• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural modulation and physical properties of cobalt-doped layered La2M5As3O2(M=Cu,Ni)compounds*

    2021-07-30 07:40:22LeiYang楊蕾YanPengSong宋艷鵬JunJieWang王俊杰XuChen陳旭HuiJingDu杜會(huì)靜andJianGangGuo郭建剛
    Chinese Physics B 2021年7期
    關(guān)鍵詞:陳旭俊杰

    Lei Yang(楊蕾) Yan-Peng Song(宋艷鵬) Jun-Jie Wang(王俊杰)Xu Chen(陳旭) Hui-Jing Du(杜會(huì)靜) and Jian-Gang Guo(郭建剛)

    1Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: crystal structure,As-As covalent bond,transport property

    1. Introduction

    Discovery of high-temperature superconductivity(SC)of cuprates,[1-3]iron pnictides,[4,5]and iron selenides[6-10]has brought out huge advances in condensed matter physics and material sciences. Typical structure of both iron-based superconductors is a layered form, where the spacer layers are ionic [La2O2]2+/Ba2+/K+and the functional layers are antifluorite type[Fe2X2]2-(X=P/As or S/Se/Te).The interesting properties like superconducting transition temperature(Tc),[11]quantum critical point,[12]nematic phase,[13]and magnetic fluctuation[14]are intimately determined by the geometry and electron counting of the latter one.

    In well-documented reports, chemical doping in the spacer or functional layer can effectively influence the states of[Fe2X2]2-,Tc,and superconducting property.[15,16]For example, in ThCr2Si2-type BaFe2As2, partial replacing divalent Ba2+with monovalentA+ions (A= alkali metal) leads to hole-doping superconductors exhibiting dome-likeTc.[5]Alternately, substituting Fe2+with Co2+/Ni2+cation[17,18]or As3-with P3-anion[12]can induce electron-doped superconductors with similar dome-likeTcand many unexpected properties. In terms of crystallography, we can see there are distinct evolutions of crystal structure upon doping. That is, the in-plane latticeashrinks (expands)and thec-axis expands (shrinks) in hole (electron)-doped Ba1-xAxFe2As2,[19-21]which is viewed as competition of intra-layer deformation and interlayer Coulomb attraction due to accumulation of charge in the [Fe2X2]2-layers.[22]Once the excess holes are introduced into the[Fe2X2]2-layers,the Fe-Xbond length andX-Fe-Xangle are decreased, leading to an in-plane contraction. Meanwhile, the Coulomb attraction between the positive space layers and negative charged[Fe2X2]2-layer weakens,and the expansion ofc-axis ensues.

    TheLn2(Cu1-xNix)5As3O2(Ln=La, Pr, Nd)is the first CuAs-based superconductor reported by our group.[23]It possesses a typical layered structure that is consisted of spacer layer[La2O2]2+and functional subunit[M5As3]2-(M=Cu,Ni, Co) containing strong As-As covalent bond alongcaxis.[24,25]For the end-memberRe2Ni5As3O2(Re=La, Ce,Sm),[26]it exhibits a structural phase transition from tetragonal(I4/mmm)to orthorhombic(I/mmm)symmetry,and does not change into superconductors at low temperature. The solidsolutions ofLn2(Cu1-xNix)5As3O2exhibit complex change in structure, whereaincreases andcdecreases asx <0.4, and thenadecreases andcincreases asx >0.4. At the same time,the As-As bonding length shrinks from 2.81 ?A to 2.63 ?A,leading to a dome-likeTcwith the highestTcatx=0.4. Since the As-As covalent bond can accumulate or release excess electrons, the empirical rule obtained from ThCr2Si2-type compounds seems not to be accurate enough to describe the structural change in the layered compounds.

    In this work, we prepare two series of solid solutions of La2(M1-xCox)5As3O2(M=Cu,Ni)(x=0-0.7)and systematically investigate the structural change and physical property. It is found that the As-As bond length only slightly changes (±2%), differing from large shrinkage of that in La2(Cu1-xNix)5As3O2.[23]Meanwhile, we observe that the Co-doping induces monotonous change inaandcunlike the anomalous kink of La2(Cu1-xNix)5As3O2. In addition,La2(Cu1-xCox)5As3O2(x=0-0.7)exhibits a phase transition from paramagnetism to ferromagnetism as the Co content increases above 0.4. While La2(Ni1-xCox)5As3O2(x=0-0.7)samples only show paramagnetism, and the structural transition from tetragonal to orthorhombic phase is suppressed. We discuss the structural evolution and the lack of superconductivity from the key aspect of As-As covalent bonding state.

