• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor*

    2021-07-30 07:42:06WeiZhang張偉XiaoQiangZhang張曉強LeiLiu劉蕾ZhaoQiWang王朝棋andZhiGuoLi李治國
    Chinese Physics B 2021年7期
    關鍵詞:張偉王朝治國

    Wei Zhang(張偉) Xiao-Qiang Zhang(張曉強) Lei Liu(劉蕾)Zhao-Qi Wang(王朝棋) and Zhi-Guo Li(李治國)

    1School of Science,Southwest University of Science and Technology,Mianyang 621010,China

    2Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    3Laboratory for Shock Wave and Detonation Physics,Institute of Fluid Physics,Mianyang 610064,China

    Keywords: first-principles calculations, electron-phonon interactions, lattice thermal conductivity, thermo

    1. Introduction

    Owing to increasingly severe environmental pollution and the depletion of fossil fuels, the search for alternative clean and renewable energy sources is urgent. Thermoelectric(TE)materials can spontaneously convert waste heat into electric energy,so they have great potential applications in alleviating the dilemmas of energy sources.[1-5]The performance of a TE material can be described by the dimensionless figure of meritZT=S2σT/(κl+κe), whereS,σ,T,κl, andκedenote the Seebeck coefficient,electrical conductivity,absolute temperature, lattice thermal conductivity, and electronic thermal conductivity, respectively. High-performance TE materials usually require both high power factor(PF=S2σ)and low total thermal conductivityκ(κ=κl+κe). Consequently, some techniques such as chemical doping,band structure engineering,strain engineering,nano-structuring,and low-dimensional structure were adopted to enhancePFor reduceκ.[6-10]Lowdimensional materials could exhibit significantly higherZTvalues than their bulk counterparts[11,12]due to the decreasedκon account of the phonon boundary scattering and the improvedPFcaused by the quantum confinement effect.

    Recently, the two-dimensional (2D) transition-metal chalcogenidesM2X(M= metal andX= S, Se, Te)have attracted considerable attention due to their nontrivial properties.[13-20]Monolayerδ-Cu2S had an ultralowκlof 0.10 W/mK at 800 K, leading to a highZTof 1.33.[14]TheZTof the metal-shrouded Tl2O monolayer exceeded 3 whenT >700 K.[20]Monolayer Ag2S was also recommended as a promising 2D TE material.[17]Recently, Chenet al.[18]and Wuet al.[19]proposed a new nonmetal-shroudedM2X: monolayer square-Au2S.Its cohesive energy 3.4 eV was comparable to that of monolayer Ge(3.26 eV)and Si(3.98 eV),[21]indicating the possibility to synthesize it experimentally. Chenget al.[18]calculated the lattice thermal conductivity of this monolayer and found that it has an unusually lowκl, but the physical origins behind such a lowκlare unexplored. They also suggested that monolayer square-Au2S has ultrahigh carrier mobilities. However, the carrier mobilities of monolayer square-Au2S calculated by them were very different(their difference was more than 160%), though the same deformation potential theory was used.[22,23]This is due to the fact that the simplified phenomenological model they used contains some tunable parameters, and thus generally lacks sufficient predictive power.[24,25]Therefore, it is necessary to perform the parameter-free first-principles calculations for the electronic transport properties of monolayer square-Au2S to obtain reliable results. Furthermore, we notice that previous work focused only on carrier mobilities,the full thermoelectric transport parameters likeS,σ,κe,andPFfor deriving the figure of meritZTare still lacking.

    In general, the electronic transport properties are computed in terms of the Boltzmann transport equation(BTE) within the constant relaxation time approximation(CRTA).[26-28]Actually, the carrier relaxation time relies on carrier mode, carrier concentration, and temperature.[25]Recently, the electronic transport properties could be accurately predicted by solving the parameter-free BTE under self-energy relaxation time approximation (SERTA) with the scattering limited by the electron-phonon interactions. In addition,as is well known,the spin-orbit coupling(SOC)effect may have a significant influence on the electronic band structure of materials and,further,on electronic transport properties.[29,30]Motivated by the above considerations,in this work,we aim to explore the origin of the lowκlof monolayer square-Au2S and investigate the full TE transport properties together with theZTfrom first-principles calculations and parameter-free BTE.We find that this monolayer possesses a large n-type(p-type)ZT=2.2 (1.5) at 300 K andZT=3.8 (2.5) at 600 K, indicating that it can become a highly promising room-and hightemperature TE material. Furthermore,the effects of EPIs and SOC on TE properties of the monolayer are also discussed.

