• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    UvSMEK1, a Suppressor of MEK Null, Regulates Pathogenicity, Conidiation and Conidial Germination in Rice False Smut Fungus Ustilaginoidea virens

    2021-08-31 02:17:02YuJunjieYuMinaSongTianqiaoCaoHuijuanYongMingliPanXiayanQiZhongqiangDuYanZhangRongshengYinXiaoleLiangDongLiuYongfeng
    Rice Science 2021年5期

    Yu Junjie, Yu Mina, Song Tianqiao, Cao Huijuan, Yong Mingli, Pan Xiayan, Qi Zhongqiang,Du Yan, Zhang Rongsheng, Yin Xiaole, Liang Dong, Liu Yongfeng, 2

    Research Paper

    UvSMEK1, a Suppressor of MEK Null, Regulates Pathogenicity, Conidiation and Conidial Germination in Rice False Smut Fungus

    Yu Junjie1, Yu Mina1, Song Tianqiao1, Cao Huijuan1, Yong Mingli1, Pan Xiayan1, Qi Zhongqiang1,Du Yan1, Zhang Rongsheng1, Yin Xiaole1, Liang Dong1, Liu Yongfeng1, 2

    (Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

    Rice false smut, which is caused by, is an emerging disease of rice spikelets in rice-growing areas worldwide. However, the infection mechanism ofon rice spikelets is still unclear. Here, we characterized a suppressor of mitogen-activated protein kinase kinase or ERK kinase (MEK) null () inthat is conserved among filamentous fungi. Compared with wild typestrain P-1,deletion mutants were defective in pathogenicity and conidial germination. In addition, conidiation of UvSMEK1 deletion mutants was significantly reduced on yeast extract tryptone (YT) plates, but increased in YT broth compared with the wild type. Compared withexpression level during the vegetative mycelia and conidiation stages,dramatically increased during infection of rice florets. Surprisingly, thedeletion mutants exhibited higher tolerance to H2O2and NaCl. In summary, presented evidence suggested that UvSMEK1 positively regulated pathogenicity, conidial germination and conidiation in YT broth, and negatively regulated conidiation on YT medium and tolerance to oxidative and osmotic stresses. The results enhance our understanding of the regulatory mechanism of pathogenicity of, and present a potential molecular target for blocking rice infection by.

    suppressor; MEK null;; pathogenicity; conidial germination; conidiation

    Rice false smut (RFS) has become a devasting disease in China in the recent decades due to the large-scale cultivation of high-yielding cultivars and the use of chemical fertilizers (Sun et al, 2013; Tang et al, 2013; Yu et al, 2019). The causal agentinfects stamen filaments of rice at the booting stage and transforms kernels into smut balls by utilizing rice nutrients (Tang et al, 2013; Zhang et al, 2014).usually infects spikelets by colonizing the filaments of rice florets, preventing pollen from maturing and then hijacking rice nutrients (Fan et al, 2015, 2020; Yong et al, 2016; Qiu et al, 2019). Moreover, RFS produces ustiloxins and ustilaginoidins that inhibit cell division and represent a threat to human and animal health (Koiso et al, 1994; Li et al, 1995; Meng et al, 2015).

    Owing to the genome sequencing and establishing of gene deletion methods in, a number of genes important for pathogenicity inhave been studied (Lü et al, 2016; Zheng et al, 2016; Liang et al, 2018). For example, the effectors SCRE1 and SCRE2 (Fang et al, 2019; Zhang et al, 2020) protein kinases UvPmk1 and UvCDC2 (Tang et al, 2020), transcription factors UvCom1, UvHOX2 and UvPRO1 (Lü et al, 2016; Yu et al, 2019; Chen et al, 2020), apoptotic regulator UvBI-1 (Xie et al, 2019), adenylate cyclase UvAc1 (Guo et al, 2019), phosphodiesterase UvPdeH (Guo et al, 2019), low-affinity iron transport protein Uvt3277 (Zheng et al, 2017), MAP kinase (MAPK) cascade component UvHOG1 (Zheng et al, 2016), and SUN family protein UvSUN2 (Yu M N et al, 2015) were characterized in recent years.

    Suppressor of MEK (SMEK) is considered to be a regulatory subunit of protein phosphatase 4 (Yoon et al, 2010). SMEK usually functions as a global regulator by interacting with various intracellular proteins (Kim et al, 2015). In human cells, this regulator protein contributes to the regulation of cell proliferation, cell differentiation, cell cycle, hepatic gluconeogenesis, apoptosis and microtubule organization(Mendoza et al, 2007; Byun et al, 2012; Lyu et al, 2013; Kim et al, 2015, 2017). In invertebrates and protozoa, SMEK was reported to be a regulator of cell development, chemotaxis and longevity (Wolff et al, 2006; Mendoza et al, 2007). In yeast, the ortholog of SMEK1 known as Psy2 interacts with protein phosphatase4-homologous PPH3, and participates in the regulation of cell cycle, DNA repair, drug sensitivity and glucose transport (Gingras et al, 2005; Ma et al, 2014; Omidi et al, 2014; Hustedt et al, 2015).

    In the present study, we identified a gene encoding suppressor of MEK null (), the homolog of SMEK1 in mammals and Psy2 in yeast, which was disrupted inmutant A-204. Deletion ofcaused the loss of pathogenicity, abnormal conidiation and disordered conidial germination. The mRNA ofwasspecifically higher during infection, but lower during conidiation. Generally, all evidences indicated that UvSMEK1 was a key regulatorof pathogenicity, conidiation and conidial germination.

    RESULTS

    Characterization of genes disrupted in mutant A-204

    In the preliminary study, we identified a T-DNA insertional mutant A-204 of, which was failed to form smut balls on the inoculated spikelets (Fig. 1-A). To identify the mutated gene in A-204, we performed Southern blotting to determine the copy number of T-DNA inserted into the genome of A-204, and a 1.4-kb hygromycin-resistant cassette was employed as a probe in Southern blotting. The result showed that only one copy of T-DNA was detected in mutant A-204 (Fig. 1-B).

    Fig. 1. Identification of mutated gene inT-DNA insertion mutant A-204.

    A, Rice false smuts on rice spikelets inoculated with wild-type strain 70-22 and T-DNA insertion mutant A-204.

    B, Detection of copy number of T-DNA inserted in the genome of A-204 by Southern blotting.

    C, Detection ofexpression via reversed-transcription PCR, andwas employed as a reference gene.

    D, Inserted site of T-DNA in the coding region ofinmutant A-204.

    E, Conserved SMK-1 domain in UvSMEK1.

    F,Phylogenetic analysis of SMEK-1 homologs to UvSMEK-1 in fungi.

