 国产精品三级大全| 王馨瑶露胸无遮挡在线观看| 秋霞在线观看毛片| 又黄又爽又刺激的免费视频.| 国产av精品麻豆| 免费观看a级毛片全部| 一级a做视频免费观看| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆| 九九在线视频观看精品| 桃花免费在线播放| 日本欧美国产在线视频| 日本欧美视频一区| 男的添女的下面高潮视频| 午夜久久久在线观看| 97精品久久久久久久久久精品| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 欧美精品av麻豆av| 青春草国产在线视频| 国产伦理片在线播放av一区| 一区在线观看完整版| 欧美日韩国产mv在线观看视频| 国产亚洲av片在线观看秒播厂| 国产精品无大码| 曰老女人黄片| 狠狠婷婷综合久久久久久88av| 看免费av毛片| 久久久久久久久久成人| 久久ye,这里只有精品| 在线观看一区二区三区激情| 国产欧美日韩综合在线一区二区| 美女视频免费永久观看网站| 在线观看免费日韩欧美大片| 久久久久国产精品人妻一区二区| 在线天堂最新版资源| 少妇人妻 视频| 丝袜脚勾引网站| 最近中文字幕2019免费版| 男女午夜视频在线观看 | 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 青春草国产在线视频| 国产女主播在线喷水免费视频网站| 99久久综合免费| 国产伦理片在线播放av一区| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 日韩中字成人| 婷婷色av中文字幕| 欧美精品一区二区免费开放| 亚洲欧美中文字幕日韩二区| 最近最新中文字幕大全免费视频 | 日韩av在线免费看完整版不卡| 高清欧美精品videossex| 国产一区二区激情短视频 | 蜜桃国产av成人99| 两性夫妻黄色片 | 欧美xxⅹ黑人| 国产精品久久久久成人av| 国产成人精品在线电影| 精品少妇内射三级| 成人亚洲精品一区在线观看| 亚洲精品av麻豆狂野| a级片在线免费高清观看视频| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 国产精品秋霞免费鲁丝片| 婷婷成人精品国产| 男人操女人黄网站| 妹子高潮喷水视频| 黄片无遮挡物在线观看| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品电影小说| 国产精品久久久久久久电影| 亚洲精品av麻豆狂野| 高清视频免费观看一区二区| 黄片播放在线免费| 91精品三级在线观看| 亚洲欧洲精品一区二区精品久久久 | 91久久精品国产一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲美女视频黄频| 内地一区二区视频在线| 少妇人妻 视频| 国产精品蜜桃在线观看| 观看av在线不卡| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 欧美精品亚洲一区二区| 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| 最近中文字幕2019免费版| 热re99久久国产66热| 国产一区二区激情短视频 | 成年av动漫网址| 婷婷色综合大香蕉| 纯流量卡能插随身wifi吗| 黄片无遮挡物在线观看| 999精品在线视频| av播播在线观看一区| 秋霞在线观看毛片| 91国产中文字幕| 黄网站色视频无遮挡免费观看| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 中文天堂在线官网| 一二三四在线观看免费中文在 | 咕卡用的链子| 中文字幕人妻丝袜制服| 免费日韩欧美在线观看| 永久免费av网站大全| 在现免费观看毛片| 男的添女的下面高潮视频| 亚洲国产色片| 交换朋友夫妻互换小说| 在线免费观看不下载黄p国产| 中文天堂在线官网| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| av女优亚洲男人天堂| 国产福利在线免费观看视频| 九色亚洲精品在线播放| 欧美亚洲 丝袜 人妻 在线| 麻豆乱淫一区二区| 欧美日韩视频精品一区| 香蕉精品网在线| 国产精品一国产av| 如何舔出高潮| 日韩精品有码人妻一区| 亚洲少妇的诱惑av| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区 | 久久精品国产a三级三级三级| 搡女人真爽免费视频火全软件| 男人舔女人的私密视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩制服丝袜自拍偷拍| 我的女老师完整版在线观看| 日本欧美视频一区| 免费av中文字幕在线| 考比视频在线观看| 久久热在线av| www.av在线官网国产| 高清不卡的av网站| 免费av不卡在线播放| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 曰老女人黄片| 精品亚洲成a人片在线观看| 波多野结衣一区麻豆| 老司机亚洲免费影院| 久久精品人人爽人人爽视色| 一级毛片电影观看| 十八禁高潮呻吟视频| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 国产不卡av网站在线观看| 中文精品一卡2卡3卡4更新| 内地一区二区视频在线| 超色免费av| 久久久久精品性色| 全区人妻精品视频| 久久国产亚洲av麻豆专区| 成人综合一区亚洲| 国产永久视频网站| 少妇猛男粗大的猛烈进出视频| 乱码一卡2卡4卡精品| 久久久久久久久久久久大奶| 最近中文字幕高清免费大全6| 九草在线视频观看| av电影中文网址| 久久人妻熟女aⅴ| 精品一区二区三区视频在线| 