• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural modulation and physical properties of cobalt-doped layered La2M5As3O2(M=Cu,Ni)compounds*

    2021-07-30 07:40:22LeiYang楊蕾YanPengSong宋艷鵬JunJieWang王俊杰XuChen陳旭HuiJingDu杜會(huì)靜andJianGangGuo郭建剛
    Chinese Physics B 2021年7期
    關(guān)鍵詞:陳旭俊杰

    Lei Yang(楊蕾) Yan-Peng Song(宋艷鵬) Jun-Jie Wang(王俊杰)Xu Chen(陳旭) Hui-Jing Du(杜會(huì)靜) and Jian-Gang Guo(郭建剛)

    1Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: crystal structure,As-As covalent bond,transport property

    1. Introduction

    Discovery of high-temperature superconductivity(SC)of cuprates,[1-3]iron pnictides,[4,5]and iron selenides[6-10]has brought out huge advances in condensed matter physics and material sciences. Typical structure of both iron-based superconductors is a layered form, where the spacer layers are ionic [La2O2]2+/Ba2+/K+and the functional layers are antifluorite type[Fe2X2]2-(X=P/As or S/Se/Te).The interesting properties like superconducting transition temperature(Tc),[11]quantum critical point,[12]nematic phase,[13]and magnetic fluctuation[14]are intimately determined by the geometry and electron counting of the latter one.

    In well-documented reports, chemical doping in the spacer or functional layer can effectively influence the states of[Fe2X2]2-,Tc,and superconducting property.[15,16]For example, in ThCr2Si2-type BaFe2As2, partial replacing divalent Ba2+with monovalentA+ions (A= alkali metal) leads to hole-doping superconductors exhibiting dome-likeTc.[5]Alternately, substituting Fe2+with Co2+/Ni2+cation[17,18]or As3-with P3-anion[12]can induce electron-doped superconductors with similar dome-likeTcand many unexpected properties. In terms of crystallography, we can see there are distinct evolutions of crystal structure upon doping. That is, the in-plane latticeashrinks (expands)and thec-axis expands (shrinks) in hole (electron)-doped Ba1-xAxFe2As2,[19-21]which is viewed as competition of intra-layer deformation and interlayer Coulomb attraction due to accumulation of charge in the [Fe2X2]2-layers.[22]Once the excess holes are introduced into the[Fe2X2]2-layers,the Fe-Xbond length andX-Fe-Xangle are decreased, leading to an in-plane contraction. Meanwhile, the Coulomb attraction between the positive space layers and negative charged[Fe2X2]2-layer weakens,and the expansion ofc-axis ensues.

    TheLn2(Cu1-xNix)5As3O2(Ln=La, Pr, Nd)is the first CuAs-based superconductor reported by our group.[23]It possesses a typical layered structure that is consisted of spacer layer[La2O2]2+and functional subunit[M5As3]2-(M=Cu,Ni, Co) containing strong As-As covalent bond alongcaxis.[24,25]For the end-memberRe2Ni5As3O2(Re=La, Ce,Sm),[26]it exhibits a structural phase transition from tetragonal(I4/mmm)to orthorhombic(I/mmm)symmetry,and does not change into superconductors at low temperature. The solidsolutions ofLn2(Cu1-xNix)5As3O2exhibit complex change in structure, whereaincreases andcdecreases asx <0.4, and thenadecreases andcincreases asx >0.4. At the same time,the As-As bonding length shrinks from 2.81 ?A to 2.63 ?A,leading to a dome-likeTcwith the highestTcatx=0.4. Since the As-As covalent bond can accumulate or release excess electrons, the empirical rule obtained from ThCr2Si2-type compounds seems not to be accurate enough to describe the structural change in the layered compounds.

    In this work, we prepare two series of solid solutions of La2(M1-xCox)5As3O2(M=Cu,Ni)(x=0-0.7)and systematically investigate the structural change and physical property. It is found that the As-As bond length only slightly changes (±2%), differing from large shrinkage of that in La2(Cu1-xNix)5As3O2.[23]Meanwhile, we observe that the Co-doping induces monotonous change inaandcunlike the anomalous kink of La2(Cu1-xNix)5As3O2. In addition,La2(Cu1-xCox)5As3O2(x=0-0.7)exhibits a phase transition from paramagnetism to ferromagnetism as the Co content increases above 0.4. While La2(Ni1-xCox)5As3O2(x=0-0.7)samples only show paramagnetism, and the structural transition from tetragonal to orthorhombic phase is suppressed. We discuss the structural evolution and the lack of superconductivity from the key aspect of As-As covalent bonding state.