    The T-DNA flanking regions were amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The results showed that T-DNA was inserted into the 5′-coding region of suppressor of MEK1 ortholog (designated as) in the mutant A-204 (Fig. 1-C and -D). Because the 5′-terminal ofcoding region in the reference sequence (GenBank accession number: KDB15555.1) is not complete, we amplified the 5′-terminal ofusing a5′-RACE system, and the sequence ofwas deposited (GenBank accession number: MT884407). We found the amino acid sequence of UvSMEK1 is conserved among filamentous fungi, such as,,,and,and budding yeast. UvSMEK1 is most homologous to cereal pathogenic fungus(Fig. 1-E and -F).

    Generation of UvSMEK1 deletion mutants and their complementation

    To generatedeletion mutants, the-mediated transformation (ATMT) method was used to transfer the gene replacement cassette into thewild type strain P-1. Two hundred and forty transformants resistant to hygromycin B were picked from the selective medium after culturing at 28oC in darkness for about 7–10 d. Seven of these transformants were confirmed asdeletion mutants (Fig. 2). Among them, the putativedeletion mutants,andwere further confirmed by RT-PCR and DNA sequencing (Fig. S1).

    To generatecomplement mutants, the cassettecontaining completegene was transformed intodeletion mutant. Fifty- seven transformants were screened on the 2% TB3 medium with geneticin 418, and transformants,andwere selected and confirmed with PCR, RT-PCR and DNA sequencing (Fig. 2-B, -C and Fig. S1).

    UvSMEK1 was essential for pathogenicity and regulates conidiation and conidia germination

    deletion mutants,and, and wild type strain P-1 were then used to inoculate rice spikelets at the booting stage. The RFS disease incidence was detected 30 d after inoculation. None of spikelets was infected bydeletion mutants (Fig. 3-A). In contrast, the number of smut balls on spikelets inoculated with the wild type strain P-1 was 13.7 ± 2.7 (Fig. 3-A and Table 1). The complement mutants partially recovered their pathogenicity, with the numbersof smut balls on spikelets inoculated with,andbeing 3.7 ± 2.2, 3.2 ± 1.2 and 4.1 ± 1.9, respectively (Fig. 3-B and Table 1). The expression levels ofat the stages of mycelia growth, conidiation on YT medium, conidiation in YT broth (that also used for aritificial inoculaiton on rice panicle), and 12 h post inoculation (hpi) to 7 d post inoculation (dpi) were determined by qPCR. The results showed that the expression levels ofduring conidiation on YT medium and vegetative growth were not significantly different with those in YT broth; however, the expression levels ofwere significantly higher at 3–7 dpi (Fig. 3-C). This meant the expression ofwas induced by the infection of rice florets. All these findings showed that UvSMEK1 was a critical regulatory element for pathogenicity.

    Fig. 2. Deletion ofgene in.

    A, Illustration of targeted deletion ofby-mediated transformation (ATMT) and homologous replacement. P11 to P18 represent the primers. UF, Upstream flank of;HYG, Hygromycin resistant gene; DF, Downstream flank of.

    B, Illustration of complementation cassette ofgene by ATMT transformation.

    C, Reversed-transcription PCR analysis ofdeletion mutants andcomplement mutants. The wild type strain P-1 and transformant Trans-9 with ectopically inserted UF-HYG+-RF cassette were included as controls. M, Marker; a, P-1; b, Trans-9; c,; d,; e,; f,; g,; h,.

    Fig. 3. Characterization ofdeletion and complement mutants in.

    A, Rice false smut balls on rice spikelets inoculated with wild type strain P-1,deletion mutantand complement mutant.

    B, Colonies of P-1,andon potato sucrose agar at 28 oC after 12 d.

    C, Expression pattern ofwas determined by quantitative PCR. House-keeping genewas employed as a reference gene. Data are Mean ± SD (= 3). **, Significant difference at the 0.01 level (-test).M, Mycelia; CG, Conidial germination; CS(YTM), Conidial sporulation on yeast extract tryptone (YT) media; CS(YTB), Conidial sporulation in YT broth; hpi, Hours post inoculation; dpi, Days post inoculation.

    The percentage of germinated conidia of wild type strain P-1 anddeletion mutants on YT medium was similar (Table 1). However, the conidial size ofdeletion mutants was abnormally larger than that of wild type strain P-1 before germ tube emergence, and also the germ tube ofdeletion mutants was thicker than that of wild type strain andcomplement mutants (Table S1).

    We also tested the capacity of conidiation in YT broth and on YT medium. The concentration of conidia produced bydeletion mutants in YT broth was much higher than that of wild type strain P-1 andcomplement mutants (Fig. 4-A and Table S2). In YT broth, the conidia productions ofdeletion mutants and wild type strain P-1 were similar in the period 2–4 dpi, however, conidia production bydeletion mutants was dramatically increased during 5–7 dpi compared to wild type strain P-1. The results were surprisingly different whendeletion mutants and wild type strain P-1 were tested on YT medium. When the conidia were cultured on YT medium, thedeletion mutants lost the capacity of micro-cycle conidiation and produced fewer conidia in the first 3 d (Table 1 and Fig. 4-C). These results hinted at UvSMEK1 functioning as an essential regulator of pathogenicity, conidial germination and conidiation in.

    Table 1. Pathogenicity, conidiation and conidial germination in UvSMEK1 deletion and complement mutants.

    Fresh mycelia ofstrain/mutants were cultured on potato sucrose agar (PSA) at 28oC for 12 d.The number of rice false smut balls on the inoculated spikelets.Concentration of conidia in yeast extract tryptone (YT) broth was measured after shaking at 130 r/min, 28oC for 7 d.The conidia were cultured on YT media at 28oC for 2 d before observation.

    Data are shown as Mean ± SD (= 4). Different letters mark statistically significant differences using the Fisher’s protected least significant difference test (Uppercase letters for< 0.01 and lowercase letters for< 0.05).

    Fig. 4. Conidiation, conidial germination and hyphal branching ofdeletion mutant and complement mutant.

    A, Log10concentration of conidia produced in yeast extract tryptone (YT) broth in 7 d.

    B, Conidia, germination of conidia and conidiation on YT medium ofdeletion mutantand complement mutantafter 3-day culture.

    UvSMEK1 deletion mutants exhibited higher tolerance to oxidative, osmotic and cell wall stresses

    When cultured on YT medium amended with 0.4 mol/L NaCl, 0.07% H2O2and 0.03% sodium dodecyl sulfate (SDS), the colony diameter of thedeletion mutants was significantly larger than that of the wild type strain P-1 andcomplementary mutants. Moreover, the aerial mycelia ofdeletion mutants that grew on 0.03% SDS were thicker than that of the wild type strain P-1 andcomplement mutants. However, when cultured on YT amended with 100 mg/L Congo red, the colony diameter ofwas similar to that of wild type strain P-1 (Fig. 5 and Table 2). These findings showed that thedeletion mutants were less sensitive to oxidative, osmotic and cell wall stresses than the wild type strain P-1, suggesting UvSMEK1 is also involved in responses to oxidative, osmotic and cell wall stresses.

