• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor*

    2021-07-30 07:42:06WeiZhang張偉XiaoQiangZhang張曉強LeiLiu劉蕾ZhaoQiWang王朝棋andZhiGuoLi李治國
    Chinese Physics B 2021年7期
    關鍵詞:張偉王朝治國

    Wei Zhang(張偉) Xiao-Qiang Zhang(張曉強) Lei Liu(劉蕾)Zhao-Qi Wang(王朝棋) and Zhi-Guo Li(李治國)

    1School of Science,Southwest University of Science and Technology,Mianyang 621010,China

    2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    3Laboratory for Shock Wave and Detonation Physics,Institute of Fluid Physics,Mianyang 610064,China

    Keywords: first-principles calculations, electron-phonon interactions, lattice thermal conductivity, thermo

    1. Introduction

    Owing to increasingly severe environmental pollution and the depletion of fossil fuels, the search for alternative clean and renewable energy sources is urgent. Thermoelectric(TE)materials can spontaneously convert waste heat into electric energy,so they have great potential applications in alleviating the dilemmas of energy sources.[1-5]The performance of a TE material can be described by the dimensionless figure of meritZT=S2σT/(κl+κe), whereS,σ,T,κl, andκedenote the Seebeck coefficient,electrical conductivity,absolute temperature, lattice thermal conductivity, and electronic thermal conductivity, respectively. High-performance TE materials usually require both high power factor(PF=S2σ)and low total thermal conductivityκ(κ=κl+κe). Consequently, some techniques such as chemical doping,band structure engineering,strain engineering,nano-structuring,and low-dimensional structure were adopted to enhancePFor reduceκ.[6-10]Lowdimensional materials could exhibit significantly higherZTvalues than their bulk counterparts[11,12]due to the decreasedκon account of the phonon boundary scattering and the improvedPFcaused by the quantum confinement effect.

    Recently, the two-dimensional (2D) transition-metal chalcogenidesM2X(M= metal andX= S, Se, Te)have attracted considerable attention due to their nontrivial properties.[13-20]Monolayerδ-Cu2S had an ultralowκlof 0.10 W/mK at 800 K, leading to a highZTof 1.33.[14]TheZTof the metal-shrouded Tl2O monolayer exceeded 3 whenT >700 K.[20]Monolayer Ag2S was also recommended as a promising 2D TE material.[17]Recently, Chenet al.[18]and Wuet al.[19]proposed a new nonmetal-shroudedM2X: monolayer square-Au2S.Its cohesive energy 3.4 eV was comparable to that of monolayer Ge(3.26 eV)and Si(3.98 eV),[21]indicating the possibility to synthesize it experimentally. Chenget al.[18]calculated the lattice thermal conductivity of this monolayer and found that it has an unusually lowκl, but the physical origins behind such a lowκlare unexplored. They also suggested that monolayer square-Au2S has ultrahigh carrier mobilities. However, the carrier mobilities of monolayer square-Au2S calculated by them were very different(their difference was more than 160%), though the same deformation potential theory was used.[22,23]This is due to the fact that the simplified phenomenological model they used contains some tunable parameters, and thus generally lacks sufficient predictive power.[24,25]Therefore, it is necessary to perform the parameter-free first-principles calculations for the electronic transport properties of monolayer square-Au2S to obtain reliable results. Furthermore, we notice that previous work focused only on carrier mobilities,the full thermoelectric transport parameters likeS,σ,κe,andPFfor deriving the figure of meritZTare still lacking.

    In general, the electronic transport properties are computed in terms of the Boltzmann transport equation(BTE) within the constant relaxation time approximation(CRTA).[26-28]Actually, the carrier relaxation time relies on carrier mode, carrier concentration, and temperature.[25]Recently, the electronic transport properties could be accurately predicted by solving the parameter-free BTE under self-energy relaxation time approximation (SERTA) with the scattering limited by the electron-phonon interactions. In addition,as is well known,the spin-orbit coupling(SOC)effect may have a significant influence on the electronic band structure of materials and,further,on electronic transport properties.[29,30]Motivated by the above considerations,in this work,we aim to explore the origin of the lowκlof monolayer square-Au2S and investigate the full TE transport properties together with theZTfrom first-principles calculations and parameter-free BTE.We find that this monolayer possesses a large n-type(p-type)ZT=2.2 (1.5) at 300 K andZT=3.8 (2.5) at 600 K, indicating that it can become a highly promising room-and hightemperature TE material. Furthermore,the effects of EPIs and SOC on TE properties of the monolayer are also discussed.