    2. Computational method

    All first-principles calculations based on density functional theory (DFT) were performed by using the Quantum ESPRESSO package.[31]with Perdew-Burke-Ernzerhof(PBE) exchange-correlation functional.[32]The normconserving pseudopotential[33]was used to describe the corevalence interaction with a plane wave kinetic energy cutoff of 80 Ry (1 Ry=13.6056923(12) eV). The convergence threshold of 1×10-8a.u. (a.u. is short for atomic unit) for total energy and 1×10-5a.u. for forces were used. The DFT-D3 method[34]was used to take into account the long-range van der Waals interaction.The electronic band structures were calculated by the six versions of Heyd-Scuseria-Ernzerh hybrid functional (HSE06). The spin-orbit coupling (SOC) interaction was considered in the calculations of electronic band structure and phonon dispersion. Inab initiomolecular dynamics (AIMD) simulations, a 3×3×1 supercell was used as an initial structure. The timestep and total simulation time were set to be 1 fs and 10 ps,respectively. The lattice thermal conductivity can be obtained by the self-consistent solution of the BTE, as implemented in the ShengBTE package.[35]The 2nd-order interatomic force constants(IFCs)with a 5×5×1q-mesh were calculated by the density functional perturbation theory. A 3×3×1 supercell and 5×5×1k-mesh were used to calculate the 3rd-order anharmonic IFCs, and the interactions up to the eighth nearest-neighbors were included. In the BTE calculations,a denseΓ-centered 50×50×1q-mesh was adopted to obtain converged results. The vacuum lengthLis set to be 20 ?A, which avoids the interactions between layers.For properties requiring volume normalization, an effective thickness of 6.19 ?A was used,which includes the bucking distancehof the monolayer plus twice the van der Waals radius of a sulfur atom.[18,25,27,36,38]

    The EPI matrix elements were computed by using an initial coarse 15×15×1k-mesh with a 5×5×1q-mesh,and then interpolated to a dense 150×150×1k-mesh with a 50×50×1q-mesh using the maximally localized Wannier functions, as implemented in the EPW package.[39,40]These settings are enough to ensure convergence. The energyresolved carrier relaxation time of the electronic state with band indexnand wave vectorkcan be estimated from the imaginary part of the electron self-energy Im(Σ)as follows:

    whereΩBZis the volume of the first Brillouin zone,matrix elementsgmnν(k,q)are the probability amplitude for scattering from an initial electronic state|nk〉into a final state|mk+q〉via a phononqν,fnkis the Fermi-Dirac distribution function,nqνis the Bose-Einstein distribution function,εnkis the electron eigenvalue for the state|nk〉,ωqνis the phonon frequency of wave vectorq, and branch indexν. Then, based on theτnk(E)and band structure from HSE06 with SOC,the electronic transport coefficients,includingS,σ,andκe,can be obtained as follows:

    wheree,Nk,Ω,εF, andvnkrepresent the electron charge,total number ofk-points, volume of the unit cell, Fermi energy, and electron group velocity, respectively. The electronic transport coefficients were solved by using the Boltz-TraP2 package.[27]Hereinafter,we refer to this computational scheme as SOC+SERTA. To elucidate the influence of EPIs on the electronic transport coefficients,the CRTA and SERTA calculations without the SOC were carried out(referred to as NoSOC+CRTA and NoSOC+SERTA hereinafter). The role of the SOC effect is checked by comparing the SOC+SERTA calculations with the NoSOC+SERTA calculations. In the CRTA calculations, the carrier relaxation timeτwas calculated from the equation:τ=μm*/e,where carrier mobilityμand effective massm*were cited from Ref.[18].

    3. Results and discussion

    3.1. Structure of monolayer square-Au2S

    Monolayer square-Au2S has a tetragonal structure with a space group symmetry ofP4/nmm. There are four Au atoms and two S atoms in a unit cell,and the four Au atoms are in a plane. The layer of Au atoms is sandwiched between two layers of S atoms, and each S atom is tetracoordinated with Au atoms as shown in Figs. 1(a) and 1(b). The fully optimized lattice parameter and the bucking distancehof monolayer square-Au2S are 5.74 ?A and 2.59 ?A,respectively. These structural parameters accord well with previous calculations.[19]The phonon dispersion and AIMD simulations indicate that the monolayer square-Au2S possesses good dynamical and thermal stability (see the supplementary material, Fig. S1).Figure 1(c) displays the electron localization functions, from which we can see that the electrons are mostly localized near S atoms,implying the ionic nature of the Au-S bond.In general,weak interatomic bonding is an indicator of lowκl.[7]

    Fig.1. (a)Top view and(b)side view of the atomic structure of monolayer square-Au2S, (c) electron localization functions, and (d) high-symmetry kpoints in the first Brillouin zone.

    3.2. Lattice thermal conductivity

    The calculatedκlversustemperature is displayed in Fig. 2(a). As expected, monolayer square-Au2S has an ultralowκlof 0.72 W/mK at room temperature,which is smaller than other 2D nanosheets have, like SnSe,[41]Bi2Te3,[42]MoS2,[43]BP,[44]PdS2,[3]and comparable to those of the recently reported monolayers Tl2O[13]and Bi2O2Se.[6]The ultralowκlof monolayer square-Au2S is beneficial to the high TE performance. It can also be seen from Fig. 2(a) that theκlof monolayer square-Au2S decreases with temperature increasing, reaching 0.48 W/mK at 600 K. This is mainly due to the inherent enhancement of the phonon-phonon scattering with temperature increasing. It is noted that our calculatedκlof monolayer square-Au2S is lower than that in Ref. [18],which is because the van der Waals interaction exerts influence on group velocity and the phonon relaxation time is included in the present work. The calculated contributions from different phonon branches toκlin Fig. 2(b) reveal that lowfrequency acoustic branches contribute to the majority of theκl. In contrast, the contribution from high-frequency optical branches is quite small.