    Fig. 5. Growth ofdeletion and complement mutants in presence of different biotic stresses.

    Wild type strain P-1,deletion mutantandcomplement mutantwere cultured on plain yeast extract tryptone (YT) medium or amended with 0.4 mol/L NaCl, 0.07% H2O2, 0.03% sodium dodecyl sulfate (SDS) and 100 mg/L Congo red at 28oC for 15 d.

    DISCUSSION

    The ATMT method was used to generate T-DNA insertion mutants. To date, UvSUN2, Uvt3277 and UvPRO1 have been disrupted using insertional mutation (Yu M N et al, 2015; Lü et al, 2016; Zheng et al, 2017). Recently, the CRISPR-Cas9 system was used to significantly increase the efficiency of gene replacement by homologous recombination in(Liang et al, 2018; Xu et al, 2019). Considering some genes were still hard to be deleted by CRISPR- Cas9 (personal communication), the ATMT method is still an alternative useful tool for gene deletion and complementation.

    Table 2. Responses of mycelial growth of UvSMEK1 deletion and complement mutants to abiotic stress. mm

    Fresh mycelia ofstrain/mutants were cultured on media at 28oC for 15 d.

    YT, Yeast extract tryptone; SDS, Sodium dodecyl sulfate.

    Data are shown as Mean ± SD (= 4). Different letters mark statistically significant differences using the Fisher’s protected least significant difference test (Uppercase letters for< 0.01 and lowercase letters for< 0.05).

    Although a few of the genes contributing to pathogenicity have been characterized in rice false smut fungus, regulatory mechanism of pathogenicity needs to be elucidated further. In this study, we characterized the function of UvSMEK1 in. This protein harbors a SMK-1 superfamily domain at the N-terminus. UvSMEK1 is conserved among filamentous fungi and budding yeastHowever, the regulatory function of SMEK1 and its orthologs has not been reported in plant pathogenic fungi.

    Sclerotia and chlamydospores ofcan over- winter in paddy fields and serve as the primary infection sources of rice false smut disease (Yu J J et al, 2015; Fan et al, 2016). Both ascospores and chlamydospores germinate to produce huge numbers of secondary conidia, which are considered to be inocula of this disease. Many lines of evidence showed thatmay grow epiphytically on rice leaves and other weed plants, and infect rice spikelets by hyphae or producing conidia at the rice booting stage. In most of the previous studies, the reduced virulence in severalmutants also came with the defects in hyphal growth and conidia production (Xie et al, 2019; Yu et al, 2019; Tang et al, 2020). In the present study, thedeletion mutants exhibited similar hyphal growth but higher production of conidia in YT broth compared to the wild type strain, however, these mutants completely lost their pathogenicity. This suggested that the mechanism of UvSMEK1 regulating pathogenicity inhad a different basis.

    In slime mold, SMEK is essential for cell polarity and chemotaxis (Mendoza et al, 2005). The invasive hyphae ofextend along the cell gaps in the floral filaments without penetration, but the infection byblocks the development of ovary and hijacks the rice nutrient supply to the host cell walls (Takano et al, 2006; Tang et al, 2013; Fan et al, 2015). Cell polarity and chemotaxis seem to be very important for the invasion of rice florets by. In filamentous fungi, the switch between isotropic expansion and polar growth is very important for conidial germination and hyphal growth (Knechtle et al, 2003; Guest et al, 2004). The conidia ofdeletion mutants seemed to stay longer in the isotropic expansion before switching to polar growth compared to wild type strain. This finding suggested that UvSMEK1 is a key regulator of switchingbetween isotropic expansion and polar growth. In addition,deletion mutants showed higher tolerance to oxidative, osmotic and cell wall stresses compared with the wild type strain. These clues hint at a defect in polar growth regulation and chemotaxis potentially causing the loss of pathogenicity in.

    The abnormal conidiation indeletion mutants suggestedregulates conidiation in. Interestingly,deletion mutants exhibited an increase capacity of conidiation in YT broth, but a reduced capacity of conidiation on YT medium. This phenomenon provided a clue that the regulatory mechanism ofconidiation in liquid vs. solid media is different to some extent, and UvSMEK1 may be at the intersection between two kinds of regulatory networks. Therefore, UvSMEK1 is a critical regulatory element for early-stage rice floret infection and conidiation, making UvSMEK1 a potentialmolecular target for blocking the infection by.

    In mammalian cells, suppressor of MEK (SMEK1) is a core regulatory subunit of protein phosphatase 4 (PP4) complex (Yoon et al, 2010). In budding fungus, Psy2 (the orthologue of SMEK1) interacts with protein phosphatase 2A-like protein Pph3 in order to function in regulation (Gingras et al, 2005; Sun et al, 2011). However, little is known about its function in filamentous plant pathogenic fungi. In,protein phosphatase 2A (PP2A) and PP2A-like proteins UvPP2A, UvSIT4 and UvPPG1 were found (data not shown), but the homolog of Pph3 was not detected. Similar situation was reported in another cereal pathogenic fungus(Liu et al, 2018). The mechanism by which UvSMEK1 modulates infection byand other plant pathogenic fungi warrants further studies.

    METHODS

    Strains, rice variety, plasmids and nucleotide manipulation

    A virulent wild typestrain P-1 was used as the starting strain. To test the virulence ofstrains and mutants, a susceptible rice variety Liangyoupeijiu was used in the inoculation experiments. The plasmid pCAMBIA1300 was used for the gene deletion in,and pCAM-NEO constructed in the preliminary study was employed for gene complementation (Table S3).strain AGL-1 was used in the-mediated transformation (ATMT). Southern blotting and TAIL-PCR were performed as described previously (Yu M N et al, 2015).

    Phenotypic analysis of U. virens strains and mutants

    Thestrain P-1 was routinely cultured on a PSA at 28 oC for 10–15 d (Zheng et al, 2017). The transformants of P-1 were cultured on 2% TB3 (3 g yeast extract, 3 g casamino acids and 2% sucrose) amended with 100 mg/L hygromycin and/or 600 mg/L geneticin 418 (Yu et al, 2015). To determine the pathogenicity ofstrains and mutants, 15 panicles were inoculated by each strain, and the number of false smut balls was counted at 30 d after inoculation. The mixture of conidia and hyphae for inoculation was prepared as described in the previous study (Zheng et al, 2017). We used YT medium and broth to test mycelial growth rate and conidiation capacity of, respectively (Zheng et al, 2016). To test sensitivity of strains to abiotic stress, YT media was amended with 0.05% H2O2(oxidative stress), 0.4 mol/L NaCl (osmotic stress), 0.03% SDS (cell wall stress) and 100 mg/L Congo red (cell wall stress), respectively. The cultures were incubated at 28 oC for 15 d in darkness, and then the colony diameter was measured, and the morphology of the colonies was characterized. The conidiation capacity of the strains was determined using YT broth as described previously (Yu et al, 2019). Four duplicates were performed for each treatment.

