• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    UvSMEK1, a Suppressor of MEK Null, Regulates Pathogenicity, Conidiation and Conidial Germination in Rice False Smut Fungus Ustilaginoidea virens

    2021-08-31 02:17:02YuJunjieYuMinaSongTianqiaoCaoHuijuanYongMingliPanXiayanQiZhongqiangDuYanZhangRongshengYinXiaoleLiangDongLiuYongfeng
    Rice Science 2021年5期

    Yu Junjie, Yu Mina, Song Tianqiao, Cao Huijuan, Yong Mingli, Pan Xiayan, Qi Zhongqiang,Du Yan, Zhang Rongsheng, Yin Xiaole, Liang Dong, Liu Yongfeng, 2

    Research Paper

    UvSMEK1, a Suppressor of MEK Null, Regulates Pathogenicity, Conidiation and Conidial Germination in Rice False Smut Fungus

    Yu Junjie1, Yu Mina1, Song Tianqiao1, Cao Huijuan1, Yong Mingli1, Pan Xiayan1, Qi Zhongqiang1,Du Yan1, Zhang Rongsheng1, Yin Xiaole1, Liang Dong1, Liu Yongfeng1, 2

    (Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

    Rice false smut, which is caused by, is an emerging disease of rice spikelets in rice-growing areas worldwide. However, the infection mechanism ofon rice spikelets is still unclear. Here, we characterized a suppressor of mitogen-activated protein kinase kinase or ERK kinase (MEK) null () inthat is conserved among filamentous fungi. Compared with wild typestrain P-1,deletion mutants were defective in pathogenicity and conidial germination. In addition, conidiation of UvSMEK1 deletion mutants was significantly reduced on yeast extract tryptone (YT) plates, but increased in YT broth compared with the wild type. Compared withexpression level during the vegetative mycelia and conidiation stages,dramatically increased during infection of rice florets. Surprisingly, thedeletion mutants exhibited higher tolerance to H2O2and NaCl. In summary, presented evidence suggested that UvSMEK1 positively regulated pathogenicity, conidial germination and conidiation in YT broth, and negatively regulated conidiation on YT medium and tolerance to oxidative and osmotic stresses. The results enhance our understanding of the regulatory mechanism of pathogenicity of, and present a potential molecular target for blocking rice infection by.

    suppressor; MEK null;; pathogenicity; conidial germination; conidiation

    Rice false smut (RFS) has become a devasting disease in China in the recent decades due to the large-scale cultivation of high-yielding cultivars and the use of chemical fertilizers (Sun et al, 2013; Tang et al, 2013; Yu et al, 2019). The causal agentinfects stamen filaments of rice at the booting stage and transforms kernels into smut balls by utilizing rice nutrients (Tang et al, 2013; Zhang et al, 2014).usually infects spikelets by colonizing the filaments of rice florets, preventing pollen from maturing and then hijacking rice nutrients (Fan et al, 2015, 2020; Yong et al, 2016; Qiu et al, 2019). Moreover, RFS produces ustiloxins and ustilaginoidins that inhibit cell division and represent a threat to human and animal health (Koiso et al, 1994; Li et al, 1995; Meng et al, 2015).

    Owing to the genome sequencing and establishing of gene deletion methods in, a number of genes important for pathogenicity inhave been studied (Lü et al, 2016; Zheng et al, 2016; Liang et al, 2018). For example, the effectors SCRE1 and SCRE2 (Fang et al, 2019; Zhang et al, 2020) protein kinases UvPmk1 and UvCDC2 (Tang et al, 2020), transcription factors UvCom1, UvHOX2 and UvPRO1 (Lü et al, 2016; Yu et al, 2019; Chen et al, 2020), apoptotic regulator UvBI-1 (Xie et al, 2019), adenylate cyclase UvAc1 (Guo et al, 2019), phosphodiesterase UvPdeH (Guo et al, 2019), low-affinity iron transport protein Uvt3277 (Zheng et al, 2017), MAP kinase (MAPK) cascade component UvHOG1 (Zheng et al, 2016), and SUN family protein UvSUN2 (Yu M N et al, 2015) were characterized in recent years.

    Suppressor of MEK (SMEK) is considered to be a regulatory subunit of protein phosphatase 4 (Yoon et al, 2010). SMEK usually functions as a global regulator by interacting with various intracellular proteins (Kim et al, 2015). In human cells, this regulator protein contributes to the regulation of cell proliferation, cell differentiation, cell cycle, hepatic gluconeogenesis, apoptosis and microtubule organization(Mendoza et al, 2007; Byun et al, 2012; Lyu et al, 2013; Kim et al, 2015, 2017). In invertebrates and protozoa, SMEK was reported to be a regulator of cell development, chemotaxis and longevity (Wolff et al, 2006; Mendoza et al, 2007). In yeast, the ortholog of SMEK1 known as Psy2 interacts with protein phosphatase4-homologous PPH3, and participates in the regulation of cell cycle, DNA repair, drug sensitivity and glucose transport (Gingras et al, 2005; Ma et al, 2014; Omidi et al, 2014; Hustedt et al, 2015).

    In the present study, we identified a gene encoding suppressor of MEK null (), the homolog of SMEK1 in mammals and Psy2 in yeast, which was disrupted inmutant A-204. Deletion ofcaused the loss of pathogenicity, abnormal conidiation and disordered conidial germination. The mRNA ofwasspecifically higher during infection, but lower during conidiation. Generally, all evidences indicated that UvSMEK1 was a key regulatorof pathogenicity, conidiation and conidial germination.

    RESULTS

    Characterization of genes disrupted in mutant A-204

    In the preliminary study, we identified a T-DNA insertional mutant A-204 of, which was failed to form smut balls on the inoculated spikelets (Fig. 1-A). To identify the mutated gene in A-204, we performed Southern blotting to determine the copy number of T-DNA inserted into the genome of A-204, and a 1.4-kb hygromycin-resistant cassette was employed as a probe in Southern blotting. The result showed that only one copy of T-DNA was detected in mutant A-204 (Fig. 1-B).

    Fig. 1. Identification of mutated gene inT-DNA insertion mutant A-204.

    A, Rice false smuts on rice spikelets inoculated with wild-type strain 70-22 and T-DNA insertion mutant A-204.

    B, Detection of copy number of T-DNA inserted in the genome of A-204 by Southern blotting.

    C, Detection ofexpression via reversed-transcription PCR, andwas employed as a reference gene.

    D, Inserted site of T-DNA in the coding region ofinmutant A-204.

    E, Conserved SMK-1 domain in UvSMEK1.

    F,Phylogenetic analysis of SMEK-1 homologs to UvSMEK-1 in fungi.