    2. Experimental details

    Polycrystalline samples of La2(M1-xCox)5As3O2(M=Cu, Ni) (x=0-0.7) were synthesized by conventional solidstate reactions. The binary precursors LaAs and Cu3As,NiAs,Co2As were pre-synthesized by reacting La filings,Cu/Ni/Co powder and As powder at 1000 K for 20 h. Then, the powders of LaAs,Cu3As,NiAs,Co2As,La2O3,Ni,and Cu were weighted according to the desired ratio, ground, and pelleted under a pressure of 50 MPa in an argon-filled glove box with an O2and H2O content below 1 ppm. The pellet was loaded into an Al2O3crucible,and then sealed into an evacuated silica tube, which was heated at 150 K, hold for 40 h, and then furnace-cooling to room temperature.

    Powder x-ray diffraction (PXRD) patterns of the obtained samples were collected using a Panalytical diffractometer with CuKα(λ=1.5408 ?A)radiation equipped with a lowtemperature cryostat. Rietveld refinement of the PXRD pattern was performed by Fullprof software suites.[27]The electrical resistivity (ρ)was measured through the standard fourwire method in the physical property measurement system(PPMS, Quantum Design). The dc magnetic properties were characterized using a vibrating sample magnetometer(PPMS,Quantum Design).

    3. Results and discussion

    Figure 1(a) shows the PXRD patterns of the selected La2(M1-xCox)5As3O2(M=Cu,Ni)samples for clarity.There are no obvious impurity peaks in the whole pattern, indicating that the synthesized samples are homogeneous and almost pure phase. All diffraction peaks exhibit monotonous shift with increasing the content of Co. Meanwhile, all the peaks can be indexed with a unit cell of tetragonal symmetry. We determined the crystal structure of pure La2Cu5As3O2and La2Ni5As3O2phases and reported them in Refs.[23,26].Therefore, we can refine the whole PXRD pattern of two series of Co-doped La2Cu5As3O2and La2Ni5As3O2samples based on the above structure. The representative profiles are plotted in Fig. 1(b). The refinements of both patterns of La2Cu3Co2As3O2and La2Ni3Co2As3O2smoothly converge intoRp=1.92%,Rwp=2.76% andRp=1.78% andRwp=2.43%, respectively. Here we think that the Cu/Ni atoms are random substituted by the Co ions without changing the structural symmetry. Meanwhile,the Co substitution of Cu(Ni)is more likely to be hole-doping due to two(one)fewer 3d electrons according to the results in literatures.[28,29]

    The crystal structure of La2M5As3O2(M= Cu, Ni,Co) is drawn in Fig. 2(a). It can be seen that functional[M5As3]2-subunit and fluorite-type[La2O2]2+layers are alternately stacked along thec-axis. In a [Cu5As3]2-subunit, theM1 atoms are separated by a centralM2 plane and the As1-As2 are connected by the covalent bond with length of 2.81 ?A.The bonding details are shown in Fig.2(b).The Co-content dependent unit cell parameters are summarized and plotted in Figs. 2(c) and 2(d). The data of La2(Cu1-xNix)5As3O2are taken from Ref. [23] and shown as green square. We firstly examine the crystallographic parameters of La2(Ni1-xCox)5As3O2in the right panels of Figs. 2(c) and 2(d). Asxbelow the doping limit of 0.7, it is found that the lattice constantacontinuously decreases from 4.0691 ?A to 4.0162 ?A,however,thecinversely increases from 22.482 ?A to 22.972 ?A. The obtainedc/aratio linearly increases from 5.54 to 5.72, which perfectly falls into the extrapolated line of La2(Cu1-xNix)5As3O2. It again confirms the validation of the present experimental data. For the volume of a unit cell, it just slightly decreases from 372 ?A3to 370 ?A3. For the La2(Cu1-xCox)5As3O2, theamonotonously decreases from 4.1404 ?A to 4.0621 ?A, differing from that of La2(Cu1-xNix)5As3O2. While itsc-axis firstly keeps a constant and gradually saturates to be 23.0 ?A. Thec/aratio slightly increases from 5.54 to 5.66 and the volume linearly decreases from 391 ?A3to 379 ?A3. The shrinkage ofaand expansion ofcindicate that the Co-substitution is like hole-doping as suggested in hole-doped layered compounds of Ba1-xKxFe2As2[19]and Ba1-xNaxFe2As2.[20]In addition,the variations of lattice constants of two Co-doped cases are significantly different from those of La2(Cu1-xNix)5As3O2,in which thea,c, andc/aratio show non-monotonous changes and the highestTcperfectly occurs at the structural anomaly ofxNi=0.4.

    Fig.1. (a)Powder XRD patterns of typical La2(M1-xCox)5As3O2(M=Cu,Ni)samples. (b)Rietveld refinement profiles of two representative samples of La2Cu3Co2As3O2 and La2Ni3Co2As3O2.