    Generation of UvSMEK1 deletion mutants

    We constructed a gene replacement cassette [upstream flank (UF)-hygromycin resistant gene (HYG)-downstream flank (DF)] ofusing the double-jointed PCR method (Tuorto et al, 2015). This cassette was subcloned into the klenow fragment ofX I-I digested pCAMBIA1300 using a ClonExpress Ultra One Step Cloning Kit (Vazyme, China)to generate gene deletion vector pD-UvSMEK (Tables S3 and S4). The binary vector pD-UvSMEK andstrain AGL-1 were employed in the ATMT transformation ofstrain P-1. The transformants were selected on 2% TB3 amended with 100 mg/L hygromycin (Yu M N et al, 2015). Thedeletion mutants were screened out by detection ofopen reading fragment region and further confirmed by DNA sequencing.

    Generation of UvSMEK1 complement mutants

    We amplified the complete cassette ofcontaining its promoter, coding region and terminator from genome DNA of wild type strain P-1, and inserted thecassette into the klenow fragment ofR I-I digested pCAM-NEO to generate gene complement vector pC-UvSMEK using a ClonExpress Ultra One Step Cloning Kit (Vazyme, China) (Table S3). The binary vector pC-UvSMEK andstrain AGL-1 were employed in the ATMT transformation ofmutant. The transformants were selected on 2% TB3 amended with 600 mg/L geneticin 418. Thedeletion mutants were screened out by detection ofopen reading fragment region and further confirmed by DNA sequencing.

    RT-PCR and qPCR assays

    Vegetative mycelia were collected from 2-day-old cultures on YT medium. To stimulate conidiation in, mycelia were cultured in YT broth by shaking (28 oC, 150 r/min) for 3 d. To collect mycelia during infection, the mixture of fresh mycelia and conidia were inoculated into the panicles at the booting stage. The inoculated spikelets were collected at 12 h, 1 d, 2 d, 3 d, 4 d, 5 d, 6 d and 7 d after inoculation. A PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Japan) and SYBRR Premix ExII (Takara, Japan) used to synthesize cDNA and quantitative RT-PCR. Because we prepared the mixture of conidia and mycelia (artificial inocula) fromsamples during conidiation in YT broth, the relative expression level ofat different periods was calculated by the 2-ΔΔCtmethod compared to that of samples during conidiation in YT broth. The(NCBI accession number: KDB17573.1) gene was employed as the reference. Three biological replicates were performed to calculate the mean and the standard deviation. The data obtained from this quantitative PCR assay were subjected to atest wherevalues below 0.05 were considered to be significant. To detect the expression ofin, reverse- transcription PCR was also performed (Table S4).

    ACKNOWLEDGEMENTS

    This study was supported by the National Key Research and Development Project in China (Grant No. 2016YFD200805), and National Natural Science Foundation of China (Grant Nos. 31301624 and 31571961).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    Fig. S1. Detection ofexpression via reversed- transcription PCR.

    Table S1. Size and length-width ratio ofdeletion/ complementmutants in yeast extract tryptone broth.

    Table S2. Concentration of conidia produced bydeletion/complementmutants in yeast extract tryptone broth.

    Table S3. Strains and vectors used in this study.

    Table S4. Primers used in this study.

    Byun H J, Kim B R, Yoo R, Park S Y, Rho S B. 2012. sMEK1 enhances gemcitabine anti-cancer activity through inhibition of phosphorylation of Akt/mTOR.s, 17(10): 1095?1103.

    Chen X Y, Hai D, Tang J T, Liu H, Huang J B, Luo C X, Hsiang T, Zheng L. 2020. UvCom1 is an important regulator required for development and infection in the rice false smut fungus., 110(2): 483?493.

    Fan J, Guo X Y, Li L, Huang F, Sun W X, Li Y, Huang Y Y, Xu Y J, Shi J, Lei Y, Zheng A P, Wang W M. 2015. Infection ofintercepts rice seed formation but activates grain-filling-related genes., 57(6): 577?590.

    Fan J, Yang J, Wang Y Q, Li G B, Li Y, Huang F, Wang W M. 2016. Current understanding on, a unique flower- infecting fungus causing rice false smut disease., 17(9): 1321?1330.

    Fan J, Liu J, Gong Z Y, Xu P Z, Hu X H, Wu J L, Li G B, Yang J, Wang Y Q, Zhou Y F, Li S C, Wang L, Chen X Q, He M, Zhao J Q, Li Y, Huang Y Y, Hu D W, Wu X J, Li P, Wang W M. 2020. The false smut pathogenrequires rice stamens for false smut ball formation., 22(2): 646?659.

    Fang A F, Gao H, Zhang N, Zheng X H, Qiu S S, Li Y J, Zhou S, Cui F H, Sun W X. 2019. A novel effector genecontributes to full virulence ofto rice., 10: 845.

    Gingras A C, Caballero M, Zarske M, Sanchez A, Hazbun T R, Fields S, Sonenberg N, Hafen E, Raught B, Aebersold R. 2005. A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity., 4(11): 1725?1740.

    Guest G M, Lin X R, Momany M. 2004.RhoA is involved in polar growth, branching, and cell wall synthesis., 41(1): 13?22.

    Guo W W, Gao Y X, Yu Z M, Xiao Y H, Zhang Z G, Zhang H F. 2019. The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus., 129: 65?73.

    Hustedt N, Seeber A, Sack R, Tsai-Pflugfelder M, Bhullar B, Vlaming H, van Leeuwen F, Guénolé A, van Attikum H, Srivas R, Ideker R, Shimada K, Gasser S M. 2015. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling., 57(2): 273?289.

    Kim B R, Seo S H, Park M S, Lee S H, Kwon Y, Rho S B. 2015. sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1 alpha signaling pathways., 6(31): 31830?31843.

    Kim B R, Kwon Y, Rho S B. 2017. BMI-1 interacts with sMEK1 and inactivates sMEK1-induced apoptotic cell death., 37(1): 579?586.

    Knechtle P, Dietrich F, Philippsen P. 2003. Maximal polar growth potential depends on the polarisome component AgSpa2 in the filamentous fungus., 14(10): 4140?4154.