    2. Experimental details

    Polycrystalline samples of La2(M1-xCox)5As3O2(M=Cu, Ni) (x=0-0.7) were synthesized by conventional solidstate reactions. The binary precursors LaAs and Cu3As,NiAs,Co2As were pre-synthesized by reacting La filings,Cu/Ni/Co powder and As powder at 1000 K for 20 h. Then, the powders of LaAs,Cu3As,NiAs,Co2As,La2O3,Ni,and Cu were weighted according to the desired ratio, ground, and pelleted under a pressure of 50 MPa in an argon-filled glove box with an O2and H2O content below 1 ppm. The pellet was loaded into an Al2O3crucible,and then sealed into an evacuated silica tube, which was heated at 150 K, hold for 40 h, and then furnace-cooling to room temperature.

    Powder x-ray diffraction (PXRD) patterns of the obtained samples were collected using a Panalytical diffractometer with CuKα(λ=1.5408 ?A)radiation equipped with a lowtemperature cryostat. Rietveld refinement of the PXRD pattern was performed by Fullprof software suites.[27]The electrical resistivity (ρ)was measured through the standard fourwire method in the physical property measurement system(PPMS, Quantum Design). The dc magnetic properties were characterized using a vibrating sample magnetometer(PPMS,Quantum Design).

    3. Results and discussion

    Figure 1(a) shows the PXRD patterns of the selected La2(M1-xCox)5As3O2(M=Cu,Ni)samples for clarity.There are no obvious impurity peaks in the whole pattern, indicating that the synthesized samples are homogeneous and almost pure phase. All diffraction peaks exhibit monotonous shift with increasing the content of Co. Meanwhile, all the peaks can be indexed with a unit cell of tetragonal symmetry. We determined the crystal structure of pure La2Cu5As3O2and La2Ni5As3O2phases and reported them in Refs.[23,26].Therefore, we can refine the whole PXRD pattern of two series of Co-doped La2Cu5As3O2and La2Ni5As3O2samples based on the above structure. The representative profiles are plotted in Fig. 1(b). The refinements of both patterns of La2Cu3Co2As3O2and La2Ni3Co2As3O2smoothly converge intoRp=1.92%,Rwp=2.76% andRp=1.78% andRwp=2.43%, respectively. Here we think that the Cu/Ni atoms are random substituted by the Co ions without changing the structural symmetry. Meanwhile,the Co substitution of Cu(Ni)is more likely to be hole-doping due to two(one)fewer 3d electrons according to the results in literatures.[28,29]

    The crystal structure of La2M5As3O2(M= Cu, Ni,Co) is drawn in Fig. 2(a). It can be seen that functional[M5As3]2-subunit and fluorite-type[La2O2]2+layers are alternately stacked along thec-axis. In a [Cu5As3]2-subunit, theM1 atoms are separated by a centralM2 plane and the As1-As2 are connected by the covalent bond with length of 2.81 ?A.The bonding details are shown in Fig.2(b).The Co-content dependent unit cell parameters are summarized and plotted in Figs. 2(c) and 2(d). The data of La2(Cu1-xNix)5As3O2are taken from Ref. [23] and shown as green square. We firstly examine the crystallographic parameters of La2(Ni1-xCox)5As3O2in the right panels of Figs. 2(c) and 2(d). Asxbelow the doping limit of 0.7, it is found that the lattice constantacontinuously decreases from 4.0691 ?A to 4.0162 ?A,however,thecinversely increases from 22.482 ?A to 22.972 ?A. The obtainedc/aratio linearly increases from 5.54 to 5.72, which perfectly falls into the extrapolated line of La2(Cu1-xNix)5As3O2. It again confirms the validation of the present experimental data. For the volume of a unit cell, it just slightly decreases from 372 ?A3to 370 ?A3. For the La2(Cu1-xCox)5As3O2, theamonotonously decreases from 4.1404 ?A to 4.0621 ?A, differing from that of La2(Cu1-xNix)5As3O2. While itsc-axis firstly keeps a constant and gradually saturates to be 23.0 ?A. Thec/aratio slightly increases from 5.54 to 5.66 and the volume linearly decreases from 391 ?A3to 379 ?A3. The shrinkage ofaand expansion ofcindicate that the Co-substitution is like hole-doping as suggested in hole-doped layered compounds of Ba1-xKxFe2As2[19]and Ba1-xNaxFe2As2.[20]In addition,the variations of lattice constants of two Co-doped cases are significantly different from those of La2(Cu1-xNix)5As3O2,in which thea,c, andc/aratio show non-monotonous changes and the highestTcperfectly occurs at the structural anomaly ofxNi=0.4.