    Fig.2. (a)Crystal structure of La2(M1-xCox)5As3O2 (M=Cu,Ni,Co). (b)Structure of[M5As3]2- subunit. (c)Lattice parameters a,c,c/a and volume of unit cell V of three series of samples. The data of La2(Cu1-xNix)5As3O2 are taken from Ref.[23]. The error bars are within the hollow squares.

    In order to analyze the details of structural evolution,we first check the change in interlayer spacing (d) between[La2O2]2+layer and[M5As3]2-upon Co doping. It is found thatdlinearly increases within the limit of experimental error in Fig. 3(a). The increments ofdare 0.06 ?A and 0.13 ?A for La2(Ni1-xCox)5As3O2and La2(Cu1-xCox)5As3O2,respectively. At the same time,in Fig.3(b),the thickness(δ)of [La2O2]2+layers also increases, which can partially account for the trend of increase inc-axis. For the [M5As3]2-,the thickness equals to two times of As1-As2 bond length. In Fig. 3(c), we plot the variation of As1-As2 bond lengths of three systems. In Ni-doped La2Cu5As3O2, the length almost linearly decreases from 2.81 ?A to 2.63 ?A with a kink atx=0.4.However, as further lowering the number ofdelectrons from 3d8(Ni2+)to 3d7(Co2+),the As1-As2 bond length inversely increases slightly and then keeps a constant of 2.66 ?A. For Co-doped La2Cu5As3O2, the As1-As2 bond length slightly decreases from 2.81 ?A to 2.73 ?A accompanying a tiny kink atx=0.5,see Fig.3(d). From the above results,one can see that the expansion ofc-axis mainly comes from the increment of interlayer spacingdand thicknessδof [La2O2]2+layer because the thickness of[M5As3]2-changes little.

    Fig.3.(a)and(b)Co-content dependent interlayer spacing d between[La2O2]2+layer and[M5As3]2-subunit,and thickness(δ)of[La2O2]2+layer. Dashed lines are guided to eyes. (c)and(d)As1-As2 bond lengths in three series of samples. The data of La2(Cu1-xNix)5As3O2 are taken from Ref.[23].

    Fig.4. Physical properties of La2(Cu1-xCox)5As3O2. (a)Temperature-dependent electrical resistivity of La2(Cu1-xCox)5As3O2 (x=0-0.7)from 2 K-300 K.(b)Temperature-dependent magnetic susceptibility(χ)measured at H=1 T.Inset shows the χ(T)curves of x=0,0.1,and 0.2 samples. (c)χ(T)curves for per mol Co ion. Inset shows their inverse curves. Pinks lines are fitting curves as shown in the main text. (d)M-H loops of different temperatures.

    Fig. 5. Physical property and structural phase transition of La2(Ni1-xCox)5As3O2. (a)-(b) Temperature-dependent electrical resistivity (ρ)and magnetic susceptibility (χ) measured at H =1 T. (c)-(d) (200) and (215) diffraction peaks of x=0.1 and x=0.6 samples measured from 10 K-300 K.(e)-(f)Temperature-dependent lattice constants of La2(Ni1-xCox)5As3O2 (x=0.1 and 0.6). For x=0.1,there is a phase transition evidenced by splitting of a-lattice parameters below 270 K.

    Now we turn to investigate the transport property of La2(Ni1-xCox)5As3O2(x= 0-0.7). Figure 5(a) shows theρ(T) curves of all samples. It can be seen that all samples behave as a metal in the measured temperature range,and theρof the doped samples has increased by 1-2 orders of magnitude due to magnetic or disorder scattering. Another reason is that the As1-As2 covalent bond status changes the carrier concentration, and the synergistic effect enhances the resistivity. Figure 5(b)shows the magnetic susceptibilityχ(T)of La2(Ni1-xCox)5As3O2(x=0-0.7)withH=1 T.We can see that theχ(T)curves of all samples show paramagnetic behavior in the measured range. Meanwhile, with increasing the Co content,χ(T) gradually increases, the value is between 0.007 emu/mol·Oe and 0.025 emu/mol·Oe. Compared with theχ(T)of La2(Cu1-xCox)5As3O2,the high concentration of Co does not induce ferromagnetic phase transitions.

    Since La2Ni5As3O2undergoes a structural phase transition from tetragonal (I4/mmm) to orthorhombic (I/mmm)symmetry at 270 K, we measured the PXRD pattern of La2(Ni1-xCox)5As3O2(x=0.1 and 0.6)from 300 K to 10 K so as to check the structural evolution upon Co doping. Figure 5(c) shows the temperature-dependent (200) and (215)diffraction peaks ofx=0.1 sample. We can see that the peaks(200)and(215)split into(200)/(020)and(125)/(215),respectively, as the temperature is lower than 270 K. It means that the sample undergoes a similar structural phase transition like La2Ni5As3O2. In Fig. 5(d), it can be seen that the (200) and(215)diffraction peaks ofx=0.6 sample shift towards higher angle without splitting with decreasing temperature, indicating that the phase transition has been suppressed. We use the orthogonal space groupI/mmm(No. 71) to index the PXRD pattern at 10 K. The lattice constants area0=4.0616(2) ?A,b0=4.0847(8) ?A, andc0=22.393(3) ?A. Figure 5(e) shows the temperature dependence of the lattice constants ofx=0.1 sample,wherea0andc0gradually decrease,andb0gradually increases and becomes saturated asTdecreases. Forx=0.6 sample,the lattice constantsaandcjust monotonously shrink during cooling,see Fig.5(f).