    Koiso Y, Li Y, Iwasaki S, Hanaka K, Kobayashi T, Sonoda R, Fujita Y, Yaegashi H, Sato Z. 1994. Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by., 47(7): 765?773.

    Li Y, Koiso Y, Kobayashi H, Hashimoto Y, Iwasaki S. 1995. Ustiloxins, new antimitotic cyclic peptides: Interaction with porcine brain tubulin., 49(10): 1367?1372.

    Liang Y F, Han Y, Wang C F, Jiang C, Xu J R. 2018. Targeted deletion of theandgenes efficiently inwith the CRISPR-Cas9 system., 9: 699.

    Liu Z Y, Liu N, Jiang H X, Yan L Y, Ma Z H, Yin Y N. 2018. The activators of type 2A phosphatases (PP2A) regulate multiple cellular processes via PP2A-dependent and -independent mechanisms in., 31(11): 1121?1133.

    Lü B, Zheng L, Liu H, Tang J T, Hsiang T, Huang J B. 2016. Use of random T-DNA mutagenesis in identification of gene, a regulator of conidiation, stress response, and virulence in., 7: 2086.

    Lyu J, Kim H R, Yamamoto V, Choi S H, Wei Z, Joo C K, Lu W. 2013. Protein phosphatase 4 and Smek complex negatively regulate Par3 and promote neuronal differentiation of neural stem/progenitor cells., 5(3): 593?600.

    Ma H, Han B K, Guaderrama M, Aslanian A, Yates III J R, Hunter T, Wittenberg C. 2014. Psy2 targets the PP4 family phosphatase Pph3 to dephosphorylate Mth1 and repress glucose transporter gene expression., 34(3): 452?463.

    Mendoza M C, Du F, Iranfar N, Tang N, Ma H, Loomis W F, Firtel R A. 2005. Loss of SMEK, a novel, conserved protein, suppressesnull cell polarity, chemotaxis, and gene expression defects., 25(17): 7839?7853.

    Mendoza M C, Booth E O, Shaulsky G, Firtel R A. 2007. MEK1 and protein phosphatase 4 coordinate dictyostelium development and chemotaxis., 27(10): 3817?3827.

    Meng J J, Sun W B, Mao Z L, Xu D, Wang X H, Lu S Q, Lai D W, Liu Y, Zhou L G, Zhang G Z. 2015. Main ustilaginoidins and their distribution in rice false smut balls., 7(10): 4023?4034.

    Omidi K, Hooshyar M, Jessulat M, Samanfar B, Sanders M, Burnside D, Pitre S, Schoenrock A, Xu J, Babu M, Golshani A. 2014. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast., 9(1): e87248.

    Qiu J H, Meng S, Deng Y Z, Huang S W, Kou Y J. 2019.: A fungus infects rice flower and threats world rice production., 26(4): 199?206.

    Sun L L, Li W J, Wang H T, Chen J, Deng P, Wang Y, Sang J L. 2011. Protein phosphatase Pph3 and its regulatory subunit Psy2 regulate Rad53 dephosphorylation and cell morphogenesis during recovery from DNA damage in., 10(11): 1565?1573.

    Sun X Y, Kang S, Zhang Y J, Tan X Q, Yu Y F, He H Y, Zhang X Y, Liu Y F, Wang S, Sun W X, Cai L, Li S J. 2013. Genetic diversity and population structure of rice pathogenin China., 8(9): e76879.

    Takano Y, Takayanagi N, Hori H, Ikeuchi Y, Suzuki T, Kimura A, Okuno T. 2006. A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of., 60(1): 81?92.

    Tang J T, Bai J, Chen X Y, Zheng L, Liu H, Huang J B. 2020. Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus., 66(2): 409?420.

    Tang Y X, Jin J, Hu D W, Yong M L, Xu Y, He L P. 2013. Elucidation of the infection process of(teleomorph:) in rice spikelets., 62(1): 1?8.

    Tuorto F, Herbst F, Alerasool N, Bender S, Popp O, Federico G, Reitter S, Liebers R, Stoecklin G, Gr?ne H J, Dittmar G, Glimm H, Lyko F. 2015. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis., 34(18): 2350?2362.

    Wolff S, Ma H, Burch D, Maciel G A, Hunter T, Dillin A. 2006. SMK-1, an essential regulator of DAF-16-mediated longevity., 124(5): 1039?1053.

    Xie S L, Wang Y F, Wei W, Li C Y, Liu Y, Qu J S, Meng Q H, Lin Y, Yin W X, Yang Y N, Luo C X. 2019. The Bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus., 65(5): 1185?1197.

    Xu P, Wang H, Tu R R, Liu Q N, Wu W X, Fu X M, Cao L Y, Shen X H. 2019. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system., 33(4): 313?322. (in Chinese with English abstract)

    Yong M L, Fan L L, Li D Y, Liu Y J, Cheng F M, Xu Y, Wang Z Y, Hu D W. 2016.infects specifically rice and barley stamen filaments due to the unique host cell walls., 79(9): 838?844.

    Yoon Y S, Lee M W, Ryu D, Kim J H, Ma H, Seo W Y, Kim Y N, Kim S S, Lee C H, Hunter T, Choi C S, Montminy M R, Koo S H. 2010. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis., 107(41): 17704?17709.

    Yu J J, Sun W X, Yu M N, Yin X L, Meng X K, Zhao J, Huang L, Huang L, Liu Y F. 2015. Characterization of mating-type loci in rice false smut fungus., 362(9): fnv014.

    Yu J J, Yu M N, Song T Q, Cao H J, Pan X Y, Yong M L, Qi Z Q, Du Y, Zhang R S, Yin X L, Liu Y F. 2019. A homeobox transcription factor UvHOX2 regulates chlamydospore formation, conidiogenesis, and pathogenicity in., 10: 1071.

    Yu M N, Yu J J, Hu J K, Huang L, Wang Y H, Yin X L, Nie Y F, Meng X K, Wang W D, Liu Y F. 2015. Identification of pathogenicity-related genes in the rice pathogenthrough random insertional mutagenesis., 76: 10?19.

    Zhang N, Yang J Y, Fang A F, Wang J Y, Li D Y, Li Y J, Wang S Z, Cui F H, Yu J J, Liu Y F, Peng Y L, Sun W X. 2020. The essential effector SCRE1 insuppresses rice immunity via a small peptide region., 21(4): 445?459.

    Zhang Y, Zhang K, Fang A F, Han Y Q, Yang J, Xue M F, Bao J D, Hu D W, Zhou B, Sun X Y, Li S J, Wen M, Yao N, Ma L J, Liu Y F, Zhang M, Huang F, Luo C X, Zhou L, Li J Q, Chen Z Y, Miao J K, Wang S, Lai J S, Xu J R, Hsiang T, Peng Y L, Sun W X. 2014. Specific adaptation ofin occupying host florets revealed by comparative and functional genomics., 5: 3849.