    The T-DNA flanking regions were amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The results showed that T-DNA was inserted into the 5′-coding region of suppressor of MEK1 ortholog (designated as) in the mutant A-204 (Fig. 1-C and -D). Because the 5′-terminal ofcoding region in the reference sequence (GenBank accession number: KDB15555.1) is not complete, we amplified the 5′-terminal ofusing a5′-RACE system, and the sequence ofwas deposited (GenBank accession number: MT884407). We found the amino acid sequence of UvSMEK1 is conserved among filamentous fungi, such as,,,and,and budding yeast. UvSMEK1 is most homologous to cereal pathogenic fungus(Fig. 1-E and -F).

    Generation of UvSMEK1 deletion mutants and their complementation

    To generatedeletion mutants, the-mediated transformation (ATMT) method was used to transfer the gene replacement cassette into thewild type strain P-1. Two hundred and forty transformants resistant to hygromycin B were picked from the selective medium after culturing at 28oC in darkness for about 7–10 d. Seven of these transformants were confirmed asdeletion mutants (Fig. 2). Among them, the putativedeletion mutants,andwere further confirmed by RT-PCR and DNA sequencing (Fig. S1).

    To generatecomplement mutants, the cassettecontaining completegene was transformed intodeletion mutant. Fifty- seven transformants were screened on the 2% TB3 medium with geneticin 418, and transformants,andwere selected and confirmed with PCR, RT-PCR and DNA sequencing (Fig. 2-B, -C and Fig. S1).

    UvSMEK1 was essential for pathogenicity and regulates conidiation and conidia germination

    deletion mutants,and, and wild type strain P-1 were then used to inoculate rice spikelets at the booting stage. The RFS disease incidence was detected 30 d after inoculation. None of spikelets was infected bydeletion mutants (Fig. 3-A). In contrast, the number of smut balls on spikelets inoculated with the wild type strain P-1 was 13.7 ± 2.7 (Fig. 3-A and Table 1). The complement mutants partially recovered their pathogenicity, with the numbersof smut balls on spikelets inoculated with,andbeing 3.7 ± 2.2, 3.2 ± 1.2 and 4.1 ± 1.9, respectively (Fig. 3-B and Table 1). The expression levels ofat the stages of mycelia growth, conidiation on YT medium, conidiation in YT broth (that also used for aritificial inoculaiton on rice panicle), and 12 h post inoculation (hpi) to 7 d post inoculation (dpi) were determined by qPCR. The results showed that the expression levels ofduring conidiation on YT medium and vegetative growth were not significantly different with those in YT broth; however, the expression levels ofwere significantly higher at 3–7 dpi (Fig. 3-C). This meant the expression ofwas induced by the infection of rice florets. All these findings showed that UvSMEK1 was a critical regulatory element for pathogenicity.

    Fig. 2. Deletion ofgene in.

    A, Illustration of targeted deletion ofby-mediated transformation (ATMT) and homologous replacement. P11 to P18 represent the primers. UF, Upstream flank of;HYG, Hygromycin resistant gene; DF, Downstream flank of.

    B, Illustration of complementation cassette ofgene by ATMT transformation.

    C, Reversed-transcription PCR analysis ofdeletion mutants andcomplement mutants. The wild type strain P-1 and transformant Trans-9 with ectopically inserted UF-HYG+-RF cassette were included as controls. M, Marker; a, P-1; b, Trans-9; c,; d,; e,; f,; g,; h,.

    Fig. 3. Characterization ofdeletion and complement mutants in.

    A, Rice false smut balls on rice spikelets inoculated with wild type strain P-1,deletion mutantand complement mutant.

    B, Colonies of P-1,andon potato sucrose agar at 28 oC after 12 d.

    C, Expression pattern ofwas determined by quantitative PCR. House-keeping genewas employed as a reference gene. Data are Mean ± SD (= 3). **, Significant difference at the 0.01 level (-test).M, Mycelia; CG, Conidial germination; CS(YTM), Conidial sporulation on yeast extract tryptone (YT) media; CS(YTB), Conidial sporulation in YT broth; hpi, Hours post inoculation; dpi, Days post inoculation.

    The percentage of germinated conidia of wild type strain P-1 anddeletion mutants on YT medium was similar (Table 1). However, the conidial size ofdeletion mutants was abnormally larger than that of wild type strain P-1 before germ tube emergence, and also the germ tube ofdeletion mutants was thicker than that of wild type strain andcomplement mutants (Table S1).

    We also tested the capacity of conidiation in YT broth and on YT medium. The concentration of conidia produced bydeletion mutants in YT broth was much higher than that of wild type strain P-1 andcomplement mutants (Fig. 4-A and Table S2). In YT broth, the conidia productions ofdeletion mutants and wild type strain P-1 were similar in the period 2–4 dpi, however, conidia production bydeletion mutants was dramatically increased during 5–7 dpi compared to wild type strain P-1. The results were surprisingly different whendeletion mutants and wild type strain P-1 were tested on YT medium. When the conidia were cultured on YT medium, thedeletion mutants lost the capacity of micro-cycle conidiation and produced fewer conidia in the first 3 d (Table 1 and Fig. 4-C). These results hinted at UvSMEK1 functioning as an essential regulator of pathogenicity, conidial germination and conidiation in.

    Table 1. Pathogenicity, conidiation and conidial germination in UvSMEK1 deletion and complement mutants.

    Fresh mycelia ofstrain/mutants were cultured on potato sucrose agar (PSA) at 28oC for 12 d.The number of rice false smut balls on the inoculated spikelets.Concentration of conidia in yeast extract tryptone (YT) broth was measured after shaking at 130 r/min, 28oC for 7 d.The conidia were cultured on YT media at 28oC for 2 d before observation.

    Data are shown as Mean ± SD (= 4). Different letters mark statistically significant differences using the Fisher’s protected least significant difference test (Uppercase letters for< 0.01 and lowercase letters for< 0.05).

    Fig. 4. Conidiation, conidial germination and hyphal branching ofdeletion mutant and complement mutant.

    A, Log10concentration of conidia produced in yeast extract tryptone (YT) broth in 7 d.

    B, Conidia, germination of conidia and conidiation on YT medium ofdeletion mutantand complement mutantafter 3-day culture.

    UvSMEK1 deletion mutants exhibited higher tolerance to oxidative, osmotic and cell wall stresses

    When cultured on YT medium amended with 0.4 mol/L NaCl, 0.07% H2O2and 0.03% sodium dodecyl sulfate (SDS), the colony diameter of thedeletion mutants was significantly larger than that of the wild type strain P-1 andcomplementary mutants. Moreover, the aerial mycelia ofdeletion mutants that grew on 0.03% SDS were thicker than that of the wild type strain P-1 andcomplement mutants. However, when cultured on YT amended with 100 mg/L Congo red, the colony diameter ofwas similar to that of wild type strain P-1 (Fig. 5 and Table 2). These findings showed that thedeletion mutants were less sensitive to oxidative, osmotic and cell wall stresses than the wild type strain P-1, suggesting UvSMEK1 is also involved in responses to oxidative, osmotic and cell wall stresses.