    Let us briefly discuss the structural variation and physical property of La2M5As3O2(M=Cu,Ni)under Co doping. As previously reported doping behaviors in BaFe2As2, the substitution of Fe by Co/Ni/Cu with more 3d electrons leads to electron-type doping and the doping-dependent superconductivity can be scaled by the net carrier concentrations.[31]In the present work, the substitution of Co (3d7) into La2M5As3O2(M=Cu,Ni)should be hole-doped type,which is evidenced by the expansion ofab-plane and the shrinkage ofc-axis above. In La2Cu5As3O2, the Ni-doping can induce a domelikeTc; while the Co-doping only kills the DW-like transition and then induces ferromagnetic phase transitions~100 K rather than superconductivity. Furthermore,we found that the Co2+ions may exhibit unusual low-spin state (S=1/2) under this unique coordination. However, since the scattering lengths of Co2+and Cu+for x-ray are pretty close, we cannot unambiguously identify which site the Co2+ions preferentially occupy. For La2(Ni1-xCox)5As3O2, the Co-doping increases the As-As bond length a little bit from 2.63 ?A to 2.66 ?A,however,the increment is too small. It does not reach the As1-As2 bond length of La2(Cu1-xNix)5As3O2superconductor. Hence, the Co-doping does not induce superconductivity in the present work.

    It is known that the Co-doping should not follow the rigid band model like the case of Co/Ni/Cu-doped BaFe2As2,[31,32]where partial induced electrons are localized around the dopant sites and do not contribute to the conductivity. Given the complex structural change like 40% kink in La2(Cu1-xNix)5As3O2and anisotropic change in thickness of[La2O2]2+layer and [M5As3]2-subunit, it is hard to reconcile the lattice variation with the simple electron counting.The dependence of physical properties on Co/Ni doping inLn2Cu5As3O2(Ln=La,Pr,Nd)should be more complicated due to the variation of As-As covalent bonding status. Detailed structural analyses and low-temperature measurements are needed to clarify the above two issues.

    4. Conclusion

    We have investigated the structure and low-temperature property of La2(M1-xCox)5As3O2(M=Cu,Ni;x=0-0.7). It is found that the doped Co ions induce simpler structural variation than those of La2(Cu1-xNix)5As3O2because the As-As bonding status barely changes. Furthermore, the Co-doping induces a paramagnetic to ferromagnetic phase transition asx >0.4 in La2(Cu1-xCox)5As3O2and suppresses the structural phase transition atx=0.6 in La2(Ni1-xCox)5As3O2.Unfortunately,all the doped samples are non-superconductive in the temperature range of 2-300 K. From the view of As-As bond,it demonstrates that the bonding states could determine the crystal evolutions and influence the transport property.