    Zheng D W, Wang Y, Han Y, Xu J R, Wang C F. 2016.is important for hyphal growth and stress responses in the rice false smut fungus., 6: 24824.

    Zheng M T, Ding H, Huang L, Wang Y H, Yu M N, Zheng R, Yu J J, Liu Y F. 2017. Low-affinity iron transport protein Uvt3277 is important for pathogenesis in the rice false smut fungus., 63(1): 131?144.

    14 September 2020;

    12 January 2021

    Liu Yongfeng (liuyf@jaas.ac.cn)

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2021.07.006

    (Managing Editor: Wang Caihong)

    成年女人毛片免费观看观看9| 88av欧美| 免费看a级黄色片| 国产精品一区二区三区四区免费观看 | a级毛片免费高清观看在线播放| 欧美精品国产亚洲| 国产乱人视频| 亚洲午夜理论影院| 国产成人啪精品午夜网站| 99riav亚洲国产免费| 亚洲av日韩精品久久久久久密| 少妇人妻一区二区三区视频| 亚洲va日本ⅴa欧美va伊人久久| 蜜桃久久精品国产亚洲av| 精品无人区乱码1区二区| 美女xxoo啪啪120秒动态图 | 成年人黄色毛片网站| 精品久久久久久久久av| 日韩欧美精品v在线| 国产白丝娇喘喷水9色精品| 亚洲在线自拍视频| 特大巨黑吊av在线直播| 简卡轻食公司| 亚洲aⅴ乱码一区二区在线播放| 黄色女人牲交| 国产三级在线视频| 伦理电影大哥的女人| 日韩欧美在线乱码| 天堂网av新在线| 别揉我奶头 嗯啊视频| 中文字幕精品亚洲无线码一区| 久久久久国内视频| 国产一区二区三区在线臀色熟女| 久久精品国产亚洲av香蕉五月| 欧美+亚洲+日韩+国产| 小说图片视频综合网站| 真人做人爱边吃奶动态| 少妇人妻精品综合一区二区 | 欧美日本亚洲视频在线播放| 亚洲精品在线美女| 少妇熟女aⅴ在线视频| 欧美潮喷喷水| 天堂影院成人在线观看| 老司机午夜十八禁免费视频| 一区二区三区免费毛片| 亚洲av一区综合| 亚洲自偷自拍三级| 我的女老师完整版在线观看| 一a级毛片在线观看| 午夜福利在线在线| 亚洲国产高清在线一区二区三| 熟妇人妻久久中文字幕3abv| 国产又黄又爽又无遮挡在线| 在线看三级毛片| 欧美成狂野欧美在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| 淫秽高清视频在线观看| av欧美777| 毛片一级片免费看久久久久 | 乱码一卡2卡4卡精品| 国产精品亚洲av一区麻豆| 毛片女人毛片| 搡老妇女老女人老熟妇| 久久精品国产清高在天天线| 色在线成人网| 久久性视频一级片| 深夜精品福利| 国产不卡一卡二| 97碰自拍视频| 成人特级黄色片久久久久久久| 欧美日韩国产亚洲二区| 99热这里只有是精品50| 如何舔出高潮| 欧美xxxx性猛交bbbb| 国产成人影院久久av| 我要搜黄色片| 国产国拍精品亚洲av在线观看| 热99在线观看视频| 无遮挡黄片免费观看| 两个人的视频大全免费| 国语自产精品视频在线第100页| 久久久久久久久中文| av黄色大香蕉| 精品午夜福利视频在线观看一区| 亚洲精品456在线播放app | 欧美性猛交黑人性爽| 男女床上黄色一级片免费看| 午夜a级毛片| 午夜影院日韩av| 大型黄色视频在线免费观看| 亚洲成人免费电影在线观看| 久久久久久久久久成人| 亚洲中文日韩欧美视频| 久久人妻av系列| 亚洲第一欧美日韩一区二区三区| 国产成人av教育| 在现免费观看毛片| 毛片一级片免费看久久久久 | 国产一区二区三区视频了| 99国产精品一区二区三区| 久久久久久久久中文| 天堂网av新在线| 国产在视频线在精品| 成熟少妇高潮喷水视频| 成年女人毛片免费观看观看9| 99热6这里只有精品| 青草久久国产| 欧美成人一区二区免费高清观看| 亚洲七黄色美女视频| 欧美一区二区亚洲| 精品久久久久久,| 亚洲成人免费电影在线观看| 在线观看舔阴道视频| 国产av一区在线观看免费| 尤物成人国产欧美一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产中年淑女户外野战色| 国产淫片久久久久久久久 | 99热这里只有是精品在线观看 | 亚洲中文字幕日韩| 波野结衣二区三区在线| 国产毛片a区久久久久| 老司机深夜福利视频在线观看| 国产熟女xx| 在线国产一区二区在线| 精品久久久久久久人妻蜜臀av| 国产av麻豆久久久久久久| 欧美潮喷喷水| av专区在线播放| 日本成人三级电影网站| 色在线成人网| 男人舔奶头视频| 宅男免费午夜| 听说在线观看完整版免费高清| 亚洲五月天丁香| 久久久久九九精品影院| 成年女人毛片免费观看观看9| 成人美女网站在线观看视频| 搡老熟女国产l中国老女人| 黄色日韩在线| 一区二区三区高清视频在线| 最新中文字幕久久久久| 国产精品三级大全| 天天躁日日操中文字幕| 国产亚洲av嫩草精品影院| 中文字幕精品亚洲无线码一区| 亚洲第一电影网av| 精品久久久久久久人妻蜜臀av| 欧美绝顶高潮抽搐喷水| 757午夜福利合集在线观看| av福利片在线观看| 久久精品人妻少妇| 亚洲成人中文字幕在线播放| 久久久久久久久久黄片| 国产亚洲欧美在线一区二区| 51午夜福利影视在线观看| 99国产精品一区二区蜜桃av| 亚洲成av人片免费观看| 非洲黑人性xxxx精品又粗又长| 桃色一区二区三区在线观看| 在线播放国产精品三级| 看片在线看免费视频| 91狼人影院| 国产成+人综合+亚洲专区| 在线天堂最新版资源| 日韩精品青青久久久久久| 亚洲国产精品合色在线| 国产白丝娇喘喷水9色精品| 动漫黄色视频在线观看| 国产精品1区2区在线观看.| 免费av观看视频| 日日夜夜操网爽| 日本一本二区三区精品| 免费看光身美女| 欧美又色又爽又黄视频| 搡女人真爽免费视频火全软件 | 最近中文字幕高清免费大全6 | 日韩精品青青久久久久久| 欧美bdsm另类| 变态另类丝袜制服| 欧美性感艳星| 久久久久九九精品影院| 一级黄片播放器| 久久精品国产亚洲av天美| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| 国产精品1区2区在线观看.