    2. Computational method

    All first-principles calculations based on density functional theory (DFT) were performed by using the Quantum ESPRESSO package.[31]with Perdew-Burke-Ernzerhof(PBE) exchange-correlation functional.[32]The normconserving pseudopotential[33]was used to describe the corevalence interaction with a plane wave kinetic energy cutoff of 80 Ry (1 Ry=13.6056923(12) eV). The convergence threshold of 1×10-8a.u. (a.u. is short for atomic unit) for total energy and 1×10-5a.u. for forces were used. The DFT-D3 method[34]was used to take into account the long-range van der Waals interaction.The electronic band structures were calculated by the six versions of Heyd-Scuseria-Ernzerh hybrid functional (HSE06). The spin-orbit coupling (SOC) interaction was considered in the calculations of electronic band structure and phonon dispersion. Inab initiomolecular dynamics (AIMD) simulations, a 3×3×1 supercell was used as an initial structure. The timestep and total simulation time were set to be 1 fs and 10 ps,respectively. The lattice thermal conductivity can be obtained by the self-consistent solution of the BTE, as implemented in the ShengBTE package.[35]The 2nd-order interatomic force constants(IFCs)with a 5×5×1q-mesh were calculated by the density functional perturbation theory. A 3×3×1 supercell and 5×5×1k-mesh were used to calculate the 3rd-order anharmonic IFCs, and the interactions up to the eighth nearest-neighbors were included. In the BTE calculations,a denseΓ-centered 50×50×1q-mesh was adopted to obtain converged results. The vacuum lengthLis set to be 20 ?A, which avoids the interactions between layers.For properties requiring volume normalization, an effective thickness of 6.19 ?A was used,which includes the bucking distancehof the monolayer plus twice the van der Waals radius of a sulfur atom.[18,25,27,36,38]

    The EPI matrix elements were computed by using an initial coarse 15×15×1k-mesh with a 5×5×1q-mesh,and then interpolated to a dense 150×150×1k-mesh with a 50×50×1q-mesh using the maximally localized Wannier functions, as implemented in the EPW package.[39,40]These settings are enough to ensure convergence. The energyresolved carrier relaxation time of the electronic state with band indexnand wave vectorkcan be estimated from the imaginary part of the electron self-energy Im(Σ)as follows:

    whereΩBZis the volume of the first Brillouin zone,matrix elementsgmnν(k,q)are the probability amplitude for scattering from an initial electronic state|nk〉into a final state|mk+q〉via a phononqν,fnkis the Fermi-Dirac distribution function,nqνis the Bose-Einstein distribution function,εnkis the electron eigenvalue for the state|nk〉,ωqνis the phonon frequency of wave vectorq, and branch indexν. Then, based on theτnk(E)and band structure from HSE06 with SOC,the electronic transport coefficients,includingS,σ,andκe,can be obtained as follows:

    wheree,Nk,Ω,εF, andvnkrepresent the electron charge,total number ofk-points, volume of the unit cell, Fermi energy, and electron group velocity, respectively. The electronic transport coefficients were solved by using the Boltz-TraP2 package.[27]Hereinafter,we refer to this computational scheme as SOC+SERTA. To elucidate the influence of EPIs on the electronic transport coefficients,the CRTA and SERTA calculations without the SOC were carried out(referred to as NoSOC+CRTA and NoSOC+SERTA hereinafter). The role of the SOC effect is checked by comparing the SOC+SERTA calculations with the NoSOC+SERTA calculations. In the CRTA calculations, the carrier relaxation timeτwas calculated from the equation:τ=μm*/e,where carrier mobilityμand effective massm*were cited from Ref.[18].

    3. Results and discussion

    3.1. Structure of monolayer square-Au2S

    Monolayer square-Au2S has a tetragonal structure with a space group symmetry ofP4/nmm. There are four Au atoms and two S atoms in a unit cell,and the four Au atoms are in a plane. The layer of Au atoms is sandwiched between two layers of S atoms, and each S atom is tetracoordinated with Au atoms as shown in Figs. 1(a) and 1(b). The fully optimized lattice parameter and the bucking distancehof monolayer square-Au2S are 5.74 ?A and 2.59 ?A,respectively. These structural parameters accord well with previous calculations.[19]The phonon dispersion and AIMD simulations indicate that the monolayer square-Au2S possesses good dynamical and thermal stability (see the supplementary material, Fig. S1).Figure 1(c) displays the electron localization functions, from which we can see that the electrons are mostly localized near S atoms,implying the ionic nature of the Au-S bond.In general,weak interatomic bonding is an indicator of lowκl.[7]

    Fig.1. (a)Top view and(b)side view of the atomic structure of monolayer square-Au2S, (c) electron localization functions, and (d) high-symmetry kpoints in the first Brillouin zone.

    3.2. Lattice thermal conductivity

    The calculatedκlversustemperature is displayed in Fig. 2(a). As expected, monolayer square-Au2S has an ultralowκlof 0.72 W/mK at room temperature,which is smaller than other 2D nanosheets have, like SnSe,[41]Bi2Te3,[42]MoS2,[43]BP,[44]PdS2,[3]and comparable to those of the recently reported monolayers Tl2O[13]and Bi2O2Se.[6]The ultralowκlof monolayer square-Au2S is beneficial to the high TE performance. It can also be seen from Fig. 2(a) that theκlof monolayer square-Au2S decreases with temperature increasing, reaching 0.48 W/mK at 600 K. This is mainly due to the inherent enhancement of the phonon-phonon scattering with temperature increasing. It is noted that our calculatedκlof monolayer square-Au2S is lower than that in Ref. [18],which is because the van der Waals interaction exerts influence on group velocity and the phonon relaxation time is included in the present work. The calculated contributions from different phonon branches toκlin Fig. 2(b) reveal that lowfrequency acoustic branches contribute to the majority of theκl. In contrast, the contribution from high-frequency optical branches is quite small.