    According to phonon Boltzmann theory,κlis proportional to the phonon lifetime and the square of the group velocity.[28]Thus, to understand the origin of such an ultralowκl, the phonon group velocities and relaxation timeversusfrequency are shown in Figs. 2(c) and 2(d), respectively. The group velocities and phonon lifetime from the acoustic branches are higher than those from the optical branches, which helps explain why the contribution from acoustic branches accounts for the majority ofκl. The maximum phonon group velocity of all phonon modes for monolayer square-Au2S is quite small(within 3 km/s),resulting in the lowκl. On the other hand, the phonon lifetimes for the acoustic modes are low enough(1 ps-100 ps), which implies the strong phonon scattering. The anharmonic phonon scattering can be characterized by two parameters: the Gr¨uneisen parameterγand the size of the three-phonon scattering phase spaceW. The mode Gr¨uneisen parameter and weighted phase space of three-phonon scattering of the acoustic branches are both large(see Fig.S2 in Supplementary material),leading to low phonon lifetime and,hence,lowκl.

    It is worth noting that EPIs may have an important effect on phonon thermal conductivity.[45,46]However, the present calculations elucidate that the phonon relaxation time arising from the intrinsic phonon-phonon scattering is at least two orders of magnitude smaller than that from electron-phonon scattering (see Fig. S3 in supplementary material). Therefore, according to Matthiessen’s rule,[28]theκlof monolayer square-Au2S due to EPIs can be safely ignored.

    Fig.2. (a)Lattice thermal conductivity κl versus temperature,(b)contribution of phonons at different frequencies to κl,and(c)phonon group velocity,and(d)phonon relaxation time versus frequency at 300 K for monolayer square-Au2S.

    3.3. Electronic transport and TE properties

    Monolayer square-Au2S with lowκlwill be a highly useful TE material if itsSandσare high enough. The electronic transport properties depend mainly on the band structure and carrier relaxation time. We use the hybrid functional HSE06 to overcome the underestimation of bandgap by PBE.As shown in Fig.3(a), monolayer square-Au2S is a semiconductor with a direct bandgap of 0.8 (1.2) eV with (without)SOC,which is slightly smaller than that reported in Ref.[19].The projected density of states shown in Fig. 3(b) indicate that both Au atoms and S atoms contribute to states near the Fermi level, implying that there is a strong hybridization between orbitals of Au and S atoms. Further analyses of the orbital-resolved density of states(see Fig.S4)indicate that the states near the valence band maximum(VBM)are contributed mainly by the hybridization of atomic orbitals of Au atoms and atomic orbitals of S atom. The states around the conduction band minimum (CBM), however, stem mainly from the atomic orbitals of the Au atom. Consequently, the valence band and conduction band may have different dispersion characteristics as shown in Fig.3(a).There exists strong dispersion near the CBM,while the bands around the VBM are relatively flat. Upon the introduction of the SOC effect,the band edges near the VBM become more dispersive,while the band shape around the CBM is hardly affected. Therefore, after including SOC, the band edges around the Fermi level are highly dispersive, leading to small effective mass (m*=0.06mefor electron andm*=0.10mefor hole[19]). According to the deformation potential theory, the carrier mobilityμis inversely proportional to effective massm*. And the electronic conductivityσcan be calculated from the equation:σ=μne,wherenis carrier concentration. Thus,the small effective mass will result in largeμandσ,thereby a high power factor.

    The carrier relaxation time can be accurately calculated from the EPI matrix elements. According to Eq.(1), the carrier relaxation time and EPI matrix elements are related by the electron self-energy Im(Σ). The projections of Im(Σ)on the band structure and the energy-dependent carrier relaxation time are displayed in Figs. 3(a) and 3(c), respectively. States with small Im(Σ)appear around the VBM and CBM because electrons and holes near the band edges are less scattered as a result of the limited phase space.[7,47]Moreover, a strong energy dependence can be witnessed from the energy-dependent carrier relaxation time as shown in Fig.3(c).The carrier relaxation time decreases uniformly with temperature increasing.The relaxation time at 300 K is higher than that at 600 K.This can be easily understood, since more and more phonons are populated with the increase of temperature, which leads the electron-phonon scattering to strengthen.[48]

    Figure 4 shows the curves of electronic transport and TE parametersversuscarrier concentrations at 300 K for n-type and p-type dopings under the SOC+SERTA.Figures 4(a)and 4(b) display the largeSvalues for n-type and p-type doped monolayer square-Au2S.For instance,the absolute value ofSfor n-type(p-type)doping at the optimal carrier concentration(corresponding to the maximumZT)is 265 μV/K(214 μV/K).Both of them are in the range of 200 μV/K-300 μV/K,which is an indicator of good TE material.[1,49]Figures 4(c)and 4(d)show that theσfor n-type doping is superior to that for p-type doping. Notably, the absolute value ofSis inversely proportional to carrier concentration, whereas theσfollows the opposite trend,suggesting that there is a trade-off between them,leading to a maximumPFat a certain carrier concentration.