    猜你喜歡
    陳旭俊杰
    “畫(huà)家陳”
    Dispersion and damping rate of Langmuir wave in space plasma with regularized Kappa distributed electrons
    Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films?
    Warm needling moxibustion plus PKP for vertebral compression fracture due to kidney deficiency and blood stasis: a randomized controlled trial
    Long A Sounds
    能自律者為俊杰
    文苑(2020年7期)2020-08-12 09:36:36
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    表演大師
    我的同桌
    Improved social force model based on exit selection for microscopic pedestrian simulation in subway station
    亚洲一区中文字幕在线| 国产又色又爽无遮挡免费看| 国产又色又爽无遮挡免费看| 叶爱在线成人免费视频播放| 国产熟女午夜一区二区三区| 日日摸夜夜添夜夜添小说| 国内精品一区二区在线观看| 亚洲成人免费电影在线观看| 久久99热这里只有精品18| 亚洲熟妇熟女久久| 久久香蕉国产精品| 久久性视频一级片| 国产一区二区在线av高清观看| 精品久久久久久久久久久久久| 91国产中文字幕| 国产精品精品国产色婷婷| 一进一出好大好爽视频| 婷婷精品国产亚洲av在线| 天天一区二区日本电影三级| 国内精品一区二区在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久婷婷人人爽人人干人人爱| 亚洲精品美女久久av网站| 大型av网站在线播放| 午夜精品在线福利| 亚洲欧洲精品一区二区精品久久久| 日本一区二区免费在线视频| 久久精品国产亚洲av香蕉五月| 美女扒开内裤让男人捅视频| 久久久久久大精品| 国产精品香港三级国产av潘金莲| 日本黄色视频三级网站网址| 成人手机av| 免费在线观看成人毛片| 日日夜夜操网爽| 99国产精品一区二区三区| 三级国产精品欧美在线观看 | 99热这里只有是精品50| 欧美日韩国产亚洲二区| 久久久久久九九精品二区国产 | 老司机午夜福利在线观看视频| 亚洲人成网站高清观看| 久久香蕉精品热| 少妇被粗大的猛进出69影院| 亚洲国产精品成人综合色| 国产麻豆成人av免费视频| 国产av一区在线观看免费| 国产av麻豆久久久久久久| 免费在线观看影片大全网站| 亚洲熟妇中文字幕五十中出| 国产成人影院久久av| 久久久久精品国产欧美久久久| 香蕉久久夜色| 此物有八面人人有两片| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 可以免费在线观看a视频的电影网站| 看免费av毛片| 亚洲精品在线美女| 黄色女人牲交| 啪啪无遮挡十八禁网站| 99久久精品国产亚洲精品| 国产av麻豆久久久久久久| 亚洲成人免费电影在线观看| 国产私拍福利视频在线观看| 久久天躁狠狠躁夜夜2o2o| 成年免费大片在线观看| 精品久久久久久久人妻蜜臀av| 黑人巨大精品欧美一区二区mp4| 村上凉子中文字幕在线| 午夜免费观看网址| 亚洲一区中文字幕在线| 99在线视频只有这里精品首页| 色播亚洲综合网| 国产伦人伦偷精品视频| 91麻豆精品激情在线观看国产| 美女免费视频网站| 巨乳人妻的诱惑在线观看| 午夜福利18| 国产精品av视频在线免费观看| 国产精品精品国产色婷婷| 别揉我奶头~嗯~啊~动态视频| 亚洲第一电影网av| 无限看片的www在线观看| 免费在线观看影片大全网站| 麻豆国产97在线/欧美 | 国产人伦9x9x在线观看| 日本熟妇午夜| 亚洲国产精品sss在线观看| 国产一区二区激情短视频| 日韩高清综合在线| 久久久精品大字幕| 日本黄大片高清| 香蕉av资源在线| 国产成人精品无人区| aaaaa片日本免费| 欧美最黄视频在线播放免费| 午夜激情av网站| 久久国产乱子伦精品免费另类| 国产黄a三级三级三级人| 国模一区二区三区四区视频 | x7x7x7水蜜桃| 久久久久久久久免费视频了| 国产三级中文精品| 丝袜美腿诱惑在线| 精品久久蜜臀av无| 久久精品亚洲精品国产色婷小说| 美女免费视频网站| cao死你这个sao货| www.熟女人妻精品国产| 亚洲精品中文字幕在线视频| АⅤ资源中文在线天堂| 一级作爱视频免费观看| 亚洲av中文字字幕乱码综合| 精品电影一区二区在线| 国产精品日韩av在线免费观看| 久久性视频一级片| 日韩大尺度精品在线看网址| 一区二区三区激情视频| 欧美午夜高清在线| 亚洲欧美一区二区三区黑人| 老司机午夜十八禁免费视频| 香蕉久久夜色| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看| 在线观看免费日韩欧美大片| 中出人妻视频一区二区| 9191精品国产免费久久| 变态另类成人亚洲欧美熟女| 搡老岳熟女国产| 午夜福利免费观看在线| 日韩有码中文字幕| 国产成人精品久久二区二区免费| 精品人妻1区二区| 亚洲国产欧美人成| 亚洲成人久久爱视频| 精品久久久久久成人av| 一二三四在线观看免费中文在| 国产一区二区在线观看日韩 | www.