    According to phonon Boltzmann theory,κlis proportional to the phonon lifetime and the square of the group velocity.[28]Thus, to understand the origin of such an ultralowκl, the phonon group velocities and relaxation timeversusfrequency are shown in Figs. 2(c) and 2(d), respectively. The group velocities and phonon lifetime from the acoustic branches are higher than those from the optical branches, which helps explain why the contribution from acoustic branches accounts for the majority ofκl. The maximum phonon group velocity of all phonon modes for monolayer square-Au2S is quite small(within 3 km/s),resulting in the lowκl. On the other hand, the phonon lifetimes for the acoustic modes are low enough(1 ps-100 ps), which implies the strong phonon scattering. The anharmonic phonon scattering can be characterized by two parameters: the Gr¨uneisen parameterγand the size of the three-phonon scattering phase spaceW. The mode Gr¨uneisen parameter and weighted phase space of three-phonon scattering of the acoustic branches are both large(see Fig.S2 in Supplementary material),leading to low phonon lifetime and,hence,lowκl.

    It is worth noting that EPIs may have an important effect on phonon thermal conductivity.[45,46]However, the present calculations elucidate that the phonon relaxation time arising from the intrinsic phonon-phonon scattering is at least two orders of magnitude smaller than that from electron-phonon scattering (see Fig. S3 in supplementary material). Therefore, according to Matthiessen’s rule,[28]theκlof monolayer square-Au2S due to EPIs can be safely ignored.

    Fig.2. (a)Lattice thermal conductivity κl versus temperature,(b)contribution of phonons at different frequencies to κl,and(c)phonon group velocity,and(d)phonon relaxation time versus frequency at 300 K for monolayer square-Au2S.

    3.3. Electronic transport and TE properties

    Monolayer square-Au2S with lowκlwill be a highly useful TE material if itsSandσare high enough. The electronic transport properties depend mainly on the band structure and carrier relaxation time. We use the hybrid functional HSE06 to overcome the underestimation of bandgap by PBE.As shown in Fig.3(a), monolayer square-Au2S is a semiconductor with a direct bandgap of 0.8 (1.2) eV with (without)SOC,which is slightly smaller than that reported in Ref.[19].The projected density of states shown in Fig. 3(b) indicate that both Au atoms and S atoms contribute to states near the Fermi level, implying that there is a strong hybridization between orbitals of Au and S atoms. Further analyses of the orbital-resolved density of states(see Fig.S4)indicate that the states near the valence band maximum(VBM)are contributed mainly by the hybridization of atomic orbitals of Au atoms and atomic orbitals of S atom. The states around the conduction band minimum (CBM), however, stem mainly from the atomic orbitals of the Au atom. Consequently, the valence band and conduction band may have different dispersion characteristics as shown in Fig.3(a).There exists strong dispersion near the CBM,while the bands around the VBM are relatively flat. Upon the introduction of the SOC effect,the band edges near the VBM become more dispersive,while the band shape around the CBM is hardly affected. Therefore, after including SOC, the band edges around the Fermi level are highly dispersive, leading to small effective mass (m*=0.06mefor electron andm*=0.10mefor hole[19]). According to the deformation potential theory, the carrier mobilityμis inversely proportional to effective massm*. And the electronic conductivityσcan be calculated from the equation:σ=μne,wherenis carrier concentration. Thus,the small effective mass will result in largeμandσ,thereby a high power factor.

    The carrier relaxation time can be accurately calculated from the EPI matrix elements. According to Eq.(1), the carrier relaxation time and EPI matrix elements are related by the electron self-energy Im(Σ). The projections of Im(Σ)on the band structure and the energy-dependent carrier relaxation time are displayed in Figs. 3(a) and 3(c), respectively. States with small Im(Σ)appear around the VBM and CBM because electrons and holes near the band edges are less scattered as a result of the limited phase space.[7,47]Moreover, a strong energy dependence can be witnessed from the energy-dependent carrier relaxation time as shown in Fig.3(c).The carrier relaxation time decreases uniformly with temperature increasing.The relaxation time at 300 K is higher than that at 600 K.This can be easily understood, since more and more phonons are populated with the increase of temperature, which leads the electron-phonon scattering to strengthen.[48]

    Figure 4 shows the curves of electronic transport and TE parametersversuscarrier concentrations at 300 K for n-type and p-type dopings under the SOC+SERTA.Figures 4(a)and 4(b) display the largeSvalues for n-type and p-type doped monolayer square-Au2S.For instance,the absolute value ofSfor n-type(p-type)doping at the optimal carrier concentration(corresponding to the maximumZT)is 265 μV/K(214 μV/K).Both of them are in the range of 200 μV/K-300 μV/K,which is an indicator of good TE material.[1,49]Figures 4(c)and 4(d)show that theσfor n-type doping is superior to that for p-type doping. Notably, the absolute value ofSis inversely proportional to carrier concentration, whereas theσfollows the opposite trend,suggesting that there is a trade-off between them,leading to a maximumPFat a certain carrier concentration.

    Fig. 3. (a) Electronic band structure calculated by HSE06 functional with (solid line) and without considering the SOC effect (gray dotted line), (b)projected density of states with considering SOC effect, and (c) energy-dependent carrier relaxation time τnk(E). Band structure with SOC effect is color-coded according to Im(Σ)at 300 K,which is scaled by color bar with units of eV.