    Fig. 3. (a) Electronic band structure calculated by HSE06 functional with (solid line) and without considering the SOC effect (gray dotted line), (b)projected density of states with considering SOC effect, and (c) energy-dependent carrier relaxation time τnk(E). Band structure with SOC effect is color-coded according to Im(Σ)at 300 K,which is scaled by color bar with units of eV.

    Fig.4. Curves of electronic transport and TE coefficients versus carrier concentration of n-type(left panels)and p-type(right panels)doped monolayer square-Au2S at 300 K: ((a), (b)) absolute value of Seebeck coefficient S, ((c), (d)) electrical conductivity σ, ((e), (f)) power factor PF, and ((g),(h))figure of merit ZT.

    The calculatedPFvalues in Figs. 4(e) and 4(f) shows that the maximumPFof n-type doping is twice that of p-type doping mainly due to the higherσfor n-type doping. The n-type (p-type) doped monolayer square-Au2S has an exceptionalPF=9.90(4.85) mW/mK2at 300 K, which is higher than that of monolayersδ-Cu2S and Bi2O2Se. The calculatedκefor n-type (p-type) doping at optimal concentration is 0.38 (0.20) W/mK, which is lower thanκl. Moreover, theκefor n-type (p-type) doping contributes only 34% (21%) to the totalκ(see the supplementary material, Fig. S5). Owing to the highPFand quite lowκ, the n-type (p-type)ZTof 2.2(1.5)can be achieved at the optimal hole concentrationnE≈4.0×1010cm-2(nH≈1.1×1011cm-2)andT=300 K as shown in Figs.4(g)and 4(h).

    Figure 5 displays the contour map ofZT versustemperature and doping concentration under SOC+SERTA.It is found that the maximumZTand the optimal carrier concentration both increase with temperature increasing. The maximum ntype (p-type)ZTexceeds 3.7 (2.4) atnE≈8.5×1010cm-2(nH≈4.0×1011cm-2) and 600 K. The maximum n-typeZT= 3.8 is higher than that of typical bulk TE material:SnSe (2.6).[50]and 2D monolayers:δ-Cu2S (1.33),[14]Tl2O(3.35),[20]and Bi2O2Se(3.35).[6]

    Fig.5. Contour map of ZT as a function of temperature and carrier concentration of(a)n-type and(b)p-type doped monolayer square-Au2S.

    3.4. Effects of SOC and EPIs on TE properties

    The SOC effect and EPIs may play a vital role in determining the electronic properties of materials.[25,30,51,52]The influence of the SOC effect can be revealed by comparing the results from SOC+SERTA and NoSOC+SERTA calculations as shown in Fig. 4. With the consideration of SOC, for ptype doping,Sdecreases whereasσincreases significantly,which can be understood through the above analyses of band structures. Since the increase ofσis dominant,the maximumPFandZTwith SOC are~4 times and~3.5 times larger than the results without SOC,respectively. Moreover,the optimum hole concentration decreases by nearly two orders of magnitude with SOC strengthening. On the other hand, the band edges around CBM are less affected by the SOC effect as shown in Fig. 3(a). Therefore, forSandσof n-type doping, the difference between the results with and without the SOC effect is much smaller than the counterparts in the case of p-type doping. Moreover, the maximum values of n-typePFandZTwith and without the SOC effect are close to each other(see the left panel of Fig.4).

    To reveal the influence of EPIs on the electronic transport properties, we compare the results from SERTA and CRTA calculations in Fig. 4. For n-type and p-type dopings, theSfrom SERTA reasonably accords with that from CRTA,which indicates the low correlation betweenSand carrier relaxation time. The discrepancy between the CRTA and SERTA results is apparent forσ,κe,and the maximum values ofPFandZT,which are shown in Fig. 4 and Fig. S5. The maximum values ofPF(ZT) from SERTA are~56% (28%) and~90%(84%)lower than those from CRTA for n-type and p-type dopings,respectively. Therefore,the strong energy dependence ofτnk(E)plays an essential role in determining the overall electronic transport and TE performance.The completely different treatment of carrier relaxation time is responsible for the discrepancy.In the CRTA calculations,the carrier relaxation time is regarded as a constant. It is calculated by the deformation potential theory, which only considers the electron-acoustic phonon scattering. However,for monolayer square-Au2S,the optical phonon scattering is comparable to that from the acoustic phonon branches (see Fig. S6 in the supplementary material). The SERTA adopts the energy-resolved carrier relaxation time deduced from the EPI matrix elements which take into account all electron-phonon scattering processes.To date,the electronic transport and TE properties of several materials,including Li,[53]Si,[29,30]GaAs,[29]SnSe,[52]Mg3Sb2,[24]CoSi,[51]etc. have been investigated by the parameter-free algorithm and the calculation results accord well with the experimental data. Therefore,the electronic transport and TE properties of monolayer square-Au2S obtained by the SERTA are believed to be more predictive than by the CRTA,although the corresponding experimental data are not available at present.In addition,although the maximum values ofPFandZTfrom the SERTA seriously deviate from those from the CRTA, the optimum carrier concentrations predicted by the two methods are relatively close to each other.