    Fig. 5. Growth ofdeletion and complement mutants in presence of different biotic stresses.

    Wild type strain P-1,deletion mutantandcomplement mutantwere cultured on plain yeast extract tryptone (YT) medium or amended with 0.4 mol/L NaCl, 0.07% H2O2, 0.03% sodium dodecyl sulfate (SDS) and 100 mg/L Congo red at 28oC for 15 d.

    DISCUSSION

    The ATMT method was used to generate T-DNA insertion mutants. To date, UvSUN2, Uvt3277 and UvPRO1 have been disrupted using insertional mutation (Yu M N et al, 2015; Lü et al, 2016; Zheng et al, 2017). Recently, the CRISPR-Cas9 system was used to significantly increase the efficiency of gene replacement by homologous recombination in(Liang et al, 2018; Xu et al, 2019). Considering some genes were still hard to be deleted by CRISPR- Cas9 (personal communication), the ATMT method is still an alternative useful tool for gene deletion and complementation.

    Table 2. Responses of mycelial growth of UvSMEK1 deletion and complement mutants to abiotic stress. mm

    Fresh mycelia ofstrain/mutants were cultured on media at 28oC for 15 d.

    YT, Yeast extract tryptone; SDS, Sodium dodecyl sulfate.

    Data are shown as Mean ± SD (= 4). Different letters mark statistically significant differences using the Fisher’s protected least significant difference test (Uppercase letters for< 0.01 and lowercase letters for< 0.05).

    Although a few of the genes contributing to pathogenicity have been characterized in rice false smut fungus, regulatory mechanism of pathogenicity needs to be elucidated further. In this study, we characterized the function of UvSMEK1 in. This protein harbors a SMK-1 superfamily domain at the N-terminus. UvSMEK1 is conserved among filamentous fungi and budding yeastHowever, the regulatory function of SMEK1 and its orthologs has not been reported in plant pathogenic fungi.

    Sclerotia and chlamydospores ofcan over- winter in paddy fields and serve as the primary infection sources of rice false smut disease (Yu J J et al, 2015; Fan et al, 2016). Both ascospores and chlamydospores germinate to produce huge numbers of secondary conidia, which are considered to be inocula of this disease. Many lines of evidence showed thatmay grow epiphytically on rice leaves and other weed plants, and infect rice spikelets by hyphae or producing conidia at the rice booting stage. In most of the previous studies, the reduced virulence in severalmutants also came with the defects in hyphal growth and conidia production (Xie et al, 2019; Yu et al, 2019; Tang et al, 2020). In the present study, thedeletion mutants exhibited similar hyphal growth but higher production of conidia in YT broth compared to the wild type strain, however, these mutants completely lost their pathogenicity. This suggested that the mechanism of UvSMEK1 regulating pathogenicity inhad a different basis.

    In slime mold, SMEK is essential for cell polarity and chemotaxis (Mendoza et al, 2005). The invasive hyphae ofextend along the cell gaps in the floral filaments without penetration, but the infection byblocks the development of ovary and hijacks the rice nutrient supply to the host cell walls (Takano et al, 2006; Tang et al, 2013; Fan et al, 2015). Cell polarity and chemotaxis seem to be very important for the invasion of rice florets by. In filamentous fungi, the switch between isotropic expansion and polar growth is very important for conidial germination and hyphal growth (Knechtle et al, 2003; Guest et al, 2004). The conidia ofdeletion mutants seemed to stay longer in the isotropic expansion before switching to polar growth compared to wild type strain. This finding suggested that UvSMEK1 is a key regulator of switchingbetween isotropic expansion and polar growth. In addition,deletion mutants showed higher tolerance to oxidative, osmotic and cell wall stresses compared with the wild type strain. These clues hint at a defect in polar growth regulation and chemotaxis potentially causing the loss of pathogenicity in.

    The abnormal conidiation indeletion mutants suggestedregulates conidiation in. Interestingly,deletion mutants exhibited an increase capacity of conidiation in YT broth, but a reduced capacity of conidiation on YT medium. This phenomenon provided a clue that the regulatory mechanism ofconidiation in liquid vs. solid media is different to some extent, and UvSMEK1 may be at the intersection between two kinds of regulatory networks. Therefore, UvSMEK1 is a critical regulatory element for early-stage rice floret infection and conidiation, making UvSMEK1 a potentialmolecular target for blocking the infection by.

    In mammalian cells, suppressor of MEK (SMEK1) is a core regulatory subunit of protein phosphatase 4 (PP4) complex (Yoon et al, 2010). In budding fungus, Psy2 (the orthologue of SMEK1) interacts with protein phosphatase 2A-like protein Pph3 in order to function in regulation (Gingras et al, 2005; Sun et al, 2011). However, little is known about its function in filamentous plant pathogenic fungi. In,protein phosphatase 2A (PP2A) and PP2A-like proteins UvPP2A, UvSIT4 and UvPPG1 were found (data not shown), but the homolog of Pph3 was not detected. Similar situation was reported in another cereal pathogenic fungus(Liu et al, 2018). The mechanism by which UvSMEK1 modulates infection byand other plant pathogenic fungi warrants further studies.

    METHODS

    Strains, rice variety, plasmids and nucleotide manipulation

    A virulent wild typestrain P-1 was used as the starting strain. To test the virulence ofstrains and mutants, a susceptible rice variety Liangyoupeijiu was used in the inoculation experiments. The plasmid pCAMBIA1300 was used for the gene deletion in,and pCAM-NEO constructed in the preliminary study was employed for gene complementation (Table S3).strain AGL-1 was used in the-mediated transformation (ATMT). Southern blotting and TAIL-PCR were performed as described previously (Yu M N et al, 2015).

    Phenotypic analysis of U. virens strains and mutants

    Thestrain P-1 was routinely cultured on a PSA at 28 oC for 10–15 d (Zheng et al, 2017). The transformants of P-1 were cultured on 2% TB3 (3 g yeast extract, 3 g casamino acids and 2% sucrose) amended with 100 mg/L hygromycin and/or 600 mg/L geneticin 418 (Yu et al, 2015). To determine the pathogenicity ofstrains and mutants, 15 panicles were inoculated by each strain, and the number of false smut balls was counted at 30 d after inoculation. The mixture of conidia and hyphae for inoculation was prepared as described in the previous study (Zheng et al, 2017). We used YT medium and broth to test mycelial growth rate and conidiation capacity of, respectively (Zheng et al, 2016). To test sensitivity of strains to abiotic stress, YT media was amended with 0.05% H2O2(oxidative stress), 0.4 mol/L NaCl (osmotic stress), 0.03% SDS (cell wall stress) and 100 mg/L Congo red (cell wall stress), respectively. The cultures were incubated at 28 oC for 15 d in darkness, and then the colony diameter was measured, and the morphology of the colonies was characterized. The conidiation capacity of the strains was determined using YT broth as described previously (Yu et al, 2019). Four duplicates were performed for each treatment.