    Fig.4. Curves of electronic transport and TE coefficients versus carrier concentration of n-type(left panels)and p-type(right panels)doped monolayer square-Au2S at 300 K: ((a), (b)) absolute value of Seebeck coefficient S, ((c), (d)) electrical conductivity σ, ((e), (f)) power factor PF, and ((g),(h))figure of merit ZT.

    The calculatedPFvalues in Figs. 4(e) and 4(f) shows that the maximumPFof n-type doping is twice that of p-type doping mainly due to the higherσfor n-type doping. The n-type (p-type) doped monolayer square-Au2S has an exceptionalPF=9.90(4.85) mW/mK2at 300 K, which is higher than that of monolayersδ-Cu2S and Bi2O2Se. The calculatedκefor n-type (p-type) doping at optimal concentration is 0.38 (0.20) W/mK, which is lower thanκl. Moreover, theκefor n-type (p-type) doping contributes only 34% (21%) to the totalκ(see the supplementary material, Fig. S5). Owing to the highPFand quite lowκ, the n-type (p-type)ZTof 2.2(1.5)can be achieved at the optimal hole concentrationnE≈4.0×1010cm-2(nH≈1.1×1011cm-2)andT=300 K as shown in Figs.4(g)and 4(h).

    Figure 5 displays the contour map ofZT versustemperature and doping concentration under SOC+SERTA.It is found that the maximumZTand the optimal carrier concentration both increase with temperature increasing. The maximum ntype (p-type)ZTexceeds 3.7 (2.4) atnE≈8.5×1010cm-2(nH≈4.0×1011cm-2) and 600 K. The maximum n-typeZT= 3.8 is higher than that of typical bulk TE material:SnSe (2.6).[50]and 2D monolayers:δ-Cu2S (1.33),[14]Tl2O(3.35),[20]and Bi2O2Se(3.35).[6]

    Fig.5. Contour map of ZT as a function of temperature and carrier concentration of(a)n-type and(b)p-type doped monolayer square-Au2S.

    3.4. Effects of SOC and EPIs on TE properties

    The SOC effect and EPIs may play a vital role in determining the electronic properties of materials.[25,30,51,52]The influence of the SOC effect can be revealed by comparing the results from SOC+SERTA and NoSOC+SERTA calculations as shown in Fig. 4. With the consideration of SOC, for ptype doping,Sdecreases whereasσincreases significantly,which can be understood through the above analyses of band structures. Since the increase ofσis dominant,the maximumPFandZTwith SOC are~4 times and~3.5 times larger than the results without SOC,respectively. Moreover,the optimum hole concentration decreases by nearly two orders of magnitude with SOC strengthening. On the other hand, the band edges around CBM are less affected by the SOC effect as shown in Fig. 3(a). Therefore, forSandσof n-type doping, the difference between the results with and without the SOC effect is much smaller than the counterparts in the case of p-type doping. Moreover, the maximum values of n-typePFandZTwith and without the SOC effect are close to each other(see the left panel of Fig.4).

    To reveal the influence of EPIs on the electronic transport properties, we compare the results from SERTA and CRTA calculations in Fig. 4. For n-type and p-type dopings, theSfrom SERTA reasonably accords with that from CRTA,which indicates the low correlation betweenSand carrier relaxation time. The discrepancy between the CRTA and SERTA results is apparent forσ,κe,and the maximum values ofPFandZT,which are shown in Fig. 4 and Fig. S5. The maximum values ofPF(ZT) from SERTA are~56% (28%) and~90%(84%)lower than those from CRTA for n-type and p-type dopings,respectively. Therefore,the strong energy dependence ofτnk(E)plays an essential role in determining the overall electronic transport and TE performance.The completely different treatment of carrier relaxation time is responsible for the discrepancy.In the CRTA calculations,the carrier relaxation time is regarded as a constant. It is calculated by the deformation potential theory, which only considers the electron-acoustic phonon scattering. However,for monolayer square-Au2S,the optical phonon scattering is comparable to that from the acoustic phonon branches (see Fig. S6 in the supplementary material). The SERTA adopts the energy-resolved carrier relaxation time deduced from the EPI matrix elements which take into account all electron-phonon scattering processes.To date,the electronic transport and TE properties of several materials,including Li,[53]Si,[29,30]GaAs,[29]SnSe,[52]Mg3Sb2,[24]CoSi,[51]etc. have been investigated by the parameter-free algorithm and the calculation results accord well with the experimental data. Therefore,the electronic transport and TE properties of monolayer square-Au2S obtained by the SERTA are believed to be more predictive than by the CRTA,although the corresponding experimental data are not available at present.In addition,although the maximum values ofPFandZTfrom the SERTA seriously deviate from those from the CRTA, the optimum carrier concentrations predicted by the two methods are relatively close to each other.