熟女人妻精品国产| 亚洲精品在线美女| 美女高潮喷水抽搐中文字幕| 亚洲精品久久国产高清桃花| 欧美久久黑人一区二区| 日韩欧美 国产精品| 一个人免费在线观看的高清视频| 久久这里只有精品19| 成人欧美大片| 成人高潮视频无遮挡免费网站| 亚洲最大成人中文| 国产一区二区在线观看日韩 | 妹子高潮喷水视频| 国产成年人精品一区二区| 18禁黄网站禁片午夜丰满| 国产激情欧美一区二区| 国内少妇人妻偷人精品xxx网站 | 亚洲精品色激情综合| 99精品久久久久人妻精品| 啦啦啦观看免费观看视频高清| 精品国产亚洲在线| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 国产亚洲精品一区二区www| 18禁黄网站禁片免费观看直播| 91av网站免费观看| 国产69精品久久久久777片 | 黄色 视频免费看| 丰满人妻一区二区三区视频av | 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 久久精品国产清高在天天线| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 人人妻,人人澡人人爽秒播| 久久久久久久久久黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美网| 日本五十路高清| 久久亚洲精品不卡| 最近最新免费中文字幕在线| 级片在线观看| 国内少妇人妻偷人精品xxx网站 | 在线观看美女被高潮喷水网站 | 制服诱惑二区| 18禁黄网站禁片午夜丰满| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图 男人天堂 中文字幕| xxxwww97欧美| 狂野欧美激情性xxxx| √禁漫天堂资源中文www| 欧美最黄视频在线播放免费| 国产熟女xx| 中文亚洲av片在线观看爽| 亚洲美女黄片视频| 精品乱码久久久久久99久播| 国产精品自产拍在线观看55亚洲| 一级片免费观看大全| 亚洲人成伊人成综合网2020| 久久午夜综合久久蜜桃| 9191精品国产免费久久| 亚洲精品在线美女| 国产不卡一卡二| 国产精品九九99| 两性夫妻黄色片| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产 | 亚洲av中文字字幕乱码综合| 国产野战对白在线观看| 视频区欧美日本亚洲| 免费在线观看成人毛片| 搞女人的毛片| 亚洲成人国产一区在线观看| 可以在线观看的亚洲视频| 久久久久久久久免费视频了| 欧美+亚洲+日韩+国产| 亚洲性夜色夜夜综合| 久久精品国产99精品国产亚洲性色| 天堂av国产一区二区熟女人妻 | 大型黄色视频在线免费观看| 两个人看的免费小视频| cao死你这个sao货| 好男人在线观看高清免费视频| av超薄肉色丝袜交足视频| 可以在线观看的亚洲视频| 特大巨黑吊av在线直播| 国产精品野战在线观看| 曰老女人黄片| 好男人电影高清在线观看| 久久精品国产亚洲av香蕉五月| 国产一区二区三区在线臀色熟女| 欧美在线一区亚洲| 日本一区二区免费在线视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费视频内射| www.自偷自拍.com| 丰满人妻一区二区三区视频av | 色综合亚洲欧美另类图片| 99国产综合亚洲精品| xxxwww97欧美| 无限看片的www在线观看| 国产精品av视频在线免费观看| 午夜免费激情av| 精品国内亚洲2022精品成人| ponron亚洲| 亚洲性夜色夜夜综合| 日本一区二区免费在线视频| 国产乱人伦免费视频| 国产精品,欧美在线| 在线观看日韩欧美| 亚洲欧美日韩高清在线视频| 成人国产综合亚洲| av福利片在线| or卡值多少钱| 欧美性猛交黑人性爽| 亚洲aⅴ乱码一区二区在线播放 | 一本一本综合久久| 两个人的视频大全免费| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 亚洲av成人一区二区三| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 精品日产1卡2卡| 欧美乱色亚洲激情| 少妇粗大呻吟视频| 深夜精品福利| 黄片大片在线免费观看| 国产片内射在线| 国产精品国产高清国产av| 亚洲一区中文字幕在线| 亚洲精品一区av在线观看| 国产高清有码在线观看视频 | 中文在线观看免费www的网站 | 桃红色精品国产亚洲av| 成人精品一区二区免费| 在线视频色国产色| 丝袜人妻中文字幕| 91九色精品人成在线观看| 啦啦啦免费观看视频1| 国产精华一区二区三区| 精品久久久久久久人妻蜜臀av| 久久久国产欧美日韩av| 亚洲av第一区精品v没综合| 