    Generation of UvSMEK1 deletion mutants

    We constructed a gene replacement cassette [upstream flank (UF)-hygromycin resistant gene (HYG)-downstream flank (DF)] ofusing the double-jointed PCR method (Tuorto et al, 2015). This cassette was subcloned into the klenow fragment ofX I-I digested pCAMBIA1300 using a ClonExpress Ultra One Step Cloning Kit (Vazyme, China)to generate gene deletion vector pD-UvSMEK (Tables S3 and S4). The binary vector pD-UvSMEK andstrain AGL-1 were employed in the ATMT transformation ofstrain P-1. The transformants were selected on 2% TB3 amended with 100 mg/L hygromycin (Yu M N et al, 2015). Thedeletion mutants were screened out by detection ofopen reading fragment region and further confirmed by DNA sequencing.

    Generation of UvSMEK1 complement mutants

    We amplified the complete cassette ofcontaining its promoter, coding region and terminator from genome DNA of wild type strain P-1, and inserted thecassette into the klenow fragment ofR I-I digested pCAM-NEO to generate gene complement vector pC-UvSMEK using a ClonExpress Ultra One Step Cloning Kit (Vazyme, China) (Table S3). The binary vector pC-UvSMEK andstrain AGL-1 were employed in the ATMT transformation ofmutant. The transformants were selected on 2% TB3 amended with 600 mg/L geneticin 418. Thedeletion mutants were screened out by detection ofopen reading fragment region and further confirmed by DNA sequencing.

    RT-PCR and qPCR assays

    Vegetative mycelia were collected from 2-day-old cultures on YT medium. To stimulate conidiation in, mycelia were cultured in YT broth by shaking (28 oC, 150 r/min) for 3 d. To collect mycelia during infection, the mixture of fresh mycelia and conidia were inoculated into the panicles at the booting stage. The inoculated spikelets were collected at 12 h, 1 d, 2 d, 3 d, 4 d, 5 d, 6 d and 7 d after inoculation. A PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Japan) and SYBRR Premix ExII (Takara, Japan) used to synthesize cDNA and quantitative RT-PCR. Because we prepared the mixture of conidia and mycelia (artificial inocula) fromsamples during conidiation in YT broth, the relative expression level ofat different periods was calculated by the 2-ΔΔCtmethod compared to that of samples during conidiation in YT broth. The(NCBI accession number: KDB17573.1) gene was employed as the reference. Three biological replicates were performed to calculate the mean and the standard deviation. The data obtained from this quantitative PCR assay were subjected to atest wherevalues below 0.05 were considered to be significant. To detect the expression ofin, reverse- transcription PCR was also performed (Table S4).

    ACKNOWLEDGEMENTS

    This study was supported by the National Key Research and Development Project in China (Grant No. 2016YFD200805), and National Natural Science Foundation of China (Grant Nos. 31301624 and 31571961).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    Fig. S1. Detection ofexpression via reversed- transcription PCR.

    Table S1. Size and length-width ratio ofdeletion/ complementmutants in yeast extract tryptone broth.

    Table S2. Concentration of conidia produced bydeletion/complementmutants in yeast extract tryptone broth.

    Table S3. Strains and vectors used in this study.

    Table S4. Primers used in this study.

    Byun H J, Kim B R, Yoo R, Park S Y, Rho S B. 2012. sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR.s, 17(10): 1095?1103.

    Chen X Y, Hai D, Tang J T, Liu H, Huang J B, Luo C X, Hsiang T, Zheng L. 2020. UvCom1 is an important regulator required for development and infection in the rice false smut fungus., 110(2): 483?493.

    Fan J, Guo X Y, Li L, Huang F, Sun W X, Li Y, Huang Y Y, Xu Y J, Shi J, Lei Y, Zheng A P, Wang W M. 2015. Infection ofintercepts rice seed formation but activates grain-filling-related genes., 57(6): 577?590.

    Fan J, Yang J, Wang Y Q, Li G B, Li Y, Huang F, Wang W M. 2016. Current understanding on, a unique flower- infecting fungus causing rice false smut disease., 17(9): 1321?1330.

    Fan J, Liu J, Gong Z Y, Xu P Z, Hu X H, Wu J L, Li G B, Yang J, Wang Y Q, Zhou Y F, Li S C, Wang L, Chen X Q, He M, Zhao J Q, Li Y, Huang Y Y, Hu D W, Wu X J, Li P, Wang W M. 2020. The false smut pathogenrequires rice stamens for false smut ball formation., 22(2): 646?659.

    Fang A F, Gao H, Zhang N, Zheng X H, Qiu S S, Li Y J, Zhou S, Cui F H, Sun W X. 2019. A novel effector genecontributes to full virulence ofto rice., 10: 845.

    Gingras A C, Caballero M, Zarske M, Sanchez A, Hazbun T R, Fields S, Sonenberg N, Hafen E, Raught B, Aebersold R. 2005. A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity., 4(11): 1725?1740.

    Guest G M, Lin X R, Momany M. 2004.RhoA is involved in polar growth, branching, and cell wall synthesis., 41(1): 13?22.

    Guo W W, Gao Y X, Yu Z M, Xiao Y H, Zhang Z G, Zhang H F. 2019. The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus., 129: 65?73.

    Hustedt N, Seeber A, Sack R, Tsai-Pflugfelder M, Bhullar B, Vlaming H, van Leeuwen F, Guénolé A, van Attikum H, Srivas R, Ideker R, Shimada K, Gasser S M. 2015. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling., 57(2): 273?289.

    Kim B R, Seo S H, Park M S, Lee S H, Kwon Y, Rho S B. 2015. sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1 alpha signaling pathways., 6(31): 31830?31843.

    Kim B R, Kwon Y, Rho S B. 2017. BMI-1 interacts with sMEK1 and inactivates sMEK1-induced apoptotic cell death., 37(1): 579?586.

    Knechtle P, Dietrich F, Philippsen P. 2003. Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus., 14(10): 4140?4154.

    Koiso Y, Li Y, Iwasaki S, Hanaka K, Kobayashi T, Sonoda R, Fujita Y, Yaegashi H, Sato Z. 1994. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by., 47(7): 765?773.

    Li Y, Koiso Y, Kobayashi H, Hashimoto Y, Iwasaki S. 1995. Ustiloxins, new antimitotic cyclic peptides: Interaction with porcine brain tubulin., 49(10): 1367?1372.

    Liang Y F, Han Y, Wang C F, Jiang C, Xu J R. 2018. Targeted deletion of theandgenes efficiently inwith the CRISPR-Cas9 system., 9: 699.