    4. Conclusions

    In summary, thermal, electronic transport, and thermoelectric properties of monolayer square-Au2S are systematically investigated via a parameter-freeab initioBoltzmann transport algorithm. Owing to the low group velocity and strong anharmonic phonon scattering, the monolayer square-Au2S possesses an ultralow lattice thermal conductivityκlof 0.72 W/mK at 300 K. The square-Au2S monolayer has extraordinarily high Seebeck coefficient and electrical conductivity. Consequently, the maximum power factor of the ntype(p-type)square-Au2S monolayer can be as large as 9.90(4.85)mW/mK2at 300 K.Benefiting from the ultralowκland the high power factor,a high room-temperature figure of meritZTof 2.2(1.5)can be achieved for n-type(p-type)doping,and it increases up to an ultrahigh value of 3.8 (2.5) at 600 K. In addition,when EPIs are considered,theZTvalues are significantly reduced by 28%(84%)for n-type(p-type)doping. After introducing the SOC effect, the p-typeZTis substantially increased by 3.5 times but the n-type one is almost unaffected.Our analyses strongly suggest that the 2D square-Au2S monolayer could be a potential candidate for future-generation TE applications.

    Acknowledgment

    The calculations were carried out on TianHe-2 at the LvLiang Cloud Computing Center in China.