    4. Conclusions

    In summary, thermal, electronic transport, and thermoelectric properties of monolayer square-Au2S are systematically investigated via a parameter-freeab initioBoltzmann transport algorithm. Owing to the low group velocity and strong anharmonic phonon scattering, the monolayer square-Au2S possesses an ultralow lattice thermal conductivityκlof 0.72 W/mK at 300 K. The square-Au2S monolayer has extraordinarily high Seebeck coefficient and electrical conductivity. Consequently, the maximum power factor of the ntype(p-type)square-Au2S monolayer can be as large as 9.90(4.85)mW/mK2at 300 K.Benefiting from the ultralowκland the high power factor,a high room-temperature figure of meritZTof 2.2(1.5)can be achieved for n-type(p-type)doping,and it increases up to an ultrahigh value of 3.8 (2.5) at 600 K. In addition,when EPIs are considered,theZTvalues are significantly reduced by 28%(84%)for n-type(p-type)doping. After introducing the SOC effect, the p-typeZTis substantially increased by 3.5 times but the n-type one is almost unaffected.Our analyses strongly suggest that the 2D square-Au2S monolayer could be a potential candidate for future-generation TE applications.

    Acknowledgment

    The calculations were carried out on TianHe-2 at the LvLiang Cloud Computing Center in China.