    Liu Z Y, Liu N, Jiang H X, Yan L Y, Ma Z H, Yin Y N. 2018. The activators of type 2A phosphatases (PP2A) regulate multiple cellular processes via PP2A-dependent and -independent mechanisms in., 31(11): 1121?1133.

    Lü B, Zheng L, Liu H, Tang J T, Hsiang T, Huang J B. 2016. Use of random T-DNA mutagenesis in identification of gene, a regulator of conidiation, stress response, and virulence in., 7: 2086.

    Lyu J, Kim H R, Yamamoto V, Choi S H, Wei Z, Joo C K, Lu W. 2013. Protein phosphatase 4 and Smek complex negatively regulate Par3 and promote neuronal differentiation of neural stem/progenitor cells., 5(3): 593?600.

    Ma H, Han B K, Guaderrama M, Aslanian A, Yates III J R, Hunter T, Wittenberg C. 2014. Psy2 targets the PP4 family phosphatase Pph3 to dephosphorylate Mth1 and repress glucose transporter gene expression., 34(3): 452?463.

    Mendoza M C, Du F, Iranfar N, Tang N, Ma H, Loomis W F, Firtel R A. 2005. Loss of SMEK, a novel, conserved protein, suppressesnull cell polarity, chemotaxis, and gene expression defects., 25(17): 7839?7853.

    Mendoza M C, Booth E O, Shaulsky G, Firtel R A. 2007. MEK1 and protein phosphatase 4 coordinate dictyostelium development and chemotaxis., 27(10): 3817?3827.

    Meng J J, Sun W B, Mao Z L, Xu D, Wang X H, Lu S Q, Lai D W, Liu Y, Zhou L G, Zhang G Z. 2015. Main ustilaginoidins and their distribution in rice false smut balls., 7(10): 4023?4034.

    Omidi K, Hooshyar M, Jessulat M, Samanfar B, Sanders M, Burnside D, Pitre S, Schoenrock A, Xu J, Babu M, Golshani A. 2014. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast., 9(1): e87248.

    Qiu J H, Meng S, Deng Y Z, Huang S W, Kou Y J. 2019.: A fungus infects rice flower and threats world rice production., 26(4): 199?206.

    Sun L L, Li W J, Wang H T, Chen J, Deng P, Wang Y, Sang J L. 2011. Protein phosphatase Pph3 and its regulatory subunit Psy2 regulate Rad53 dephosphorylation and cell morphogenesis during recovery from DNA damage in., 10(11): 1565?1573.

    Sun X Y, Kang S, Zhang Y J, Tan X Q, Yu Y F, He H Y, Zhang X Y, Liu Y F, Wang S, Sun W X, Cai L, Li S J. 2013. Genetic diversity and population structure of rice pathogenin China., 8(9): e76879.

    Takano Y, Takayanagi N, Hori H, Ikeuchi Y, Suzuki T, Kimura A, Okuno T. 2006. A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of., 60(1): 81?92.

    Tang J T, Bai J, Chen X Y, Zheng L, Liu H, Huang J B. 2020. Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus., 66(2): 409?420.

    Tang Y X, Jin J, Hu D W, Yong M L, Xu Y, He L P. 2013. Elucidation of the infection process of(teleomorph:) in rice spikelets., 62(1): 1?8.

    Tuorto F, Herbst F, Alerasool N, Bender S, Popp O, Federico G, Reitter S, Liebers R, Stoecklin G, Gr?ne H J, Dittmar G, Glimm H, Lyko F. 2015. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis., 34(18): 2350?2362.

    Wolff S, Ma H, Burch D, Maciel G A, Hunter T, Dillin A. 2006. SMK-1, an essential regulator of DAF-16-mediated longevity., 124(5): 1039?1053.

    Xie S L, Wang Y F, Wei W, Li C Y, Liu Y, Qu J S, Meng Q H, Lin Y, Yin W X, Yang Y N, Luo C X. 2019. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus., 65(5): 1185?1197.

    Xu P, Wang H, Tu R R, Liu Q N, Wu W X, Fu X M, Cao L Y, Shen X H. 2019. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system., 33(4): 313?322. (in Chinese with English abstract)

    Yong M L, Fan L L, Li D Y, Liu Y J, Cheng F M, Xu Y, Wang Z Y, Hu D W. 2016.infects specifically rice and barley stamen filaments due to the unique host cell walls., 79(9): 838?844.

    Yoon Y S, Lee M W, Ryu D, Kim J H, Ma H, Seo W Y, Kim Y N, Kim S S, Lee C H, Hunter T, Choi C S, Montminy M R, Koo S H. 2010. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis., 107(41): 17704?17709.

    Yu J J, Sun W X, Yu M N, Yin X L, Meng X K, Zhao J, Huang L, Huang L, Liu Y F. 2015. Characterization of mating-type loci in rice false smut fungus., 362(9): fnv014.

    Yu J J, Yu M N, Song T Q, Cao H J, Pan X Y, Yong M L, Qi Z Q, Du Y, Zhang R S, Yin X L, Liu Y F. 2019. A homeobox transcription factor UvHOX2 regulates chlamydospore formation, conidiogenesis, and pathogenicity in., 10: 1071.

    Yu M N, Yu J J, Hu J K, Huang L, Wang Y H, Yin X L, Nie Y F, Meng X K, Wang W D, Liu Y F. 2015. Identification of pathogenicity-related genes in the rice pathogenthrough random insertional mutagenesis., 76: 10?19.

    Zhang N, Yang J Y, Fang A F, Wang J Y, Li D Y, Li Y J, Wang S Z, Cui F H, Yu J J, Liu Y F, Peng Y L, Sun W X. 2020. The essential effector SCRE1 insuppresses rice immunity via a small peptide region., 21(4): 445?459.

    Zhang Y, Zhang K, Fang A F, Han Y Q, Yang J, Xue M F, Bao J D, Hu D W, Zhou B, Sun X Y, Li S J, Wen M, Yao N, Ma L J, Liu Y F, Zhang M, Huang F, Luo C X, Zhou L, Li J Q, Chen Z Y, Miao J K, Wang S, Lai J S, Xu J R, Hsiang T, Peng Y L, Sun W X. 2014. Specific adaptation ofin occupying host florets revealed by comparative and functional genomics., 5: 3849.

    Zheng D W, Wang Y, Han Y, Xu J R, Wang C F. 2016.is important for hyphal growth and stress responses in the rice false smut fungus., 6: 24824.

    Zheng M T, Ding H, Huang L, Wang Y H, Yu M N, Zheng R, Yu J J, Liu Y F. 2017. Low-affinity iron transport protein Uvt3277 is important for pathogenesis in the rice false smut fungus., 63(1): 131?144.