午夜成年电影在线免费观看| 好男人电影高清在线观看| 黄频高清免费视频| 欧美国产日韩亚洲一区| 国产精品影院久久| 国模一区二区三区四区视频 | 色综合欧美亚洲国产小说| 国产成人一区二区三区免费视频网站| 亚洲天堂国产精品一区在线| 亚洲av成人一区二区三| 老汉色∧v一级毛片| 国产真人三级小视频在线观看| 长腿黑丝高跟| 淫秽高清视频在线观看| 99riav亚洲国产免费| 国产单亲对白刺激| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区免费观看 | 在线国产一区二区在线| 嫩草影视91久久| 床上黄色一级片| 在线观看免费日韩欧美大片| 久久久久精品国产欧美久久久| 国产精品一区二区三区四区免费观看 | 久久久精品国产亚洲av高清涩受| 日本熟妇午夜| 宅男免费午夜| 精品一区二区三区四区五区乱码| 亚洲人成网站在线播放欧美日韩| 最近视频中文字幕2019在线8| 国产区一区二久久| 久久精品91蜜桃| 欧美日韩亚洲综合一区二区三区_| 午夜久久久久精精品| 亚洲美女黄片视频| 午夜精品久久久久久毛片777| 日本熟妇午夜| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 三级国产精品欧美在线观看 | 99国产综合亚洲精品| 久久午夜综合久久蜜桃| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频| 久久久久国产精品人妻aⅴ院| 波多野结衣高清作品| 午夜精品久久久久久毛片777| 久久久久免费精品人妻一区二区| 美女高潮喷水抽搐中文字幕| 亚洲第一欧美日韩一区二区三区| 亚洲全国av大片| 免费人成视频x8x8入口观看| 99久久99久久久精品蜜桃| 91麻豆精品激情在线观看国产| 桃色一区二区三区在线观看| 国产一级毛片七仙女欲春2| 免费观看人在逋| 久久久久精品国产欧美久久久| 天天一区二区日本电影三级| 亚洲精品av麻豆狂野| 老司机午夜十八禁免费视频| 成人欧美大片| 一级黄色大片毛片| 精品久久久久久,| 一夜夜www| 国产精品久久视频播放| e午夜精品久久久久久久| 黑人欧美特级aaaaaa片| 黑人巨大精品欧美一区二区mp4| 他把我摸到了高潮在线观看| 亚洲五月天丁香| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| av欧美777| 99国产精品一区二区蜜桃av| 色综合欧美亚洲国产小说| 欧美日韩瑟瑟在线播放| 久久久久久九九精品二区国产 | 国产欧美日韩一区二区精品| 亚洲av中文字字幕乱码综合| 99久久精品热视频| 好男人在线观看高清免费视频| 成人高潮视频无遮挡免费网站| 女生性感内裤真人,穿戴方法视频| 午夜成年电影在线免费观看| 国产男靠女视频免费网站| 日韩av在线大香蕉| 一级毛片女人18水好多| 日韩精品青青久久久久久| 欧美成人一区二区免费高清观看 | 国产精品 国内视频| 国产99久久九九免费精品| 亚洲精品一区av在线观看| 亚洲五月婷婷丁香| 人妻夜夜爽99麻豆av| 久久精品影院6| 亚洲男人的天堂狠狠| 国内揄拍国产精品人妻在线| 天堂影院成人在线观看| 丰满人妻一区二区三区视频av | 99riav亚洲国产免费| 欧美成人午夜精品| 好男人在线观看高清免费视频| 黄色 视频免费看| 国产真实乱freesex| 国产精品综合久久久久久久免费| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 2021天堂中文幕一二区在线观| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 老司机福利观看| 一区福利在线观看| 观看免费一级毛片| 19禁男女啪啪无遮挡网站| 精品久久久久久久人妻蜜臀av| 一个人免费在线观看的高清视频| 韩国av一区二区三区四区| 我要搜黄色片| 久久久久国产精品人妻aⅴ院| 99久久无色码亚洲精品果冻| 麻豆成人av在线观看| 久久人妻福利社区极品人妻图片| 久久精品亚洲精品国产色婷小说| cao死你这个sao货| 中文亚洲av片在线观看爽| 两性夫妻黄色片| www.自偷自拍.com| 国产精品美女特级片免费视频播放器 | 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 伦理电影免费视频| 中文字幕最新亚洲高清| 在线观看www视频免费| 男女之事视频高清在线观看| 日韩大尺度精品在线看网址| 国产高清激情床上av| 亚洲欧美激情综合另类| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费 | 国产精品久久久人人做人人爽| 女人被狂操c到高潮| 好男人电影高清在线观看| 欧美乱妇无乱码| 黄色成人免费大全| 俄罗斯特黄特色一大片| 50天的宝宝边吃奶边哭怎么回事| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 嫁个100分男人电影在线观看| 欧美日韩瑟瑟在线播放| 最近视频中文字幕2019在线8| 黄色毛片三级朝国网站| 99热只有精品国产| 人妻久久中文字幕网| 久久99热这里只有精品18| 