    Fig.1. (a)Powder XRD patterns of typical La2(M1-xCox)5As3O2(M=Cu,Ni)samples. (b)Rietveld refinement profiles of two representative samples of La2Cu3Co2As3O2 and La2Ni3Co2As3O2.

    Fig.2. (a)Crystal structure of La2(M1-xCox)5As3O2 (M=Cu,Ni,Co). (b)Structure of[M5As3]2- subunit. (c)Lattice parameters a,c,c/a and volume of unit cell V of three series of samples. The data of La2(Cu1-xNix)5As3O2 are taken from Ref.[23]. The error bars are within the hollow squares.

    In order to analyze the details of structural evolution,we first check the change in interlayer spacing (d) between[La2O2]2+layer and[M5As3]2-upon Co doping. It is found thatdlinearly increases within the limit of experimental error in Fig. 3(a). The increments ofdare 0.06 ?A and 0.13 ?A for La2(Ni1-xCox)5As3O2and La2(Cu1-xCox)5As3O2,respectively. At the same time,in Fig.3(b),the thickness(δ)of [La2O2]2+layers also increases, which can partially account for the trend of increase inc-axis. For the [M5As3]2-,the thickness equals to two times of As1-As2 bond length. In Fig. 3(c), we plot the variation of As1-As2 bond lengths of three systems. In Ni-doped La2Cu5As3O2, the length almost linearly decreases from 2.81 ?A to 2.63 ?A with a kink atx=0.4.However, as further lowering the number ofdelectrons from 3d8(Ni2+)to 3d7(Co2+),the As1-As2 bond length inversely increases slightly and then keeps a constant of 2.66 ?A. For Co-doped La2Cu5As3O2, the As1-As2 bond length slightly decreases from 2.81 ?A to 2.73 ?A accompanying a tiny kink atx=0.5,see Fig.3(d). From the above results,one can see that the expansion ofc-axis mainly comes from the increment of interlayer spacingdand thicknessδof [La2O2]2+layer because the thickness of[M5As3]2-changes little.

    Fig.3.(a)and(b)Co-content dependent interlayer spacing d between[La2O2]2+layer and[M5As3]2-subunit,and thickness(δ)of[La2O2]2+layer. Dashed lines are guided to eyes. (c)and(d)As1-As2 bond lengths in three series of samples. The data of La2(Cu1-xNix)5As3O2 are taken from Ref.[23].

    Fig.4. Physical properties of La2(Cu1-xCox)5As3O2. (a)Temperature-dependent electrical resistivity of La2(Cu1-xCox)5As3O2 (x=0-0.7)from 2 K-300 K.(b)Temperature-dependent magnetic susceptibility(χ)measured at H=1 T.Inset shows the χ(T)curves of x=0,0.1,and 0.2 samples. (c)χ(T)curves for per mol Co ion. Inset shows their inverse curves. Pinks lines are fitting curves as shown in the main text. (d)M-H loops of different temperatures.

    Fig. 5. Physical property and structural phase transition of La2(Ni1-xCox)5As3O2. (a)-(b) Temperature-dependent electrical resistivity (ρ)and magnetic susceptibility (χ) measured at H =1 T. (c)-(d) (200) and (215) diffraction peaks of x=0.1 and x=0.6 samples measured from 10 K-300 K.(e)-(f)Temperature-dependent lattice constants of La2(Ni1-xCox)5As3O2 (x=0.1 and 0.6). For x=0.1,there is a phase transition evidenced by splitting of a-lattice parameters below 270 K.

    Now we turn to investigate the transport property of La2(Ni1-xCox)5As3O2(x= 0-0.7). Figure 5(a) shows theρ(T) curves of all samples. It can be seen that all samples behave as a metal in the measured temperature range,and theρof the doped samples has increased by 1-2 orders of magnitude due to magnetic or disorder scattering. Another reason is that the As1-As2 covalent bond status changes the carrier concentration, and the synergistic effect enhances the resistivity. Figure 5(b)shows the magnetic susceptibilityχ(T)of La2(Ni1-xCox)5As3O2(x=0-0.7)withH=1 T.We can see that theχ(T)curves of all samples show paramagnetic behavior in the measured range. Meanwhile, with increasing the Co content,χ(T) gradually increases, the value is between 0.007 emu/mol·Oe and 0.025 emu/mol·Oe. Compared with theχ(T)of La2(Cu1-xCox)5As3O2,the high concentration of Co does not induce ferromagnetic phase transitions.