    14 September 2020;

    12 January 2021

    Liu Yongfeng (liuyf@jaas.ac.cn)

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2021.07.006

    (Managing Editor: Wang Caihong)

    国产成年人精品一区二区| 黑人操中国人逼视频| 亚洲精品久久国产高清桃花| 久久久久久大精品| 十八禁网站免费在线| 亚洲精品国产精品久久久不卡| 十八禁网站免费在线| 国产精品爽爽va在线观看网站 | 嫩草影视91久久| 亚洲中文字幕一区二区三区有码在线看 | 久热这里只有精品99| 欧美一区二区精品小视频在线| 中文亚洲av片在线观看爽| 亚洲精品一卡2卡三卡4卡5卡| 色哟哟哟哟哟哟| 男人舔女人的私密视频| 男女午夜视频在线观看| 波多野结衣av一区二区av| 999久久久精品免费观看国产| 中文亚洲av片在线观看爽| 黄色 视频免费看| 999精品在线视频| 久久久久久人人人人人| 黑人巨大精品欧美一区二区mp4| 天天一区二区日本电影三级 | 国产精品精品国产色婷婷| 亚洲精品中文字幕一二三四区| 久久久久久大精品| 日日干狠狠操夜夜爽| 成年人黄色毛片网站| 久久香蕉激情| 首页视频小说图片口味搜索| 午夜福利成人在线免费观看| 校园春色视频在线观看| 多毛熟女@视频| 色综合欧美亚洲国产小说| 国产精品秋霞免费鲁丝片| 非洲黑人性xxxx精品又粗又长| 精品欧美国产一区二区三| www.www免费av| 禁无遮挡网站| 久久精品91无色码中文字幕| 国产亚洲精品久久久久5区| 久久人妻熟女aⅴ| 亚洲aⅴ乱码一区二区在线播放 | 亚洲自偷自拍图片 自拍| 欧美国产精品va在线观看不卡| 国产精品乱码一区二三区的特点 | 免费在线观看完整版高清| 国产xxxxx性猛交| 日韩免费av在线播放| 成人特级黄色片久久久久久久| 老汉色∧v一级毛片| 午夜福利高清视频| 久久久久亚洲av毛片大全| 午夜a级毛片| 亚洲成人国产一区在线观看| 91精品三级在线观看| 欧美日本中文国产一区发布| 国产午夜福利久久久久久| 精品人妻1区二区| 一级a爱片免费观看的视频| 啦啦啦 在线观看视频| 电影成人av| 国产欧美日韩综合在线一区二区| 伦理电影免费视频| 黄色毛片三级朝国网站| 女性被躁到高潮视频| 夜夜看夜夜爽夜夜摸| 国产三级在线视频| 久久狼人影院| 亚洲成人国产一区在线观看| 大陆偷拍与自拍| 亚洲五月婷婷丁香| 久久久久国产一级毛片高清牌| 天堂影院成人在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩黄片免| 日韩欧美一区二区三区在线观看| 久久中文字幕一级| 午夜亚洲福利在线播放| 麻豆av在线久日| 国产精品美女特级片免费视频播放器 | 日本免费一区二区三区高清不卡 | 国产亚洲av嫩草精品影院| 国产精品日韩av在线免费观看 | 啦啦啦韩国在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人久久性| 夜夜看夜夜爽夜夜摸| 精品电影一区二区在线| 久久精品国产亚洲av香蕉五月| 99精品欧美一区二区三区四区| 91成年电影在线观看| 性色av乱码一区二区三区2| 日韩av在线大香蕉| 国产精品秋霞免费鲁丝片| 国产精品永久免费网站| 黄色毛片三级朝国网站| 搞女人的毛片| 精品第一国产精品| 欧美日本视频| 757午夜福利合集在线观看| 国产精品亚洲一级av第二区| 国语自产精品视频在线第100页| 又紧又爽又黄一区二区| 精品福利观看| 一区二区三区激情视频| 精品国产超薄肉色丝袜足j| 国产午夜福利久久久久久| 精品一区二区三区视频在线观看免费| 午夜两性在线视频| 手机成人av网站| 亚洲一区中文字幕在线| 久久精品国产综合久久久| 亚洲国产精品合色在线| 一级a爱视频在线免费观看| 久久国产精品影院| 一边摸一边做爽爽视频免费| 麻豆成人av在线观看| 国产高清视频在线播放一区| 国产精品久久久av美女十八| 国产精品,欧美在线| 日韩欧美一区二区三区在线观看| 天堂√8在线中文| 丝袜美腿诱惑在线| 亚洲九九香蕉| 欧美日韩乱码在线| 丝袜人妻中文字幕| e午夜精品久久久久久久| 91老司机精品| 可以在线观看毛片的网站| 国产精品乱码一区二三区的特点 | 俄罗斯特黄特色一大片| 亚洲精华国产精华精| 无人区码免费观看不卡| 我的亚洲天堂| 日韩国内少妇激情av| 动漫黄色视频在线观看| 天天躁夜夜躁狠狠躁躁| 午夜免费成人在线视频| 久久精品国产亚洲av香蕉五月| 午夜福利免费观看在线| 午夜福利在线观看吧| 欧美丝袜亚洲另类 | 国产精品九九99| 最近最新中文字幕大全免费视频| 制服诱惑二区| 正在播放国产对白刺激| 国产成人精品久久二区二区免费| 亚洲av成人一区二区三| 国产精品免费视频内射| 精品不卡国产一区二区三区| 人人妻人人澡欧美一区二区 | 精品久久久久久成人av| 99国产精品99久久久久| 少妇熟女aⅴ在线视频| 亚洲av片天天在线观看| 国产精品亚洲一级av第二区| 精品人妻1区二区| 人人妻人人爽人人添夜夜欢视频| 欧美成人性av电影在线观看| 国产av又大| 中文字幕色久视频| 9色porny在线观看| 国产亚洲精品一区二区www| 亚洲三区欧美一区| 乱人伦中国视频| АⅤ资源中文在线天堂| av超薄肉色丝袜交足视频| 18禁黄网站禁片午夜丰满| 成人18禁在线播放| 老司机深夜福利视频在线观看| 精品电影一区二区在线| 男人舔女人下体高潮全视频| 国产一区二区在线av高清观看| 亚洲人成电影观看| av福利片在线| xxx96com| 国产精品99久久99久久久不卡| 日韩成人在线观看一区二区三区| 亚洲视频免费观看视频| 深夜精品福利| 香蕉丝袜av| 久久午夜亚洲精品久久| 多毛熟女@视频| 久久国产精品人妻蜜桃| 精品久久蜜臀av无| 国产日韩一区二区三区精品不卡| 成年版毛片免费区| 老熟妇仑乱视频hdxx| 波多野结衣av一区二区av| 国产91精品成人一区二区三区| av视频在线观看入口| 国产欧美日韩一区二区精品| 亚洲av电影不卡..