    猜你喜歡
    張偉王朝治國
    正確看待輸和贏
    A MULTIPLE q-EXPONENTIAL DIFFERENTIAL OPERATIONAL IDENTITY?
    巍治國藝術作品欣賞
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    藝術百家:張偉 何是雯
    電影文學(2018年10期)2018-12-10 00:48:32
    看得到的轉變
    中華家教(2018年9期)2018-10-19 09:30:00
    養(yǎng)心殿,帶你走進大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    數(shù)學潛能知識月月賽
    略論古齊國的治國之道
    王朝梁研究員
    婷婷成人精品国产| 国产人伦9x9x在线观看| 视频区欧美日本亚洲| 丰满少妇做爰视频| 桃花免费在线播放| 肉色欧美久久久久久久蜜桃| 精品一区二区三卡| 99热全是精品| 亚洲av电影在线观看一区二区三区| 欧美日韩成人在线一区二区| 久久久久精品人妻al黑| 国产高清视频在线播放一区 | 国产欧美日韩综合在线一区二区| 国产伦人伦偷精品视频| 捣出白浆h1v1| 日韩精品免费视频一区二区三区| 国产精品久久久久久精品电影小说| 国产一区亚洲一区在线观看| 亚洲一码二码三码区别大吗| 午夜免费观看性视频| 亚洲欧美中文字幕日韩二区| 制服人妻中文乱码| 精品熟女少妇八av免费久了| 看免费成人av毛片| 久久人人97超碰香蕉20202| 国产在视频线精品| 一级片'在线观看视频| 欧美日韩福利视频一区二区| 亚洲久久久国产精品| 一个人免费看片子| 亚洲av成人不卡在线观看播放网 | 最新的欧美精品一区二区| 午夜免费成人在线视频| 亚洲av综合色区一区| 亚洲国产精品一区三区| 成人手机av| 免费高清在线观看日韩| 在线观看免费视频网站a站| 亚洲av综合色区一区| 欧美日韩国产mv在线观看视频| 一边亲一边摸免费视频| 国产黄色免费在线视频| 看十八女毛片水多多多| 国产真人三级小视频在线观看| 亚洲精品成人av观看孕妇| av在线播放精品| av又黄又爽大尺度在线免费看| 免费人妻精品一区二区三区视频| 国产精品九九99| 国产精品香港三级国产av潘金莲 | 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 国产免费又黄又爽又色| 大香蕉久久网| a 毛片基地| 国产av国产精品国产| 一级毛片 在线播放| 久久免费观看电影| 美女脱内裤让男人舔精品视频| 国产91精品成人一区二区三区 | 免费人妻精品一区二区三区视频| 亚洲成人免费av在线播放| 一级毛片我不卡| 免费在线观看日本一区| 中文字幕最新亚洲高清| √禁漫天堂资源中文www| www.精华液| 菩萨蛮人人尽说江南好唐韦庄| 操出白浆在线播放| 国产精品偷伦视频观看了| 国产伦人伦偷精品视频| 亚洲精品美女久久av网站| 捣出白浆h1v1| 在线天堂中文资源库| 黄色视频不卡| 亚洲精品国产av成人精品| 亚洲欧洲日产国产| 最黄视频免费看| 亚洲av欧美aⅴ国产| 成人免费观看视频高清| 久久久精品免费免费高清| 狠狠精品人妻久久久久久综合| 中文乱码字字幕精品一区二区三区| 久久99热这里只频精品6学生| 精品欧美一区二区三区在线| 美女主播在线视频| 交换朋友夫妻互换小说| 性高湖久久久久久久久免费观看| 国产男女超爽视频在线观看| 51午夜福利影视在线观看| 久久天躁狠狠躁夜夜2o2o | 久久久国产一区二区| 免费在线观看黄色视频的| 母亲3免费完整高清在线观看| 美女高潮到喷水免费观看| 免费在线观看完整版高清| 国产精品麻豆人妻色哟哟久久| 妹子高潮喷水视频| 国产片特级美女逼逼视频| 老司机深夜福利视频在线观看 | 99精品久久久久人妻精品| 久久性视频一级片| 久久精品亚洲av国产电影网| 两性夫妻黄色片| 免费看十八禁软件| 久久九九热精品免费| 国产黄色免费在线视频| 高清视频免费观看一区二区| 亚洲三区欧美一区| 99精品久久久久人妻精品| 涩涩av久久男人的天堂| 国产在视频线精品| 国产一区二区三区av在线| www.av在线官网国产| 国产深夜福利视频在线观看| 国产人伦9x9x在线观看| 国产亚洲精品久久久久5区| 久久久久久免费高清国产稀缺| 免费久久久久久久精品成人欧美视频| 午夜福利免费观看在线| 啦啦啦啦在线视频资源| √禁漫天堂资源中文www| 日韩中文字幕视频在线看片| 亚洲av成人精品一二三区| 一区在线观看完整版| 最新的欧美精品一区二区| 男的添女的下面高潮视频| 最近中文字幕2019免费版| 日韩,欧美,国产一区二区三区| 国产午夜精品一二区理论片| 蜜桃在线观看..| 青春草视频在线免费观看| 国产野战对白在线观看| 精品一品国产午夜福利视频| 国产精品二区激情视频| 国产av精品麻豆| 高清视频免费观看一区二区| 国产一卡二卡三卡精品| 国产一区二区三区综合在线观看| videos熟女内射| 亚洲成人免费电影在线观看 | 国产欧美日韩一区二区三 | 女人爽到高潮嗷嗷叫在线视频| 午夜福利视频精品| 啦啦啦中文免费视频观看日本| 黄色a级毛片大全视频| av天堂久久9| 欧美大码av| 久久影院123| 欧美精品av麻豆av| 欧美另类一区| 多毛熟女@视频| 国产成人啪精品午夜网站| 成人三级做爰电影| 精品久久蜜臀av无| 久久久久视频综合| 国产精品人妻久久久影院| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟女精品中文字幕| 国产一区二区三区av在线| 国产麻豆69| svipshipincom国产片| 午夜免费鲁丝| 欧美大码av| 一级毛片我不卡| 精品一区在线观看国产| 久久精品久久精品一区二区三区| 亚洲,一卡二卡三卡| 人妻人人澡人人爽人人| 国产免费视频播放在线视频| 黑人欧美特级aaaaaa片| 亚洲欧洲精品一区二区精品久久久| 亚洲欧洲日产国产| 久久久久精品国产欧美久久久 | 久久国产精品大桥未久av| 色网站视频免费| 久久国产精品大桥未久av| 丝袜美腿诱惑在线| 性色av乱码一区二区三区2| 成在线人永久免费视频| 大陆偷拍与自拍| 国产熟女欧美一区二区| 一级毛片黄色毛片免费观看视频| 成年美女黄网站色视频大全免费| 成年美女黄网站色视频大全免费| 高清黄色对白视频在线免费看| 中国美女看黄片| 夜夜爽天天搞| 欧美zozozo另类| 1024手机看黄色片| 欧美成人免费av一区二区三区| 午夜福利成人在线免费观看| 免费看日本二区| www国产在线视频色| 最新在线观看一区二区三区| 男女那种视频在线观看| 精品久久久久久久久久免费视频| 两个人看的免费小视频| 精品久久久久久久久久免费视频| 啦啦啦韩国在线观看视频| 亚洲国产日韩欧美精品在线观看 | 成人18禁在线播放| 国产精品亚洲av一区麻豆| 亚洲成国产人片在线观看| 黄色a级毛片大全视频| 色综合婷婷激情| 黄片播放在线免费| 黄片播放在线免费| 日韩欧美在线二视频| 欧美色欧美亚洲另类二区| 最新在线观看一区二区三区| 亚洲av电影不卡..