    Since La2Ni5As3O2undergoes a structural phase transition from tetragonal (I4/mmm) to orthorhombic (I/mmm)symmetry at 270 K, we measured the PXRD pattern of La2(Ni1-xCox)5As3O2(x=0.1 and 0.6)from 300 K to 10 K so as to check the structural evolution upon Co doping. Figure 5(c) shows the temperature-dependent (200) and (215)diffraction peaks ofx=0.1 sample. We can see that the peaks(200)and(215)split into(200)/(020)and(125)/(215),respectively, as the temperature is lower than 270 K. It means that the sample undergoes a similar structural phase transition like La2Ni5As3O2. In Fig. 5(d), it can be seen that the (200) and(215)diffraction peaks ofx=0.6 sample shift towards higher angle without splitting with decreasing temperature, indicating that the phase transition has been suppressed. We use the orthogonal space groupI/mmm(No. 71) to index the PXRD pattern at 10 K. The lattice constants area0=4.0616(2) ?A,b0=4.0847(8) ?A, andc0=22.393(3) ?A. Figure 5(e) shows the temperature dependence of the lattice constants ofx=0.1 sample,wherea0andc0gradually decrease,andb0gradually increases and becomes saturated asTdecreases. Forx=0.6 sample,the lattice constantsaandcjust monotonously shrink during cooling,see Fig.5(f).

    Let us briefly discuss the structural variation and physical property of La2M5As3O2(M=Cu,Ni)under Co doping. As previously reported doping behaviors in BaFe2As2, the substitution of Fe by Co/Ni/Cu with more 3d electrons leads to electron-type doping and the doping-dependent superconductivity can be scaled by the net carrier concentrations.[31]In the present work, the substitution of Co (3d7) into La2M5As3O2(M=Cu,Ni)should be hole-doped type,which is evidenced by the expansion ofab-plane and the shrinkage ofc-axis above. In La2Cu5As3O2, the Ni-doping can induce a domelikeTc; while the Co-doping only kills the DW-like transition and then induces ferromagnetic phase transitions~100 K rather than superconductivity. Furthermore,we found that the Co2+ions may exhibit unusual low-spin state (S=1/2) under this unique coordination. However, since the scattering lengths of Co2+and Cu+for x-ray are pretty close, we cannot unambiguously identify which site the Co2+ions preferentially occupy. For La2(Ni1-xCox)5As3O2, the Co-doping increases the As-As bond length a little bit from 2.63 ?A to 2.66 ?A,however,the increment is too small. It does not reach the As1-As2 bond length of La2(Cu1-xNix)5As3O2superconductor. Hence, the Co-doping does not induce superconductivity in the present work.

    It is known that the Co-doping should not follow the rigid band model like the case of Co/Ni/Cu-doped BaFe2As2,[31,32]where partial induced electrons are localized around the dopant sites and do not contribute to the conductivity. Given the complex structural change like 40% kink in La2(Cu1-xNix)5As3O2and anisotropic change in thickness of[La2O2]2+layer and [M5As3]2-subunit, it is hard to reconcile the lattice variation with the simple electron counting.The dependence of physical properties on Co/Ni doping inLn2Cu5As3O2(Ln=La,Pr,Nd)should be more complicated due to the variation of As-As covalent bonding status. Detailed structural analyses and low-temperature measurements are needed to clarify the above two issues.

    4. Conclusion

    We have investigated the structure and low-temperature property of La2(M1-xCox)5As3O2(M=Cu,Ni;x=0-0.7). It is found that the doped Co ions induce simpler structural variation than those of La2(Cu1-xNix)5As3O2because the As-As bonding status barely changes. Furthermore, the Co-doping induces a paramagnetic to ferromagnetic phase transition asx >0.4 in La2(Cu1-xCox)5As3O2and suppresses the structural phase transition atx=0.6 in La2(Ni1-xCox)5As3O2.Unfortunately,all the doped samples are non-superconductive in the temperature range of 2-300 K. From the view of As-As bond,it demonstrates that the bonding states could determine the crystal evolutions and influence the transport property.