    猜你喜歡
    張偉王朝治國
    正確看待輸和贏
    A MULTIPLE q-EXPONENTIAL DIFFERENTIAL OPERATIONAL IDENTITY?
    巍治國藝術作品欣賞
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    藝術百家:張偉 何是雯
    電影文學(2018年10期)2018-12-10 00:48:32
    看得到的轉變
    中華家教(2018年9期)2018-10-19 09:30:00
    養(yǎng)心殿,帶你走進大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    數(shù)學潛能知識月月賽
    略論古齊國的治國之道
    王朝梁研究員
    国产精品麻豆人妻色哟哟久久| 99精国产麻豆久久婷婷| 国产av一区二区精品久久| 欧美人与善性xxx| 久久热在线av| 久久午夜福利片| 在线 av 中文字幕| 国产一级毛片在线| 日本91视频免费播放| 丝袜喷水一区| 97超碰精品成人国产| 99国产精品免费福利视频| 国产免费现黄频在线看| 国产欧美另类精品又又久久亚洲欧美| 中文字幕av电影在线播放| 丰满少妇做爰视频| www.熟女人妻精品国产 | 亚洲国产精品一区三区| 国产成人a∨麻豆精品| 亚洲国产精品成人久久小说| 欧美 日韩 精品 国产| 亚洲av在线观看美女高潮| 国产在线一区二区三区精| 日韩电影二区| 90打野战视频偷拍视频| av网站免费在线观看视频| 欧美日韩精品成人综合77777| 五月玫瑰六月丁香| 亚洲,一卡二卡三卡| 国产免费一区二区三区四区乱码| 美女视频免费永久观看网站| 亚洲精品久久成人aⅴ小说| 亚洲精品美女久久久久99蜜臀 | 各种免费的搞黄视频| 中文字幕人妻熟女乱码| 最黄视频免费看| 在线天堂中文资源库| 亚洲内射少妇av| 免费久久久久久久精品成人欧美视频 | 黑人高潮一二区| 成人国产麻豆网| 亚洲精品自拍成人| 日本黄大片高清| 黑丝袜美女国产一区| 亚洲在久久综合| 中国美白少妇内射xxxbb| 80岁老熟妇乱子伦牲交| 精品亚洲乱码少妇综合久久| 国产深夜福利视频在线观看| 国产精品久久久久久久久免| 国产在视频线精品| 美国免费a级毛片| 亚洲欧美日韩卡通动漫| 午夜福利视频精品| 久久久精品区二区三区| 97精品久久久久久久久久精品| 乱人伦中国视频| 日韩在线高清观看一区二区三区| 永久免费av网站大全| 日韩精品有码人妻一区| 久久午夜综合久久蜜桃| 欧美xxxx性猛交bbbb| 午夜精品国产一区二区电影| 深夜精品福利| 免费高清在线观看视频在线观看| 免费av中文字幕在线| 成人无遮挡网站| 最后的刺客免费高清国语| 性色av一级| 丝瓜视频免费看黄片| 18+在线观看网站| 制服丝袜香蕉在线| 搡女人真爽免费视频火全软件| 久久久久人妻精品一区果冻| 一二三四在线观看免费中文在 | 乱码一卡2卡4卡精品| 国产毛片在线视频| 91国产中文字幕| 国产男女内射视频| 9191精品国产免费久久| 纯流量卡能插随身wifi吗| 午夜视频国产福利| 成人亚洲精品一区在线观看| 久久精品人人爽人人爽视色| 欧美精品一区二区大全| 亚洲国产av新网站| 国产精品女同一区二区软件| 中文字幕亚洲精品专区| √禁漫天堂资源中文www| 最近中文字幕2019免费版| 一级毛片 在线播放| 大香蕉97超碰在线| 18+在线观看网站| 91午夜精品亚洲一区二区三区| 男女高潮啪啪啪动态图| 欧美 日韩 精品 国产| 91精品三级在线观看| 成人毛片a级毛片在线播放| 久久久国产一区二区| 国产精品久久久久久精品电影小说| 久久久精品免费免费高清| 视频在线观看一区二区三区| 久久97久久精品| 狠狠精品人妻久久久久久综合| 看十八女毛片水多多多| 777米奇影视久久| 亚洲欧美一区二区三区国产| 九草在线视频观看| xxx大片免费视频| 人妻少妇偷人精品九色| 免费大片黄手机在线观看| 人人妻人人澡人人看| 午夜老司机福利剧场| 国产一区有黄有色的免费视频| 大香蕉久久网| 考比视频在线观看| 国产黄色免费在线视频| 精品少妇久久久久久888优播| 内地一区二区视频在线| 你懂的网址亚洲精品在线观看| 亚洲av福利一区| 九色亚洲精品在线播放| 国产成人精品福利久久| 亚洲精品,欧美精品| 国产精品欧美亚洲77777| 少妇 在线观看| 99re6热这里在线精品视频| 免费在线观看黄色视频的| 一区二区三区乱码不卡18| 国产成人精品一,二区| 亚洲av欧美aⅴ国产| www.熟女人妻精品国产 | 两性夫妻黄色片 | 精品一品国产午夜福利视频| 日本色播在线视频| 久久国内精品自在自线图片| 18禁国产床啪视频网站| 国产麻豆69| www日本在线高清视频| 成人午夜精彩视频在线观看| 国产一区二区在线观看日韩| 欧美人与性动交α欧美软件 | 久久97久久精品| videos熟女内射| 中文天堂在线官网| 日本av手机在线免费观看| 老熟女久久久| 满18在线观看网站| 日本av手机在线免费观看| 日韩一区二区三区影片| 男女无遮挡免费网站观看| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| 国产高清三级在线| 视频在线观看一区二区三区| 亚洲情色 制服丝袜| 一级黄片播放器| 国产一区二区三区综合在线观看 | 日韩视频在线欧美| 亚洲天堂av无毛| 大片免费播放器 马上看| 午夜影院在线不卡| 成人手机av| 毛片一级片免费看久久久久| 久久久久久久亚洲中文字幕| 日本与韩国留学比较| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 国产一区二区在线观看日韩| 国产精品熟女久久久久浪| 中国美白少妇内射xxxbb| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 国产精品国产av在线观看| 日本午夜av视频| 又黄又粗又硬又大视频| 18禁国产床啪视频网站| av又黄又爽大尺度在线免费看| 国产精品国产三级国产专区5o| 五月开心婷婷网| 一级片'在线观看视频| 99热这里只有是精品在线观看| 亚洲av电影在线进入| 少妇的逼好多水| 啦啦啦啦在线视频资源| 性高湖久久久久久久久免费观看| av免费观看日本| 美女内射精品一级片tv| 国产不卡av网站在线观看| 免费播放大片免费观看视频在线观看| 美女国产高潮福利片在线看| 黄色配什么色好看| 男女高潮啪啪啪动态图| 国产色爽女视频免费观看| 亚洲精品视频女| 亚洲欧美日韩卡通动漫| 少妇被粗大的猛进出69影院 | 人妻系列 视频| 国产不卡av网站在线观看| 如日韩欧美国产精品一区二区三区| 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| 少妇人妻久久综合中文| 亚洲精品456在线播放app| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品av麻豆狂野| 精品国产一区二区三区四区第35| 亚洲av成人精品一二三区| 国产精品99久久99久久久不卡 | 免费少妇av软件| 国产一区二区三区av在线| 又黄又粗又硬又大视频| 女人久久www免费人成看片| 一区二区av电影网| 高清欧美精品videossex| 亚洲,欧美精品.