在线观看| 久久午夜综合久久蜜桃| 精品国内亚洲2022精品成人| 精品高清国产在线一区| 成人永久免费在线观看视频| 午夜激情av网站| 欧美亚洲日本最大视频资源| 午夜福利在线在线| 精品国产一区二区三区四区第35| 国产蜜桃级精品一区二区三区| 亚洲久久久国产精品| 嫩草影院精品99| 男女视频在线观看网站免费 | 国内毛片毛片毛片毛片毛片| 18美女黄网站色大片免费观看| 大型av网站在线播放| a在线观看视频网站| 性欧美人与动物交配| 波多野结衣巨乳人妻| 韩国精品一区二区三区| 久久精品国产清高在天天线| 精品国产乱码久久久久久男人| 欧美日韩福利视频一区二区| 日韩一卡2卡3卡4卡2021年| 亚洲成国产人片在线观看| 亚洲欧美日韩高清在线视频| 亚洲av中文字字幕乱码综合 | 午夜福利一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 成人手机av| 桃色一区二区三区在线观看| 制服人妻中文乱码| 岛国在线观看网站| 精品一区二区三区视频在线观看免费| 亚洲精品一区av在线观看| 99热只有精品国产| 一个人观看的视频www高清免费观看 | 精品国产国语对白av| 婷婷亚洲欧美| 91字幕亚洲| 黄色女人牲交| 欧美性猛交黑人性爽| 大型av网站在线播放| 好男人在线观看高清免费视频 | 少妇粗大呻吟视频| 日韩成人在线观看一区二区三区| 在线免费观看的www视频| 黑丝袜美女国产一区| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 亚洲专区字幕在线| 手机成人av网站| 18禁观看日本| 草草在线视频免费看| 成人亚洲精品一区在线观看| 亚洲黑人精品在线| 国产国语露脸激情在线看| 特大巨黑吊av在线直播 | 国产99白浆流出| 日本免费一区二区三区高清不卡| 亚洲精品色激情综合| 精品久久久久久久末码| 女警被强在线播放| 精品无人区乱码1区二区| 国产成人av教育| 日本一本二区三区精品| 成人一区二区视频在线观看| 韩国av一区二区三区四区| 国产亚洲精品久久久久久毛片| 久久人人精品亚洲av| 深夜精品福利| 满18在线观看网站| 欧美日韩福利视频一区二区| 法律面前人人平等表现在哪些方面| 免费一级毛片在线播放高清视频| 精品不卡国产一区二区三区| 变态另类成人亚洲欧美熟女| 777久久人妻少妇嫩草av网站| 一级a爱片免费观看的视频| av在线天堂中文字幕| 日韩一卡2卡3卡4卡2021年| 精品卡一卡二卡四卡免费| 亚洲一区二区三区不卡视频| 精品国产亚洲在线| 999精品在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 色av中文字幕| 日日爽夜夜爽网站| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 波多野结衣高清作品| 母亲3免费完整高清在线观看| 在线观看日韩欧美| 国内久久婷婷六月综合欲色啪| 女人爽到高潮嗷嗷叫在线视频| 国产99白浆流出| 欧美黑人精品巨大| 欧美激情高清一区二区三区| 最近在线观看免费完整版| 国产片内射在线| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 国产成人系列免费观看| 啦啦啦 在线观看视频| 丝袜人妻中文字幕| 婷婷丁香在线五月| 亚洲午夜理论影院| 99久久久亚洲精品蜜臀av| 天堂√8在线中文| а√天堂www在线а√下载| 国产日本99.免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 亚洲国产看品久久| 老鸭窝网址在线观看| 一本久久中文字幕| xxxwww97欧美| 日日摸夜夜添夜夜添小说| 一区二区三区高清视频在线| 18禁黄网站禁片免费观看直播| 国产午夜精品久久久久久| 高清毛片免费观看视频网站| 校园春色视频在线观看| 国产精品亚洲美女久久久| 好男人电影高清在线观看| 啦啦啦 在线观看视频| 欧美日韩乱码在线| www.www免费av| 在线播放国产精品三级| 女性被躁到高潮视频| 日本 欧美在线| 国产精品爽爽va在线观看网站 | 亚洲性夜色夜夜综合| 亚洲黑人精品在线| 成年女人毛片免费观看观看9| 日本三级黄在线观看| 国产精品野战在线观看| 亚洲成人久久性| 亚洲精品美女久久久久99蜜臀| 久久精品成人免费网站| 成人亚洲精品av一区二区| 欧美 亚洲 国产 日韩一| 亚洲av成人不卡在线观看播放网| 久久香蕉国产精品| 麻豆成人午夜福利视频| 精品一区二区三区av网在线观看| 一级a爱视频在线免费观看| 巨乳人妻的诱惑在线观看| 听说在线观看完整版免费高清| 国产欧美日韩一区二区精品| 国产亚洲欧美精品永久| 婷婷亚洲欧美| 国产欧美日韩一区二区三| 禁无遮挡网站| 精品一区二区三区av网在线观看| 一级a爱视频在线免费观看| 午夜福利18| 亚洲av熟女| 99久久综合精品五月天人人| 日韩国内少妇激情av| 亚洲国产高清在线一区二区三 | 宅男免费午夜| 美女 人体艺术 gogo| 满18在线观看网站| 首页视频小说图片口味搜索| 欧美日本视频| 波多野结衣av一区二区av| 欧美日韩亚洲综合一区二区三区_| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 最好的美女福利视频网| av在线天堂中文字幕| 成人国语在线视频| 久久精品亚洲精品国产色婷小说| 美女大奶头视频| cao死你这个sao货| 久久伊人香网站| 欧美成人午夜精品| 88av欧美| 久99久视频精品免费| 看黄色毛片网站| 国产亚洲精品第一综合不卡| 免费观看人在逋| 成人三级做爰电影| av免费在线观看网站| 少妇被粗大的猛进出69影院| 午夜免费激情av| 欧美一级a爱片免费观看看 | 成人欧美大片| 大型黄色视频在线免费观看| 美女高潮到喷水免费观看| 狂野欧美激情性xxxx| 日韩精品中文字幕看吧| 国产精品二区激情视频| 18禁裸乳无遮挡免费网站照片 | 一本大道久久a久久精品| 2021天堂中文幕一二区在线观 | 国内精品久久久久精免费| 日韩精品青青久久久久久| 欧美成人性av电影在线观看| 男男h啪啪无遮挡| 天堂动漫精品| 欧美一级毛片孕妇| 757午夜福利合集在线观看| 色综合亚洲欧美另类图片| 日本一区二区免费在线视频| 中文资源天堂在线| 国产在线观看jvid| 丝袜人妻中文字幕| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 亚洲av熟女| 亚洲欧美日韩高清在线视频| 久久国产乱子伦精品免费另类| 日韩高清综合在线| 国产伦一二天堂av在线观看| 亚洲,欧美精品.