    猜你喜歡
    陳旭俊杰
    “畫(huà)家陳”
    Dispersion and damping rate of Langmuir wave in space plasma with regularized Kappa distributed electrons
    Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films?
    Warm needling moxibustion plus PKP for vertebral compression fracture due to kidney deficiency and blood stasis: a randomized controlled trial
    Long A Sounds
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    Improved social force model based on exit selection for microscopic pedestrian simulation in subway station
    成人永久免费在线观看视频| 亚洲一区高清亚洲精品| 国产区一区二久久| 久久 成人 亚洲| 午夜激情av网站| 精品人妻1区二区| 高清视频免费观看一区二区| 制服诱惑二区| 多毛熟女@视频| 欧美人与性动交α欧美软件| 男人舔女人的私密视频| www.999成人在线观看| 久久亚洲真实| 国产成人免费观看mmmm| 女人爽到高潮嗷嗷叫在线视频| 一进一出抽搐gif免费好疼 | 亚洲熟妇中文字幕五十中出 | 午夜成年电影在线免费观看| 欧美人与性动交α欧美软件| 精品国产一区二区三区四区第35| 性色av乱码一区二区三区2| 18禁黄网站禁片午夜丰满| 精品久久久久久久久久免费视频 | 不卡一级毛片| 亚洲第一青青草原| 午夜精品在线福利| 精品少妇久久久久久888优播| 在线观看免费视频日本深夜| av视频免费观看在线观看| 51午夜福利影视在线观看| 很黄的视频免费| 国产99久久九九免费精品| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| a在线观看视频网站| 免费av中文字幕在线| 激情在线观看视频在线高清 | 精品第一国产精品| 999精品在线视频| 美女高潮喷水抽搐中文字幕| 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 999久久久国产精品视频| 亚洲精品美女久久av网站| 久久午夜亚洲精品久久| 精品国内亚洲2022精品成人 | a级毛片在线看网站| 欧美成人免费av一区二区三区 | 视频区欧美日本亚洲| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| netflix在线观看网站| 少妇 在线观看| av在线播放免费不卡| 亚洲av第一区精品v没综合| 成人国语在线视频| 9热在线视频观看99| 亚洲色图综合在线观看| 男人舔女人的私密视频| 中文字幕人妻丝袜制服| 法律面前人人平等表现在哪些方面| 欧美激情久久久久久爽电影 | 欧美+亚洲+日韩+国产| 女人久久www免费人成看片| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| www.自偷自拍.com| 黄频高清免费视频| 午夜久久久在线观看| 水蜜桃什么品种好| 国产精品二区激情视频| 国产麻豆69| 精品国产国语对白av| 婷婷精品国产亚洲av在线 | 老熟妇乱子伦视频在线观看| 黄片小视频在线播放| 制服诱惑二区| 丝袜美足系列| 国产日韩欧美亚洲二区| 亚洲精品中文字幕一二三四区| 中文字幕色久视频| 一边摸一边做爽爽视频免费| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 国产精品国产高清国产av | 一级毛片精品| 国产男靠女视频免费网站| 91av网站免费观看| 成年女人毛片免费观看观看9 | 露出奶头的视频| 色婷婷av一区二区三区视频| 久久精品亚洲熟妇少妇任你| 欧美午夜高清在线| 免费在线观看黄色视频的| 国产成人免费无遮挡视频| 久久人人97超碰香蕉20202| 国产精品一区二区在线观看99| 亚洲成a人片在线一区二区| 无限看片的www在线观看| 啦啦啦免费观看视频1| 69av精品久久久久久| 欧美国产精品一级二级三级| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩乱码在线| 久久热在线av| 纯流量卡能插随身wifi吗| 亚洲av日韩精品久久久久久密| 免费在线观看黄色视频的| 9191精品国产免费久久| 国产又爽黄色视频| a级毛片在线看网站| 丰满迷人的少妇在线观看| 欧美日韩黄片免| 国产精品.久久久| 日韩一卡2卡3卡4卡2021年| 高清欧美精品videossex| 精品视频人人做人人爽| 香蕉国产在线看| 男男h啪啪无遮挡| 午夜影院日韩av| 久久99一区二区三区| 国产精品永久免费网站| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 老司机午夜福利在线观看视频| 成年版毛片免费区| 国产午夜精品久久久久久| 性少妇av在线| 九色亚洲精品在线播放| 国产精品.