在线观看| 亚洲 欧美一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 韩国精品一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲精品美女久久av网站| 久久亚洲真实| 欧美另类亚洲清纯唯美| 亚洲精品av麻豆狂野| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产欧美日韩av| 他把我摸到了高潮在线观看| 免费观看人在逋| 亚洲一区高清亚洲精品| 日韩大尺度精品在线看网址 | 成人免费观看视频高清| 淫秽高清视频在线观看| 亚洲五月婷婷丁香| 中文字幕最新亚洲高清| 一级a爱视频在线免费观看| 亚洲国产精品sss在线观看| 国产一卡二卡三卡精品| cao死你这个sao货| 大码成人一级视频| 搡老熟女国产l中国老女人| 久久久久久免费高清国产稀缺| 国产精品香港三级国产av潘金莲| 免费高清视频大片| 亚洲国产欧美一区二区综合| 精品久久蜜臀av无| 99精品在免费线老司机午夜| 国产亚洲精品一区二区www| 在线观看66精品国产| 亚洲全国av大片| 欧美av亚洲av综合av国产av| 亚洲精品美女久久久久99蜜臀| 久久天躁狠狠躁夜夜2o2o| 黄片大片在线免费观看| 操美女的视频在线观看| 久久国产精品人妻蜜桃| 搞女人的毛片| 97人妻天天添夜夜摸| 国产高清视频在线播放一区| 老熟妇仑乱视频hdxx| 久久亚洲精品不卡| 亚洲精品粉嫩美女一区| av网站免费在线观看视频| 欧美成狂野欧美在线观看| 成人国语在线视频| 91老司机精品| 热re99久久国产66热| 九色亚洲精品在线播放| 国产男靠女视频免费网站| 波多野结衣高清无吗| 黄片小视频在线播放| 国产精品av久久久久免费| 91国产中文字幕| 欧美一级毛片孕妇| 亚洲色图综合在线观看| 18禁观看日本| 在线天堂中文资源库| 欧美日韩一级在线毛片| 欧美中文综合在线视频| 757午夜福利合集在线观看| 亚洲伊人色综图| 亚洲激情在线av| 两个人视频免费观看高清| 国内精品久久久久久久电影| 精品久久久久久久人妻蜜臀av | 午夜a级毛片| 久久精品成人免费网站| 精品久久久久久久人妻蜜臀av | a在线观看视频网站| 亚洲av成人一区二区三| 欧美在线黄色| 1024视频免费在线观看| 人人澡人人妻人| 嫩草影视91久久| 亚洲av熟女| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 精品福利观看| 欧美老熟妇乱子伦牲交| 嫁个100分男人电影在线观看| www.精华液| 麻豆一二三区av精品| 国产一级毛片七仙女欲春2 | 免费看a级黄色片| 丝袜美腿诱惑在线| 精品欧美一区二区三区在线| 成人国产综合亚洲| 亚洲,欧美精品.| 亚洲人成电影观看| 午夜成年电影在线免费观看| 91麻豆av在线| 激情在线观看视频在线高清| avwww免费| 国产精品久久久久久人妻精品电影| 亚洲av电影不卡..在线观看| 国产精品免费视频内射| 变态另类成人亚洲欧美熟女 | 窝窝影院91人妻| 精品久久久久久成人av| 麻豆av在线久日| 桃色一区二区三区在线观看| 高潮久久久久久久久久久不卡| 女性被躁到高潮视频| 好男人电影高清在线观看| 国产一区在线观看成人免费| 精品人妻1区二区| 国产免费av片在线观看野外av| 他把我摸到了高潮在线观看| 久久久精品欧美日韩精品| 国产色视频综合| 精品欧美国产一区二区三| 亚洲成国产人片在线观看| 久久 成人 亚洲| 国产成人精品久久二区二区免费| 一区二区三区高清视频在线| 在线观看一区二区三区| 久久久久久久午夜电影| 日韩欧美免费精品| 黄色片一级片一级黄色片| 亚洲最大成人中文| 欧美午夜高清在线| 久久伊人香网站| 女人被躁到高潮嗷嗷叫费观| 禁无遮挡网站| 757午夜福利合集在线观看| 琪琪午夜伦伦电影理论片6080| 99久久综合精品五月天人人| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 黄网站色视频无遮挡免费观看| 亚洲av日韩精品久久久久久密| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 国产精品 欧美亚洲| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 久久久久久亚洲精品国产蜜桃av| 国产男靠女视频免费网站| 国产成人精品久久二区二区91| 香蕉久久夜色| 亚洲熟妇中文字幕五十中出| 夜夜躁狠狠躁天天躁| 日韩欧美国产一区二区入口| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇 在线观看| 久久中文字幕人妻熟女| 韩国av一区二区三区四区| 日本 av在线| 亚洲欧美精品综合久久99| 亚洲中文字幕一区二区三区有码在线看 | 亚洲九九香蕉| 久久国产亚洲av麻豆专区| avwww免费| 久久久久国产一级毛片高清牌| 国产一区二区三区视频了| 日韩高清综合在线| 不卡av一区二区三区| 99国产综合亚洲精品| 久久午夜综合久久蜜桃| 国产精品,欧美在线| 欧美黄色淫秽网站| 亚洲欧美日韩无卡精品| 制服诱惑二区| 12—13女人毛片做爰片一| 国产成人精品久久二区二区91| 不卡av一区二区三区| 国产私拍福利视频在线观看| 国产精品久久电影中文字幕| 日韩精品中文字幕看吧| or卡值多少钱| 亚洲九九香蕉| 欧美激情高清一区二区三区| 好男人在线观看高清免费视频 | 亚洲av日韩精品久久久久久密| 欧美日韩福利视频一区二区| 午夜免费鲁丝| 黄色 视频免费看| 亚洲精品美女久久久久99蜜臀| 很黄的视频免费| 久久精品亚洲精品国产色婷小说| 在线观看免费视频日本深夜| 国产在线观看jvid| 午夜福利,免费看| 久久久久久久精品吃奶| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 91字幕亚洲| 亚洲av成人av| 90打野战视频偷拍视频| 18禁裸乳无遮挡免费网站照片 | 亚洲视频免费观看视频| 亚洲成av片中文字幕在线观看| 91国产中文字幕| 淫妇啪啪啪对白视频| 中文字幕精品免费在线观看视频| 免费在线观看影片大全网站| www国产在线视频色| 亚洲va日本ⅴa欧美va伊人久久| 欧美日本亚洲视频在线播放| 久久中文字幕一级| 狂野欧美激情性xxxx| 少妇 在线观看| 在线视频色国产色| videosex国产| 