| 三级毛片av免费| 午夜日韩欧美国产| 久久人人精品亚洲av| 夜夜爽天天搞| 精品一区二区三区av网在线观看| 大型黄色视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产一级毛片高清牌| 在线观看66精品国产| 巨乳人妻的诱惑在线观看| 国内毛片毛片毛片毛片毛片| 午夜成年电影在线免费观看| 国产一区二区三区视频了| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 日本成人三级电影网站| 国产一区二区在线av高清观看| 成年女人毛片免费观看观看9| 久久这里只有精品19| 欧美乱码精品一区二区三区| 男女下面进入的视频免费午夜 | 性欧美人与动物交配| 亚洲一区二区三区色噜噜| 国产高清有码在线观看视频 | 国产高清videossex| 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 麻豆成人av在线观看| 久久久国产精品麻豆| 熟女少妇亚洲综合色aaa.| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人| 99re在线观看精品视频| 国产极品粉嫩免费观看在线| 婷婷精品国产亚洲av| 亚洲无线在线观看| 午夜福利成人在线免费观看| 久久婷婷成人综合色麻豆| 免费女性裸体啪啪无遮挡网站| 久久国产精品人妻蜜桃| 免费看a级黄色片| 久久久久九九精品影院| 亚洲国产日韩欧美精品在线观看 | 午夜福利18| 国产色视频综合| 免费在线观看视频国产中文字幕亚洲| 在线免费观看的www视频| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 天天添夜夜摸| 久久国产精品人妻蜜桃| 国产野战对白在线观看| 中国美女看黄片| 亚洲午夜理论影院| 一进一出好大好爽视频| 夜夜夜夜夜久久久久| 每晚都被弄得嗷嗷叫到高潮| 日韩av在线大香蕉| 真人做人爱边吃奶动态| 黄片小视频在线播放| 亚洲av电影不卡..在线观看| 999久久久国产精品视频| 国产精华一区二区三区| 国产精品电影一区二区三区| 久热这里只有精品99| 少妇的丰满在线观看| 成人av一区二区三区在线看| 久久久久国内视频| 岛国在线观看网站| 久久久国产精品麻豆| 91老司机精品| 久热这里只有精品99| 十分钟在线观看高清视频www| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 人人妻人人看人人澡| 国产精品免费一区二区三区在线| 欧美丝袜亚洲另类 | 欧美国产精品va在线观看不卡| 天堂动漫精品| 法律面前人人平等表现在哪些方面| 此物有八面人人有两片| 丝袜人妻中文字幕| 99国产精品一区二区三区| 国产三级黄色录像| 日韩欧美国产在线观看| 97人妻精品一区二区三区麻豆 | 欧美一级a爱片免费观看看 | 亚洲国产精品999在线| 一本一本综合久久| 欧美日韩精品网址| 久久人妻福利社区极品人妻图片| 国产激情欧美一区二区| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 99国产极品粉嫩在线观看| av福利片在线| 国产99白浆流出| 久久精品成人免费网站| 成年版毛片免费区| 亚洲av第一区精品v没综合| 看黄色毛片网站| 国产精品一区二区三区四区久久 | 搡老熟女国产l中国老女人| videosex国产| 50天的宝宝边吃奶边哭怎么回事| 免费电影在线观看免费观看| 狂野欧美激情性xxxx| 国产精品久久久久久亚洲av鲁大| 精品欧美国产一区二区三| 国产乱人伦免费视频| 性色av乱码一区二区三区2| 热re99久久国产66热| 天堂√8在线中文| 中文在线观看免费www的网站 | 亚洲真实伦在线观看| 日韩有码中文字幕| 国产一区二区三区视频了| 免费看十八禁软件| 曰老女人黄片| 91av网站免费观看| 黑人操中国人逼视频| 国产三级黄色录像| 怎么达到女性高潮| 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 久久狼人影院| 欧美一级毛片孕妇| 精品久久久久久,| 两人在一起打扑克的视频| 大型黄色视频在线免费观看| 久久午夜亚洲精品久久| 亚洲精品在线美女| 亚洲五月婷婷丁香| 少妇 在线观看| 又大又爽又粗| 国产精品亚洲一级av第二区| 一边摸一边抽搐一进一小说| 国产黄片美女视频| 免费搜索国产男女视频| 欧美不卡视频在线免费观看 | 成人亚洲精品一区在线观看| 麻豆一二三区av精品| 女性生殖器流出的白浆| 久久国产亚洲av麻豆专区| 国产亚洲欧美在线一区二区| 国产激情欧美一区二区| 亚洲成av片中文字幕在线观看| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| svipshipincom国产片| 午夜福利欧美成人| 成人亚洲精品av一区二区| www日本黄色视频网| 91麻豆av在线| 精华霜和精华液先用哪个| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 成人国语在线视频| 在线视频色国产色| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆 | 99久久99久久久精品蜜桃| 久久中文字幕一级| 欧美乱码精品一区二区三区| 国产精品精品国产色婷婷| 女人爽到高潮嗷嗷叫在线视频| 国内毛片毛片毛片毛片毛片| 一本综合久久免费| 黄频高清免费视频| www日本在线高清视频| 人成视频在线观看免费观看| 国产精品免费视频内射| www.www免费av| 不卡一级毛片| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| www日本黄色视频网| 午夜久久久在线观看| 日韩欧美一区二区三区在线观看| 伦理电影免费视频| 十八禁网站免费在线| 亚洲中文日韩欧美视频|