超色免费av| 国产精品久久久久久久久免| 免费在线观看黄色视频的| 99久久人妻综合| 色吧在线观看| 久久这里有精品视频免费| av天堂久久9| 在线精品无人区一区二区三| 美女内射精品一级片tv| 中文字幕另类日韩欧美亚洲嫩草| 亚洲,一卡二卡三卡| 欧美激情 高清一区二区三区| av免费在线看不卡| a 毛片基地| 欧美激情 高清一区二区三区| 日韩av在线免费看完整版不卡| 国产av国产精品国产| 日日啪夜夜爽| 国产黄频视频在线观看| 2021少妇久久久久久久久久久| www.av在线官网国产| 中文字幕最新亚洲高清| 国产淫语在线视频| 七月丁香在线播放| 三上悠亚av全集在线观看| 久久99精品国语久久久| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 国产片内射在线| 久久精品熟女亚洲av麻豆精品| 男女无遮挡免费网站观看| www.色视频.com| 中文字幕制服av| 国产黄色免费在线视频| 国产黄色视频一区二区在线观看| 一区二区三区精品91| 三上悠亚av全集在线观看| 十分钟在线观看高清视频www| 精品国产一区二区三区四区第35| 欧美精品av麻豆av| 伦理电影大哥的女人| 亚洲av欧美aⅴ国产| 亚洲精品第二区| 亚洲av中文av极速乱| 国产一级毛片在线| 国产成人免费观看mmmm| 久久精品aⅴ一区二区三区四区 | 搡老乐熟女国产| 久久鲁丝午夜福利片| 咕卡用的链子| 99视频精品全部免费 在线| 国产1区2区3区精品| 日本黄色日本黄色录像| 高清av免费在线| av线在线观看网站| 最新中文字幕久久久久| 久久人人爽人人片av| 国产熟女欧美一区二区| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| 日韩不卡一区二区三区视频在线| 99热全是精品| 在线看a的网站| 2021少妇久久久久久久久久久| 人体艺术视频欧美日本| 少妇猛男粗大的猛烈进出视频| www.av在线官网国产| 久久青草综合色| 精品少妇黑人巨大在线播放| 精品第一国产精品| 国产精品国产av在线观看| 亚洲欧洲日产国产| 久久精品熟女亚洲av麻豆精品| 精品午夜福利在线看| 在线观看一区二区三区激情| 爱豆传媒免费全集在线观看| 国产乱人偷精品视频| 精品久久久久久电影网| 国产在线一区二区三区精| 亚洲国产av新网站| av在线app专区| 亚洲av男天堂| 午夜视频国产福利| 欧美精品av麻豆av| 免费看不卡的av| 久久久久人妻精品一区果冻| 少妇精品久久久久久久| 亚洲欧洲国产日韩| 女人被躁到高潮嗷嗷叫费观| 黄片无遮挡物在线观看| 丝袜在线中文字幕| 久久久久精品久久久久真实原创| 国产深夜福利视频在线观看| 美女国产视频在线观看| 丝袜喷水一区| xxx大片免费视频| 国产日韩欧美在线精品| 成人黄色视频免费在线看| 久久久精品区二区三区| av免费观看日本| 久久精品国产亚洲av天美| 免费在线观看黄色视频的| 美女视频免费永久观看网站| 久久免费观看电影| 国产 精品1| 精品福利永久在线观看| av女优亚洲男人天堂| 精品国产露脸久久av麻豆| av卡一久久| 看十八女毛片水多多多| 91精品伊人久久大香线蕉| 亚洲经典国产精华液单| 9191精品国产免费久久| 最近中文字幕2019免费版| 99久久精品国产国产毛片| 成人毛片60女人毛片免费| 97人妻天天添夜夜摸| freevideosex欧美| 国产精品一二三区在线看| 亚洲色图 男人天堂 中文字幕 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| www.色视频.com| 国产高清三级在线| 国产亚洲欧美精品永久| 亚洲精品久久成人aⅴ小说| av一本久久久久| 日韩在线高清观看一区二区三区| 黄片播放在线免费| 欧美激情极品国产一区二区三区 | 久久精品人人爽人人爽视色| 最后的刺客免费高清国语| 超色免费av| 久久久a久久爽久久v久久| 国产成人av激情在线播放| 制服丝袜香蕉在线| 中文字幕制服av| 欧美国产精品一级二级三级| 夫妻性生交免费视频一级片| 99热这里只有是精品在线观看| 成人国语在线视频| 不卡视频在线观看欧美| 9热在线视频观看99| 免费播放大片免费观看视频在线观看| av视频免费观看在线观看| 王馨瑶露胸无遮挡在线观看| 一区二区三区精品91| 在线观看一区二区三区激情| 国产av国产精品国产| 天天躁夜夜躁狠狠久久av| 日韩制服丝袜自拍偷拍| 亚洲av电影在线观看一区二区三区| 日本免费在线观看一区| 如何舔出高潮| 久久久精品94久久精品| 九九在线视频观看精品| 欧美亚洲日本最大视频资源| 午夜久久久在线观看| 久久国产精品大桥未久av| 久久精品久久久久久久性| 欧美精品国产亚洲| 女人久久www免费人成看片| 秋霞在线观看毛片| 国产欧美另类精品又又久久亚洲欧美| 看免费成人av毛片| 熟女人妻精品中文字幕| 桃花免费在线播放| 欧美日本中文国产一区发布| 一二三四在线观看免费中文在 | 久久久久久久国产电影| 国产亚洲最大av| 精品熟女少妇av免费看| 午夜精品国产一区二区电影| 精品一区在线观看国产| 精品熟女少妇av免费看| 18禁观看日本| 青春草亚洲视频在线观看| 在线看a的网站| 久久精品国产a三级三级三级| 9色porny在线观看| 交换朋友夫妻互换小说| 极品少妇高潮喷水抽搐| 最近中文字幕高清免费大全6| 日韩一本色道免费dvd| 午夜福利视频在线观看免费| 国精品久久久久久国模美| 婷婷色麻豆天堂久久| 国产成人精品一,二区| 美女福利国产在线| 大香蕉久久成人网| 成年动漫av网址| av电影中文网址| 日韩中字成人| 18禁国产床啪视频网站| 色婷婷久久久亚洲欧美| 精品久久久久久电影网| 国产探花极品一区二区| 免费黄色在线免费观看| 五月伊人婷婷丁香| 亚洲国产毛片av蜜桃av| 欧美日韩精品成人综合77777|