| 久久热精品热| av国产免费在线观看| АⅤ资源中文在线天堂| 超碰av人人做人人爽久久| 青草久久国产| 国产亚洲欧美98| 淫妇啪啪啪对白视频| 内射极品少妇av片p| 在线观看66精品国产| 2021天堂中文幕一二区在线观| 少妇被粗大猛烈的视频| 极品教师在线免费播放| 别揉我奶头~嗯~啊~动态视频| 日本三级黄在线观看| 少妇的逼水好多| 精品人妻偷拍中文字幕| 亚洲自拍偷在线| 男女床上黄色一级片免费看| 最近中文字幕高清免费大全6 | 村上凉子中文字幕在线| 亚洲精品色激情综合| www.999成人在线观看| 超碰av人人做人人爽久久| 久久久国产成人免费| 色尼玛亚洲综合影院| 国产av麻豆久久久久久久| 国语自产精品视频在线第100页| 人人妻,人人澡人人爽秒播| 国产主播在线观看一区二区| 99热这里只有精品一区| 日本黄色片子视频| 国产探花在线观看一区二区| 国产精品乱码一区二三区的特点| 亚洲欧美日韩东京热| 久久精品91蜜桃| 日韩成人在线观看一区二区三区| 免费av毛片视频| or卡值多少钱| www.www免费av| 国产美女午夜福利| 精品久久久久久久久久久久久| 色5月婷婷丁香| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 亚洲精品粉嫩美女一区| 久久久久国内视频| 一卡2卡三卡四卡精品乱码亚洲| 怎么达到女性高潮| 淫秽高清视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影视91久久| 男女床上黄色一级片免费看| 男女之事视频高清在线观看| 精品熟女少妇八av免费久了| 很黄的视频免费| 中文字幕免费在线视频6| 成人精品一区二区免费| 成年女人看的毛片在线观看| 欧美bdsm另类| av在线天堂中文字幕| 国产麻豆成人av免费视频| 免费观看精品视频网站| h日本视频在线播放| 久久国产乱子免费精品| 成人特级av手机在线观看| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 国产精品不卡视频一区二区 | 我要看日韩黄色一级片| 亚洲欧美清纯卡通| 免费黄网站久久成人精品 | 哪里可以看免费的av片| 免费搜索国产男女视频| 在线看三级毛片| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 亚洲乱码一区二区免费版| 国产黄a三级三级三级人| 午夜福利视频1000在线观看| 精品久久久久久成人av| 欧美激情国产日韩精品一区| 91字幕亚洲| www日本黄色视频网| 国内毛片毛片毛片毛片毛片| 麻豆国产av国片精品| 亚洲人成网站在线播| 国产免费男女视频| 国产午夜精品久久久久久一区二区三区 | 日本黄色视频三级网站网址| 亚洲成人精品中文字幕电影| 床上黄色一级片| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 国产精品98久久久久久宅男小说| www日本黄色视频网| 午夜福利免费观看在线| 亚洲成av人片免费观看| 色尼玛亚洲综合影院| 日韩国内少妇激情av| 97碰自拍视频| 波多野结衣高清作品| 国产精品久久视频播放| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区四那| 免费在线观看影片大全网站| 男女做爰动态图高潮gif福利片| 女人十人毛片免费观看3o分钟| 如何舔出高潮| 熟妇人妻久久中文字幕3abv| 日本与韩国留学比较| 国产亚洲欧美在线一区二区| 精品人妻熟女av久视频| 免费一级毛片在线播放高清视频| 久久热精品热| 亚洲国产欧洲综合997久久,| 18禁裸乳无遮挡免费网站照片| 国产精品永久免费网站| 免费av不卡在线播放| 一区福利在线观看| 两个人视频免费观看高清| 亚洲成a人片在线一区二区| 99久久精品一区二区三区| 日韩人妻高清精品专区| or卡值多少钱| 国产成人aa在线观看| 国产精品人妻久久久久久| eeuss影院久久| 亚洲精品影视一区二区三区av| 国产又黄又爽又无遮挡在线| 成年女人看的毛片在线观看| 深夜精品福利| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 欧美潮喷喷水| 97碰自拍视频| 美女xxoo啪啪120秒动态图 | 亚洲成人久久性| 一二三四社区在线视频社区8| 日韩高清综合在线| 国产精品电影一区二区三区| 亚洲真实伦在线观看| 乱人视频在线观看| 国产中年淑女户外野战色| 看黄色毛片网站| 精品人妻视频免费看| 色播亚洲综合网| 高清在线国产一区| 女同久久另类99精品国产91| 我的女老师完整版在线观看| 禁无遮挡网站| 看免费av毛片| 亚洲精品一区av在线观看| 精品免费久久久久久久清纯| 亚洲美女搞黄在线观看 | 97热精品久久久久久| 亚洲久久久久久中文字幕| 国产精品99久久久久久久久| 美女大奶头视频| 最后的刺客免费高清国语| 国产精品电影一区二区三区| 日韩欧美精品v在线| 日日干狠狠操夜夜爽| 国产精品久久久久久久久免 | 亚洲精品在线美女| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器| 看黄色毛片网站| 亚洲精品日韩av片在线观看| 日韩av在线大香蕉| 国产精品久久电影中文字幕| 免费av不卡在线播放| 久久精品国产清高在天天线| 亚洲成人久久爱视频| av专区在线播放| 亚洲国产精品sss在线观看| 一夜夜www| xxxwww97欧美| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 草草在线视频免费看| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 国内少妇人妻偷人精品xxx网站| 国产精品三级大全| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 美女黄网站色视频| 久久亚洲真实| 国产色婷婷99| 日韩欧美国产一区二区入口| 天美传媒精品一区二区| 久久伊人香网站| 国产一区二区三区视频了| 一级a爱片免费观看的视频| 性插视频无遮挡在线免费观看| 淫妇啪啪啪对白视频| 神马国产精品三级电影在线观看| 俄罗斯特黄特色一大片| av黄色大香蕉| 好男人电影高清在线观看| 制服丝袜大香蕉在线| 亚洲美女搞黄在线观看 | 两个人视频免费观看高清| 美女cb高潮喷水在线观看| 欧美高清成人免费视频www| av国产免费在线观看| 久久天躁狠狠躁夜夜2o2o| 99热这里只有是精品50| 