| 亚洲伊人久久精品综合| 妹子高潮喷水视频| 美女大奶头黄色视频| av国产精品久久久久影院| 天天影视国产精品| 亚洲国产av新网站| 如何舔出高潮| 一区二区三区精品91| 午夜福利影视在线免费观看| 国产在线免费精品| 制服人妻中文乱码| 午夜福利乱码中文字幕| 精品一区二区免费观看| 蜜桃国产av成人99| 1024视频免费在线观看| 99久久精品国产国产毛片| 亚洲成av片中文字幕在线观看 | 制服人妻中文乱码| 精品一区二区三卡| 国产一区二区在线观看日韩| 一级毛片我不卡| 久久毛片免费看一区二区三区| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 日本-黄色视频高清免费观看| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 久久久久视频综合| 老熟女久久久| 看非洲黑人一级黄片| 亚洲人与动物交配视频| 人体艺术视频欧美日本| 一区二区三区四区激情视频| 18禁观看日本| 人成视频在线观看免费观看| 精品卡一卡二卡四卡免费| 一级毛片 在线播放| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线| 一二三四中文在线观看免费高清| 国产毛片在线视频| 国产高清国产精品国产三级| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 欧美成人午夜免费资源| 日本与韩国留学比较| 在线 av 中文字幕| 免费观看在线日韩| 美女内射精品一级片tv| 国产成人精品福利久久| 亚洲精品久久午夜乱码| 亚洲国产精品999| 精品久久蜜臀av无| videos熟女内射| 美女主播在线视频| 最近2019中文字幕mv第一页| 成年美女黄网站色视频大全免费| 99九九在线精品视频| 久久av网站| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 欧美日韩精品成人综合77777| 侵犯人妻中文字幕一二三四区| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩国产mv在线观看视频| 亚洲性久久影院| 又粗又硬又长又爽又黄的视频| 老熟女久久久| 久久精品国产自在天天线| 国产黄色视频一区二区在线观看| 满18在线观看网站| 99久久精品国产国产毛片| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 久热这里只有精品99| 久久久久久伊人网av| 欧美成人午夜精品| freevideosex欧美| 亚洲五月色婷婷综合| 狠狠婷婷综合久久久久久88av| 亚洲色图综合在线观看| 日韩成人伦理影院| 久久久久人妻精品一区果冻| 国产不卡av网站在线观看| 久久人人爽人人爽人人片va| 免费少妇av软件| 美女国产视频在线观看| 久久精品国产a三级三级三级| 如日韩欧美国产精品一区二区三区| 在现免费观看毛片| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 国产 精品1| 插逼视频在线观看| 精品国产国语对白av| 黄色配什么色好看| 免费观看无遮挡的男女| 亚洲精品美女久久av网站| 国产亚洲最大av| 青春草视频在线免费观看| 亚洲欧洲国产日韩| 精品99又大又爽又粗少妇毛片| 一区二区三区精品91| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区黑人 | av线在线观看网站| 极品人妻少妇av视频| 男人舔女人的私密视频| 亚洲av成人精品一二三区| 欧美成人精品欧美一级黄| av在线观看视频网站免费| a 毛片基地| 国产成人精品无人区| 夜夜骑夜夜射夜夜干| 欧美最新免费一区二区三区| 在线观看免费高清a一片| 人人妻人人爽人人添夜夜欢视频| 国产日韩一区二区三区精品不卡| 国产精品人妻久久久久久| 国国产精品蜜臀av免费| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| 18禁国产床啪视频网站| 美女xxoo啪啪120秒动态图| 免费看不卡的av| 久久久精品94久久精品| 午夜视频国产福利| 搡老乐熟女国产| 国产av一区二区精品久久| 一本色道久久久久久精品综合| 99热这里只有是精品在线观看| 日本-黄色视频高清免费观看| 丰满少妇做爰视频| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 成人漫画全彩无遮挡| 一级爰片在线观看| 亚洲av男天堂| 国产精品久久久av美女十八| 又粗又硬又长又爽又黄的视频| 日本欧美视频一区| 亚洲欧洲日产国产| kizo精华| 黄色怎么调成土黄色| 亚洲国产精品999| 成人漫画全彩无遮挡| 国产成人午夜福利电影在线观看| 国产精品一区二区在线不卡| 91精品三级在线观看| 黄色怎么调成土黄色| 91精品三级在线观看| 天美传媒精品一区二区| 伦理电影大哥的女人| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 嫩草影院入口| 香蕉丝袜av| 一区二区三区四区激情视频| 国产精品不卡视频一区二区| 黄片播放在线免费| 欧美激情极品国产一区二区三区 | 久久99一区二区三区| www日本在线高清视频| 亚洲一码二码三码区别大吗| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 蜜桃国产av成人99| 亚洲欧洲国产日韩| 日本91视频免费播放| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 亚洲一级一片aⅴ在线观看| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| 久热这里只有精品99| 国产视频首页在线观看| 亚洲成av片中文字幕在线观看 | 