国产精品久久电影中文字幕| 一区二区日韩欧美中文字幕| av天堂久久9| 亚洲精品在线观看二区| 欧美色欧美亚洲另类二区 | 日韩视频一区二区在线观看| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区| 日本vs欧美在线观看视频| 激情视频va一区二区三区| 成人手机av| 国产乱人伦免费视频| 在线观看午夜福利视频| 欧美激情久久久久久爽电影 | 中文字幕久久专区| АⅤ资源中文在线天堂| 天堂影院成人在线观看| 亚洲成av片中文字幕在线观看| 国内久久婷婷六月综合欲色啪| 他把我摸到了高潮在线观看| 女人精品久久久久毛片| 国产xxxxx性猛交| 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 亚洲欧美精品综合一区二区三区| 丝袜人妻中文字幕| 国产精品国产高清国产av| av网站免费在线观看视频| netflix在线观看网站| 国内毛片毛片毛片毛片毛片| 中文字幕av电影在线播放| 成人亚洲精品一区在线观看| 成人亚洲精品av一区二区| 欧美一区二区精品小视频在线| 久久亚洲真实| 国产精品亚洲一级av第二区| 国产成人精品无人区| 国语自产精品视频在线第100页| 91老司机精品| 日韩成人在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线播放一区| 国产精品秋霞免费鲁丝片| 国产精品影院久久| 18禁黄网站禁片午夜丰满| 精品人妻1区二区| 三级毛片av免费| 成人三级黄色视频| 老司机午夜十八禁免费视频| 久久国产精品男人的天堂亚洲| 精品熟女少妇八av免费久了| 国产野战对白在线观看| 一级作爱视频免费观看| 女人被躁到高潮嗷嗷叫费观| 欧美黄色淫秽网站| 国产精品久久久久久亚洲av鲁大| 欧美一级毛片孕妇| 91成人精品电影| 国产亚洲欧美精品永久| 12—13女人毛片做爰片一| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 桃红色精品国产亚洲av| 日本免费一区二区三区高清不卡 | 一边摸一边做爽爽视频免费| 夜夜爽天天搞| 亚洲精品中文字幕在线视频| 两性夫妻黄色片| 男人舔女人的私密视频| 给我免费播放毛片高清在线观看| www.自偷自拍.com| 精品久久蜜臀av无| 亚洲国产精品999在线| 国产成人啪精品午夜网站| 在线视频色国产色| 久久热在线av| 久久天堂一区二区三区四区| 成人欧美大片| 午夜福利,免费看| 真人做人爱边吃奶动态| 制服丝袜大香蕉在线| 国产成人精品久久二区二区免费| 色播亚洲综合网| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| 日韩精品中文字幕看吧| av网站免费在线观看视频| 欧美亚洲日本最大视频资源| 国产av又大| av中文乱码字幕在线| 日韩有码中文字幕| 97人妻精品一区二区三区麻豆 | 制服人妻中文乱码| 国产精品,欧美在线| 色播在线永久视频| 美女高潮到喷水免费观看| 中文字幕精品免费在线观看视频| 丝袜人妻中文字幕| 精品国产超薄肉色丝袜足j| 国产成人一区二区三区免费视频网站| 人人妻,人人澡人人爽秒播| 欧美日韩亚洲国产一区二区在线观看| av中文乱码字幕在线| 午夜久久久在线观看| 91精品三级在线观看| 我的亚洲天堂| 免费看美女性在线毛片视频| 一本综合久久免费| 麻豆av在线久日| 欧美激情久久久久久爽电影 | 999久久久精品免费观看国产| 日韩高清综合在线| 最好的美女福利视频网| 亚洲成国产人片在线观看| 黄片小视频在线播放| 高清在线国产一区| 亚洲狠狠婷婷综合久久图片| 亚洲专区国产一区二区| 久久亚洲真实| www.自偷自拍.com| 久久人妻福利社区极品人妻图片| 久9热在线精品视频| 少妇 在线观看| 欧美日韩亚洲综合一区二区三区_| 日日夜夜操网爽| 午夜福利18| 叶爱在线成人免费视频播放| 久久青草综合色| 啦啦啦免费观看视频1| 操美女的视频在线观看| 激情视频va一区二区三区| 久久天躁狠狠躁夜夜2o2o| 免费观看精品视频网站| 亚洲美女黄片视频| 一区在线观看完整版| 天天一区二区日本电影三级 | 亚洲一卡2卡3卡4卡5卡精品中文| 午夜两性在线视频| 欧美黄色淫秽网站| 神马国产精品三级电影在线观看 | 男女之事视频高清在线观看| 人妻丰满熟妇av一区二区三区| 日韩欧美免费精品| 亚洲一区二区三区色噜噜| 69精品国产乱码久久久| 巨乳人妻的诱惑在线观看| 亚洲一区高清亚洲精品| av在线播放免费不卡| svipshipincom国产片| 男女床上黄色一级片免费看| 日日夜夜操网爽| 9191精品国产免费久久| 国产精品久久视频播放| 此物有八面人人有两片| www.熟女人妻精品国产| av天堂在线播放| 法律面前人人平等表现在哪些方面| 欧美激情极品国产一区二区三区| 在线观看舔阴道视频| 久久性视频一级片| 身体一侧抽搐| 老司机福利观看| 国产三级黄色录像| 韩国av一区二区三区四区| 给我免费播放毛片高清在线观看| 村上凉子中文字幕在线| 午夜成年电影在线免费观看| 亚洲无线在线观看| 成人精品一区二区免费| 性色av乱码一区二区三区2| 韩国av一区二区三区四区| 香蕉丝袜av| 麻豆久久精品国产亚洲av| 无人区码免费观看不卡| 色综合亚洲欧美另类图片| 真人做人爱边吃奶动态| 欧美成人性av电影在线观看| 亚洲国产欧美日韩在线播放| 亚洲精华国产精华精| 最好的美女福利视频网| 午夜免费鲁丝| 亚洲中文av在线| 国产精品免费视频内射| 免费不卡黄色视频| av欧美777| 亚洲av片天天在线观看| 日韩视频一区二区在线观看| 国产一级毛片七仙女欲春2 | 久久久久精品国产欧美久久久| 他把我摸到了高潮在线观看| 亚洲自偷自拍图片 自拍| 操出白浆在线播放| 女人高潮潮喷娇喘18禁视频| 日韩大尺度精品在线看网址 | 精品久久久久久久人妻蜜臀av | www.熟女人妻精品国产| 日韩精品免费视频一区二区三区| 日韩欧美在线二视频| 国产精品自产拍在线观看55亚洲| 超碰成人久久| 黄色片一级片一级黄色片| 免费在线观看完整版高清| 波多野结衣巨乳人妻| 亚洲人成电影观看| 又紧又爽又黄一区二区| 两人在一起打扑克的视频| 亚洲成av片中文字幕在线观看| 精品久久久久久久人妻蜜臀av | 欧美大码av| 日本a在线网址|