精品人妻偷拍中文字幕| a级毛片a级免费在线| 首页视频小说图片口味搜索| 变态另类成人亚洲欧美熟女| 女生性感内裤真人,穿戴方法视频| 成年免费大片在线观看| 天天一区二区日本电影三级| 国产成人福利小说| 国产69精品久久久久777片| 18+在线观看网站| 最好的美女福利视频网| 嫩草影院入口| 欧美潮喷喷水| av国产免费在线观看| 中亚洲国语对白在线视频| 国产探花在线观看一区二区| 自拍偷自拍亚洲精品老妇| 成人午夜高清在线视频| 脱女人内裤的视频| 亚洲精品一区av在线观看| 免费人成视频x8x8入口观看| 国产av一区在线观看免费| 好男人电影高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产大屁股一区二区在线视频| ponron亚洲| av视频在线观看入口| 国产在线精品亚洲第一网站| 波多野结衣高清无吗| 69av精品久久久久久| 看片在线看免费视频| 久久99热这里只有精品18| 色视频www国产| 中文亚洲av片在线观看爽| 久久久精品欧美日韩精品| 精品久久久久久久久久久久久| 好男人电影高清在线观看| 亚洲七黄色美女视频| 精品一区二区三区av网在线观看| 此物有八面人人有两片| 啪啪无遮挡十八禁网站| 亚洲三级黄色毛片| 午夜影院日韩av| 久久九九热精品免费| 国产精品亚洲美女久久久| 高清日韩中文字幕在线| 免费在线观看亚洲国产| 九九在线视频观看精品| 欧美日韩中文字幕国产精品一区二区三区| 成熟少妇高潮喷水视频| 国产一区二区三区视频了| 少妇裸体淫交视频免费看高清| 高潮久久久久久久久久久不卡| 精品久久久久久,| 午夜免费激情av| 欧美日韩国产亚洲二区| 精品一区二区三区视频在线观看免费| 偷拍熟女少妇极品色| 精品一区二区三区av网在线观看| 国产成人影院久久av| 色哟哟·www| 99热这里只有精品一区| 好男人电影高清在线观看| 中国美女看黄片| 人妻制服诱惑在线中文字幕| 欧美黑人欧美精品刺激| 99久国产av精品| 成人毛片a级毛片在线播放| 久久6这里有精品| 国产精品野战在线观看| 丰满的人妻完整版| 亚洲第一欧美日韩一区二区三区| 午夜福利在线在线| 欧美成人性av电影在线观看| 看片在线看免费视频| 91麻豆精品激情在线观看国产| 特大巨黑吊av在线直播| 午夜免费成人在线视频| 精品欧美国产一区二区三| 精品不卡国产一区二区三区| 亚洲性夜色夜夜综合| 成人美女网站在线观看视频| 热99在线观看视频| 成年免费大片在线观看| 一区二区三区激情视频| 两个人视频免费观看高清| 免费人成在线观看视频色| 久久精品国产自在天天线| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 超碰av人人做人人爽久久| 可以在线观看毛片的网站| 国产欧美日韩一区二区三| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 成人性生交大片免费视频hd| 欧美区成人在线视频| 91在线精品国自产拍蜜月| 人人妻人人看人人澡| 国产亚洲欧美在线一区二区| 午夜精品一区二区三区免费看| 搡老岳熟女国产| 99热6这里只有精品| 成人av一区二区三区在线看| 久久久久九九精品影院| 成年版毛片免费区| 欧美一区二区亚洲| 国产在线男女| 男女床上黄色一级片免费看| 欧洲精品卡2卡3卡4卡5卡区| 国产野战对白在线观看| 亚洲人成电影免费在线| 亚洲中文字幕一区二区三区有码在线看| 97热精品久久久久久| 欧美激情久久久久久爽电影| 亚洲性夜色夜夜综合| 国产探花在线观看一区二区| 亚洲激情在线av| 亚洲久久久久久中文字幕| 亚洲精品一区av在线观看| 三级毛片av免费| 国内精品美女久久久久久| 一区二区三区免费毛片| 黄色配什么色好看| 欧美性猛交╳xxx乱大交人| 免费在线观看日本一区| 久久久成人免费电影| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线观看二区| 欧美色视频一区免费| 久久香蕉精品热| 69av精品久久久久久| 国产精品人妻久久久久久| 亚洲18禁久久av| 中文字幕人妻熟人妻熟丝袜美| 亚洲片人在线观看| 国产成人欧美在线观看| 97人妻精品一区二区三区麻豆| 老司机午夜十八禁免费视频| 久久热精品热| 午夜精品久久久久久毛片777| 久久香蕉精品热| 午夜老司机福利剧场| 欧美最新免费一区二区三区 | 欧美乱妇无乱码| 国产免费一级a男人的天堂| 久久久色成人| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 99视频精品全部免费 在线| 欧美成人a在线观看| 亚洲av五月六月丁香网| 国内毛片毛片毛片毛片毛片| 久久久久久久久中文| 90打野战视频偷拍视频| 看免费av毛片| 久久人人爽人人爽人人片va | 变态另类成人亚洲欧美熟女| 免费搜索国产男女视频| 黄色日韩在线| 久久午夜福利片| 国产视频一区二区在线看| 一区二区三区免费毛片| 免费av不卡在线播放| 午夜福利在线观看吧| 精品不卡国产一区二区三区| 99久久无色码亚洲精品果冻| 国产毛片a区久久久久| av视频在线观看入口| 欧美精品啪啪一区二区三区| 免费观看人在逋| 亚洲无线观看免费| 深爱激情五月婷婷| 91九色精品人成在线观看| 一个人免费在线观看电影| 日本熟妇午夜| 成人午夜高清在线视频| 国产白丝娇喘喷水9色精品| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 99riav亚洲国产免费| 夜夜看夜夜爽夜夜摸| 久久久色成人| 又粗又爽又猛毛片免费看| 亚洲成a人片在线一区二区| 少妇人妻一区二区三区视频| 精品日产1卡2卡| 久久亚洲精品不卡| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 有码 亚洲区| 国产激情偷乱视频一区二区| 我要看日韩黄色一级片| 在线观看舔阴道视频| 狠狠狠狠99中文字幕| 国语自产精品视频在线第100页| 午夜福利在线观看吧| 成年女人看的毛片在线观看| 1024手机看黄色片| 又粗又爽又猛毛片免费看| 成年免费大片在线观看| 丁香欧美五月| 精品99又大又爽又粗少妇毛片 | 亚洲综合色惰| av在线老鸭窝| 国产国拍精品亚洲av在线观看| 国产精品野战在线观看| 亚洲最大成人av| 欧美绝顶高潮抽搐喷水| 日本 欧美在线| 日韩中文字幕欧美一区二区| 99在线视频只有这里精品首页| 亚洲第一区二区三区不卡| 成人性生交大片免费视频hd| 97碰自拍视频| 欧美丝袜亚洲另类 | 精品国产亚洲在线| 在现免费观看毛片| 身体一侧抽搐| x7x7x7水蜜桃|