久久久| 亚洲成国产人片在线观看| 精品福利观看| 一二三四社区在线视频社区8| 国产国语露脸激情在线看| 日韩免费高清中文字幕av| 美女午夜性视频免费| 18禁裸乳无遮挡免费网站照片 | 欧美老熟妇乱子伦牲交| x7x7x7水蜜桃| 美女国产高潮福利片在线看| 91麻豆精品激情在线观看国产 | 久久 成人 亚洲| 亚洲成人免费av在线播放| 天天操日日干夜夜撸| 久久影院123| 一进一出抽搐gif免费好疼 | 久久久久精品国产欧美久久久| 妹子高潮喷水视频| 亚洲性夜色夜夜综合| 国产欧美日韩综合在线一区二区| www.熟女人妻精品国产| 无限看片的www在线观看| www.自偷自拍.com| 在线观看午夜福利视频| 欧美乱码精品一区二区三区| 精品乱码久久久久久99久播| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 成人亚洲精品一区在线观看| 多毛熟女@视频| 丝袜在线中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 国产99白浆流出| 久久国产精品大桥未久av| 亚洲avbb在线观看| 午夜视频精品福利| 夜夜爽天天搞| 国精品久久久久久国模美| 色在线成人网| 嫁个100分男人电影在线观看| 99国产精品99久久久久| 国产又爽黄色视频| 亚洲熟女精品中文字幕| 亚洲成人手机| 另类亚洲欧美激情| 操美女的视频在线观看| 中文亚洲av片在线观看爽 | 老熟妇乱子伦视频在线观看| 国产免费现黄频在线看| 免费久久久久久久精品成人欧美视频| 丝瓜视频免费看黄片| 在线看a的网站| 国产成人av激情在线播放| 国产男靠女视频免费网站| 久久精品91无色码中文字幕| 好看av亚洲va欧美ⅴa在| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 黄色视频,在线免费观看| 多毛熟女@视频| 18禁观看日本| 久久精品成人免费网站| 国产亚洲精品一区二区www | 91精品国产国语对白视频| 一级a爱片免费观看的视频| 男人的好看免费观看在线视频 | 村上凉子中文字幕在线| 一区在线观看完整版| av不卡在线播放| 美女高潮喷水抽搐中文字幕| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 色94色欧美一区二区| 国产激情久久老熟女| 丝袜在线中文字幕| 免费人成视频x8x8入口观看| 啦啦啦在线免费观看视频4| 啦啦啦免费观看视频1| 久久午夜亚洲精品久久| 一级a爱视频在线免费观看| 国产一区二区三区综合在线观看| 夫妻午夜视频| videos熟女内射| 一区二区三区精品91| 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 色婷婷av一区二区三区视频| 成人av一区二区三区在线看| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 亚洲第一青青草原| 国产男女内射视频| 男女午夜视频在线观看| 中文字幕人妻熟女乱码| 日韩中文字幕欧美一区二区| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 五月开心婷婷网| 欧美另类亚洲清纯唯美| 极品少妇高潮喷水抽搐| 一级作爱视频免费观看| 日韩中文字幕欧美一区二区| 电影成人av| 国产成人免费无遮挡视频| 两个人免费观看高清视频| 国产成人一区二区三区免费视频网站| 身体一侧抽搐| 亚洲精华国产精华精| 看黄色毛片网站| 国产欧美日韩一区二区三| 国产精品秋霞免费鲁丝片| 国产精品亚洲一级av第二区| 亚洲黑人精品在线| 不卡av一区二区三区| 亚洲熟妇中文字幕五十中出 | 欧美日韩精品网址| 精品免费久久久久久久清纯 | 在线看a的网站| 丁香六月欧美| 国产免费av片在线观看野外av| 两人在一起打扑克的视频| 亚洲精品在线美女| 国产精品久久视频播放| 国产精品国产高清国产av | 午夜激情av网站| 亚洲人成77777在线视频| 两个人看的免费小视频| 午夜福利一区二区在线看| 在线av久久热| 久久人人97超碰香蕉20202| 亚洲人成电影观看| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 欧美乱色亚洲激情| 极品教师在线免费播放| 久久国产亚洲av麻豆专区| 亚洲成人国产一区在线观看| 成年女人毛片免费观看观看9 | 超色免费av| 热99国产精品久久久久久7| 国产欧美亚洲国产| 久久久久久久久免费视频了| 午夜福利乱码中文字幕| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 日韩一卡2卡3卡4卡2021年| 欧美亚洲日本最大视频资源| 久久久久久久久久久久大奶| 美女国产高潮福利片在线看| 亚洲精品中文字幕一二三四区| 热re99久久国产66热| 