亚洲av成人精品一区久久| 国产一区二区在线av高清观看| 91在线观看av| 母亲3免费完整高清在线观看| 全区人妻精品视频| 国产成人av教育| 欧美av亚洲av综合av国产av| 国产高清videossex| 99精品欧美一区二区三区四区| 国产1区2区3区精品| 欧美日韩乱码在线| 欧美成人午夜精品| 午夜老司机福利片| www日本黄色视频网| 高清在线国产一区| 国产一区二区在线av高清观看| 久久久久免费精品人妻一区二区| 国产精品 国内视频| 国产一级毛片七仙女欲春2| 狂野欧美白嫩少妇大欣赏| 国产三级在线视频| 日本在线视频免费播放| 亚洲精品美女久久久久99蜜臀| 波多野结衣巨乳人妻| 51午夜福利影视在线观看| 国产精品98久久久久久宅男小说| 午夜精品久久久久久毛片777| 欧美日本亚洲视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧洲综合997久久,| 真人做人爱边吃奶动态| 成人午夜高清在线视频| 日本黄大片高清| 97超级碰碰碰精品色视频在线观看| 亚洲成人中文字幕在线播放| 两个人看的免费小视频| 国产精品精品国产色婷婷| 老司机在亚洲福利影院| 99在线视频只有这里精品首页| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| 亚洲熟妇中文字幕五十中出| 欧美激情国产日韩精品一区| 日韩欧美精品免费久久| 亚洲激情五月婷婷啪啪| 国产精品久久电影中文字幕| 国产男人的电影天堂91| 欧美+日韩+精品| 性色avwww在线观看| 精品不卡国产一区二区三区| 久99久视频精品免费| av免费观看日本| 久久人妻av系列| 噜噜噜噜噜久久久久久91| 色综合色国产| 国产真实乱freesex| 91av网一区二区| 亚洲天堂国产精品一区在线| 久久久精品欧美日韩精品| 国产黄片美女视频| 在线免费十八禁| 国产午夜精品久久久久久一区二区三区| 99久久人妻综合| 国产精品,欧美在线| 午夜视频国产福利| 性插视频无遮挡在线免费观看| 日韩欧美 国产精品| 国产v大片淫在线免费观看| 日韩三级伦理在线观看| 欧美+日韩+精品| 亚洲欧美清纯卡通| 村上凉子中文字幕在线| 亚洲欧美精品综合久久99| 国产精品国产三级国产av玫瑰| 亚洲人成网站在线观看播放| 超碰av人人做人人爽久久| 亚洲人成网站在线播放欧美日韩| 日韩一区二区三区影片| 国产精品一及| 欧美日韩国产亚洲二区| 午夜福利视频1000在线观看| 日本与韩国留学比较| 国产综合懂色| 最近视频中文字幕2019在线8| 亚洲经典国产精华液单| 美女 人体艺术 gogo| 久久精品国产亚洲av香蕉五月| 成人午夜精彩视频在线观看| av卡一久久| 22中文网久久字幕| 国产精品久久电影中文字幕| 国产一区二区亚洲精品在线观看| 亚洲色图av天堂| 亚洲欧美中文字幕日韩二区| avwww免费| 国产伦精品一区二区三区四那| 女人十人毛片免费观看3o分钟| 99久久久亚洲精品蜜臀av| 中文字幕制服av| 麻豆国产97在线/欧美| 国产精品.久久久| 日韩 亚洲 欧美在线| 国产高清激情床上av| 亚洲人成网站在线观看播放| 97热精品久久久久久| 午夜福利在线在线| 老女人水多毛片| 亚洲av一区综合| 国产午夜福利久久久久久| 免费看日本二区| 天堂√8在线中文| 伦理电影大哥的女人| 精品人妻熟女av久视频| 久久99热这里只有精品18| 国产精品不卡视频一区二区| 最后的刺客免费高清国语| 亚洲精品久久久久久婷婷小说 | 精品久久久久久久人妻蜜臀av| 嫩草影院入口| 国产亚洲5aaaaa淫片| 又黄又爽又刺激的免费视频.| 日韩成人av中文字幕在线观看| av在线蜜桃| 六月丁香七月| 亚洲精品亚洲一区二区| 中文在线观看免费www的网站| 超碰av人人做人人爽久久| 身体一侧抽搐| 免费黄网站久久成人精品| 淫秽高清视频在线观看| 高清午夜精品一区二区三区 | 在线免费观看的www视频| 麻豆成人av视频| 国产片特级美女逼逼视频| 国产高清激情床上av| 在线播放无遮挡| 毛片女人毛片| 在线观看一区二区三区| 精品久久久久久久人妻蜜臀av| 一级毛片我不卡| 人人妻人人澡欧美一区二区| 亚洲欧美日韩高清在线视频| 男女视频在线观看网站免费| 久久99精品国语久久久| 亚洲欧美日韩高清在线视频| 夜夜爽天天搞| 日本与韩国留学比较| 亚洲三级黄色毛片| 亚洲婷婷狠狠爱综合网| 日本五十路高清| 精品久久久噜噜| 国产成人a∨麻豆精品| 久久欧美精品欧美久久欧美| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 边亲边吃奶的免费视频| 国产乱人偷精品视频| 天美传媒精品一区二区| 精品人妻偷拍中文字幕| 尤物成人国产欧美一区二区三区| 天美传媒精品一区二区| 日韩av不卡免费在线播放| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 日韩av不卡免费在线播放| 丝袜喷水一区| 日韩av在线大香蕉| 只有这里有精品99| 啦啦啦韩国在线观看视频| 亚洲五月天丁香| 久久国产乱子免费精品| 赤兔流量卡办理| 日本一二三区视频观看| 久久精品夜夜夜夜夜久久蜜豆|