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 人妻少妇偷人精品九色| 只有这里有精品99| 999精品在线视频| 国产熟女午夜一区二区三区| 亚洲精品一区蜜桃| 中文精品一卡2卡3卡4更新| 欧美97在线视频| 国国产精品蜜臀av免费| 高清视频免费观看一区二区| 91在线精品国自产拍蜜月| 成人免费观看视频高清| 又黄又粗又硬又大视频| 国产永久视频网站| 三级国产精品片| 波多野结衣一区麻豆| 三上悠亚av全集在线观看| 久久久久精品久久久久真实原创| 在线观看人妻少妇| 国产国拍精品亚洲av在线观看| 国产av一区二区精品久久| 在线观看国产h片| 国产探花极品一区二区| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区黑人 | 飞空精品影院首页| 久久这里只有精品19| 国产亚洲av片在线观看秒播厂| xxx大片免费视频| 久久久精品免费免费高清| 搡老乐熟女国产| 久久精品国产亚洲av涩爱| 91精品伊人久久大香线蕉| 香蕉丝袜av| 下体分泌物呈黄色| 黄片无遮挡物在线观看| 18禁观看日本| 国产精品人妻久久久影院| 亚洲伊人色综图| 99香蕉大伊视频| 亚洲精品成人av观看孕妇| 国产极品天堂在线| 国产精品国产三级国产专区5o| 国产熟女欧美一区二区| 热re99久久国产66热| 中文字幕人妻丝袜制服| 九色亚洲精品在线播放| 亚洲天堂av无毛| 国产在线一区二区三区精| 五月玫瑰六月丁香| 久久精品aⅴ一区二区三区四区 | 国产免费一区二区三区四区乱码| 最近最新中文字幕大全免费视频 | 两个人看的免费小视频| 丁香六月天网| 男女边吃奶边做爰视频| 日本黄色日本黄色录像| av国产久精品久网站免费入址| 最近最新中文字幕大全免费视频 | 少妇人妻久久综合中文| 精品一品国产午夜福利视频| 午夜免费鲁丝| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 母亲3免费完整高清在线观看 | 亚洲国产精品国产精品| 亚洲av男天堂| 国产亚洲精品第一综合不卡 | 久久这里有精品视频免费| 青青草视频在线视频观看| 90打野战视频偷拍视频| 女性被躁到高潮视频| 国产黄色免费在线视频| 内地一区二区视频在线| 国产亚洲欧美精品永久| 久久亚洲国产成人精品v| 亚洲精品av麻豆狂野| 99精国产麻豆久久婷婷| 少妇人妻精品综合一区二区| 精品国产乱码久久久久久小说| 少妇精品久久久久久久| 免费av中文字幕在线| 国产在线视频一区二区| 久久国内精品自在自线图片| 一区二区三区精品91| 亚洲图色成人| 黑人猛操日本美女一级片| 久久久精品免费免费高清| 欧美精品av麻豆av| 久久精品人人爽人人爽视色| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 久久久久久久亚洲中文字幕| 国产精品女同一区二区软件| 国产av码专区亚洲av| 免费黄色在线免费观看| 精品国产一区二区久久| 日韩欧美一区视频在线观看| 免费观看无遮挡的男女| 久久久国产精品麻豆| 在线观看免费高清a一片| 亚洲av电影在线进入| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 日本欧美视频一区| 天美传媒精品一区二区| 免费观看av网站的网址| 麻豆精品久久久久久蜜桃| 亚洲伊人久久精品综合| 免费看不卡的av| 亚洲高清免费不卡视频| 天天躁夜夜躁狠狠久久av| 午夜精品国产一区二区电影| 2018国产大陆天天弄谢| 岛国毛片在线播放| 成年人午夜在线观看视频| 欧美精品一区二区免费开放| 一个人免费看片子| 中国国产av一级| 欧美日韩综合久久久久久| 99热6这里只有精品| 亚洲国产av新网站| 另类亚洲欧美激情| 精品卡一卡二卡四卡免费| 91午夜精品亚洲一区二区三区| 免费黄网站久久成人精品| 国产国拍精品亚洲av在线观看| 久久久久精品人妻al黑| 久久国内精品自在自线图片| 久久99蜜桃精品久久| 免费黄频网站在线观看国产| 中国国产av一级| 精品国产一区二区三区久久久樱花| 日韩 亚洲 欧美在线| 免费在线观看黄色视频的| 成年动漫av网址| 啦啦啦视频在线资源免费观看| 永久免费av网站大全| 久久久久久久大尺度免费视频| 一级片'在线观看视频| 久久久久国产网址| av女优亚洲男人天堂| av免费观看日本| 青春草视频在线免费观看| 国产av国产精品国产| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 国产精品国产三级专区第一集| 国产日韩欧美亚洲二区| 久久综合国产亚洲精品| 男女免费视频国产| 欧美 日韩 精品 国产| 日韩av免费高清视频| 日韩熟女老妇一区二区性免费视频| 国产黄色视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 国产成人午夜福利电影在线观看| 性色avwww在线观看| 蜜臀久久99精品久久宅男| 精品人妻一区二区三区麻豆| 国产日韩一区二区三区精品不卡| 免费观看在线日韩| 国产精品蜜桃在线观看| 夫妻午夜视频| 久久久久久久久久人人人人人人| 国产亚洲一区二区精品| 国产男人的电影天堂91| 伦理电影大哥的女人| 免费黄色在线免费观看| 最近最新中文字幕免费大全7| 欧美激情国产日韩精品一区| 五月天丁香电影| 免费播放大片免费观看视频在线观看| 少妇的逼水好多| 国语对白做爰xxxⅹ性视频网站| 亚洲美女黄色视频免费看| 一级爰片在线观看| 日日摸夜夜添夜夜爱| 亚洲精品视频女| 久久久a久久爽久久v久久| 看免费av毛片| 中文天堂在线官网| 亚洲国产精品国产精品| 国产综合精华液| 交换朋友夫妻互换小说| 内地一区二区视频在线| 久久午夜综合久久蜜桃| 国产成人精品久久久久久| 如何舔出高潮| 男女国产视频网站| 肉色欧美久久久久久久蜜桃| 久热久热在线精品观看| 黑人猛操日本美女一级片| 在线天堂最新版资源| 晚上一个人看的免费电影| 久久久精品94久久精品| 狠狠婷婷综合久久久久久88av| 中文字幕亚洲精品专区| 久久ye,这里只有精品| 成年美女黄网站色视频大全免费| 蜜桃国产av成人99| 26uuu在线亚洲综合色| 青春草视频在线免费观看| 亚洲高清免费不卡视频| 香蕉国产在线看| 日韩欧美一区视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产熟女午夜一区二区三区| 另类亚洲欧美激情| 亚洲四区av| 一区二区av电影网| 高清视频免费观看一区二区| 欧美日韩av久久| 成人国产av品久久久| 日韩制服丝袜自拍偷拍| 两个人看的免费小视频|