欧美黑人欧美精品刺激| 黄色丝袜av网址大全| 亚洲国产毛片av蜜桃av| 亚洲成a人片在线一区二区| 少妇粗大呻吟视频| 国产欧美日韩一区二区精品| 日本黄色视频三级网站网址 | 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 欧美日韩av久久| 亚洲九九香蕉| 亚洲av片天天在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲在线自拍视频| 久久中文看片网| 国产男女内射视频| 成年动漫av网址| 国产成人免费观看mmmm| 国产99白浆流出| 香蕉丝袜av| 夫妻午夜视频| 最近最新中文字幕大全电影3 | bbb黄色大片| 亚洲国产精品合色在线| a级片在线免费高清观看视频| 欧美人与性动交α欧美精品济南到| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 欧美人与性动交α欧美精品济南到| 高清欧美精品videossex| 天堂动漫精品| 很黄的视频免费| 午夜两性在线视频| 欧美黑人欧美精品刺激| 国产精品美女特级片免费视频播放器 | 午夜福利在线观看吧| 最新美女视频免费是黄的| 男人舔女人的私密视频| 久久人妻福利社区极品人妻图片| 少妇的丰满在线观看| 一边摸一边抽搐一进一出视频| 国产精品免费一区二区三区在线 | 亚洲成人手机| 大型黄色视频在线免费观看| 俄罗斯特黄特色一大片| 国产片内射在线| 欧美日韩亚洲高清精品| 免费女性裸体啪啪无遮挡网站| 大片电影免费在线观看免费| 在线观看66精品国产| 一本一本久久a久久精品综合妖精| 99久久国产精品久久久| 国产精品乱码一区二三区的特点 | 亚洲国产精品合色在线| 国产91精品成人一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 亚洲精品在线观看二区| 色精品久久人妻99蜜桃| 国产精品免费视频内射| 1024视频免费在线观看| 国产精品亚洲一级av第二区| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 亚洲一码二码三码区别大吗| 成年版毛片免费区| 久久精品91无色码中文字幕| 欧美日韩精品网址| 亚洲一区二区三区欧美精品| 少妇 在线观看| a级毛片在线看网站| 成年版毛片免费区| 久久精品91无色码中文字幕| 久久香蕉精品热| 国产黄色免费在线视频| 欧美成人午夜精品| 青草久久国产| 欧美 日韩 精品 国产| 香蕉国产在线看| 丰满饥渴人妻一区二区三| a在线观看视频网站| 麻豆成人av在线观看| 1024视频免费在线观看| 一区二区三区激情视频| 亚洲色图 男人天堂 中文字幕| 热re99久久精品国产66热6| 99riav亚洲国产免费| 国产亚洲av高清不卡| 又大又爽又粗| 999久久久精品免费观看国产| 久久精品亚洲av国产电影网| 国产一区二区三区视频了| 成年人黄色毛片网站| 一区二区三区激情视频| 麻豆国产av国片精品| 丝袜在线中文字幕| 美女 人体艺术 gogo| 伊人久久大香线蕉亚洲五| 国产国语露脸激情在线看| 好男人电影高清在线观看| 99久久国产精品久久久| 黑人巨大精品欧美一区二区蜜桃| 夜夜夜夜夜久久久久| 国产野战对白在线观看| 欧美一级毛片孕妇| 精品视频人人做人人爽| 欧美精品av麻豆av| www.999成人在线观看| 久久青草综合色| 国产一区二区三区综合在线观看| 精品高清国产在线一区| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 后天国语完整版免费观看| 身体一侧抽搐| 日本wwww免费看| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 日韩 欧美 亚洲 中文字幕| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产 | 丰满饥渴人妻一区二区三| 天天躁夜夜躁狠狠躁躁| 人妻一区二区av| 久久这里只有精品19| 国产精品98久久久久久宅男小说| 三上悠亚av全集在线观看| 久久精品成人免费网站| 又黄又爽又免费观看的视频| 午夜亚洲福利在线播放| 老司机深夜福利视频在线观看| 黑丝袜美女国产一区| 91九色精品人成在线观看| 五月开心婷婷网| 在线观看免费高清a一片| 日本精品一区二区三区蜜桃| 精品第一国产精品| 精品人妻熟女毛片av久久网站| 亚洲色图综合在线观看| 午夜福利在线免费观看网站| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 曰老女人黄片| 又大又爽又粗| 国产精品久久久久久精品古装| 一区在线观看完整版| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 少妇粗大呻吟视频| 日韩一卡2卡3卡4卡2021年| 午夜免费成人在线视频| 中出人妻视频一区二区| 黄色女人牲交| 9色porny在线观看| 五月开心婷婷网| 女人爽到高潮嗷嗷叫在线视频| 91成年电影在线观看| 久久精品国产综合久久久| 欧美日韩亚洲综合一区二区三区_| 国产精品久久久久成人av| 69av精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| aaaaa片日本免费| 乱人伦中国视频| 久久久久视频综合| 午夜福利一区二区在线看| 高清在线国产一区| 男女床上黄色一级片免费看| 脱女人内裤的视频| 精品久久久久久久毛片微露脸| 成人永久免费在线观看视频| 亚洲黑人精品在线| 动漫黄色视频在线观看| 亚洲人成电影免费在线| 十八禁高潮呻吟视频| 亚洲精品乱久久久久久| 久久亚洲精品不卡| 制服人妻中文乱码| 大香蕉久久网| 免费在线观看视频国产中文字幕亚洲| av超薄肉色丝袜交足视频| 麻豆乱淫一区二区| 别揉我奶头~嗯~啊~动态视频| 91字幕亚洲| av片东京热男人的天堂| 国产又爽黄色视频| 色尼玛亚洲综合影院| 国产91精品成人一区二区三区| 国产在线精品亚洲第一网站| 国产成人精品在线电影| 亚洲国产精品合色在线| 日韩大码丰满熟妇| 三上悠亚av全集在线观看| 久久久久久亚洲精品国产蜜桃av| av欧美777| 黄片播放在线免费| 国产成人精品在线电影| a级毛片黄视频| 国产精华一区二区三区| 亚洲av成人不卡在线观看播放网| 久久久久国产一级毛片高清牌| 精品国产美女av久久久久小说| 高潮久久久久久久久久久不卡| 久久久国产精品麻豆| 高清欧美精品videossex| 国产精品 国内视频| 国产无遮挡羞羞视频在线观看| 中文字幕人妻熟女乱码| 亚洲美女黄片视频| 免费av中文字幕在线| 亚洲久久久国产精品| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| 一区二区三区激情视频| 精品一区二区三区四区五区乱码| 欧美精品高潮呻吟av久久| 欧美日韩亚洲国产一区二区在线观看 | 一二三四社区在线视频社区8| 看黄色毛片网站| 久久99一区二区三区| 欧美成人午夜精品| 国产成人一区二区三区免费视频网站| 久久国产精品男人的天堂亚洲| av一本久久久久| 亚洲精品国产精品久久久不卡| 国产亚洲精品一区二区www | 国产无遮挡羞羞视频在线观看| 日本vs欧美在线观看视频| 在线观看免费视频网站a站| 黄片播放在线免费| 狠狠婷婷综合久久久久久88av| 成年版毛片免费区| 免费观看a级毛片全部| 波多野结衣av一区二区av| 欧美国产精品一级二级三级| 亚洲精品粉嫩美女一区| 超碰成人久久| 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 一本一本久久a久久精品综合妖精| 色综合婷婷激情| 99国产精品一区二区蜜桃av | 国产97色在线日韩免费| 精品国产美女av久久久久小说| 亚洲中文日韩欧美视频| 亚洲黑人精品在线| 91字幕亚洲| 欧洲精品卡2卡3卡4卡5卡区| 大香蕉久久网| 国产精品99久久99久久久不卡| 99精品久久久久人妻精品| 天天影视国产精品| 我的亚洲天堂| 18禁美女被吸乳视频| 国产亚洲一区二区精品| 最新在线观看一区二区三区| 一进一出好大好爽视频| 中文字幕高清在线视频| 亚洲五月天丁香| 午夜精品国产一区二区电影| 欧美另类亚洲清纯唯美| 19禁男女啪啪无遮挡网站| 热99国产精品久久久久久7| 在线观看免费日韩欧美大片| 男女午夜视频在线观看| 成人18禁高潮啪啪吃奶动态图| 成在线人永久免费视频| 国产视频一区二区在线看| 国产精品秋霞免费鲁丝片| 精品人妻在线不人妻| 真人做人爱边吃奶动态| 午夜福利在线观看吧| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品国产欧美久久久| 午夜福利免费观看在线| 一级a爱视频在线免费观看| 99久久国产精品久久久| 丰满的人妻完整版| 咕卡用的链子| 国产精品偷伦视频观看了| 国产成人系列免费观看| 我的亚洲天堂| cao死你这个sao货| 大型黄色视频在线免费观看| 午夜久久久在线观看| 成人免费观看视频高清| 亚洲专区国产一区二区| 老司机午夜十八禁免费视频| 国产91精品成人一区二区三区| 一本综合久久免费| 欧美乱妇无乱码| 国产精品久久久av美女十八| 人人澡人人妻人| 性色av乱码一区二区三区2| 不卡一级毛片| 91麻豆av在线| 国产午夜精品久久久久久| 国产乱人伦免费视频| 国产成人av教育| 18禁国产床啪视频网站| av电影中文网址| 国产欧美日韩一区二区精品| 日韩 欧美 亚洲 中文字幕| 免费一级毛片在线播放高清视频 | 精品国产乱码久久久久久男人| 国产无遮挡羞羞视频在线观看| 成熟少妇高潮喷水视频| 久久久久精品人妻al黑| 97人妻天天添夜夜摸| 日本wwww免费看| 久久狼人影院| 国产高清国产精品国产三级| 天堂√8在线中文| 又黄又爽又免费观看的视频| 三级毛片av免费| 欧美在线黄色| 久久人人爽av亚洲精品天堂| 国产精品.久久久| 亚洲欧美日韩另类电影网站| 成人国语在线视频| 99在线人妻在线中文字幕 | 操出白浆在线播放| 80岁老熟妇乱子伦牲交| 亚洲欧美一区二区三区久久| 如日韩欧美国产精品一区二区三区| 国产不卡一卡二| 女人被狂操c到高潮| 亚洲成av片中文字幕在线观看| 久久久久国产精品人妻aⅴ院 | 日韩欧美一区视频在线观看|