• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures*

    2021-07-30 07:40:14ChaoJin金超FengZhuRen任鳳竹WeiSun孫偉JingYuLi李靜玉BingWang王冰andQinFenGu顧勤奮
    Chinese Physics B 2021年7期
    關(guān)鍵詞:王冰孫偉

    Chao Jin(金超) Feng-Zhu Ren(任鳳竹) Wei Sun(孫偉) Jing-Yu Li(李靜玉)Bing Wang(王冰) and Qin-Fen Gu(顧勤奮)

    1Institute for Computational Materials Science,School of Physics and Electronics,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province,Henan University,Kaifeng 475004,China

    2Australian Synchrotron,ANSTO,800 Blackburn Rd,Clayton,VIC,3168,Australia

    Keywords: first-principles calculations, BiFeO3/LaTiO3 heterostructures, magnetoelectric coupling effect,polarization regulation

    1. Introduction

    Traditional perovskite-type multiferroic compounds are a class of materials with general formula ABO3,A-site deviates from the center of symmetry of the crystal to achieve spontaneous polarization and B-sites with unpaired electrons provides for spontaneous magnetic order, so they can accommodate various electronic and magnetic ground states.[1,2]These materials exhibit simultaneous ferromagnetism(FM)and ferroelectricity(FE),and the two ferric properties change with an external magnetic field and electric field. The novel magnetoelectric(ME)coupling effect enables multiferroics application in information storage,spintronic devices,magnetic sensors,and capacitor and inductor integrated devices.[3-8]However,single-phase multiferroics are quite rare at room temperature, because the ferromagnetic requires unpaired electrons in partially occupied d-orbitals or f-orbitals and ferroelectricity requires empty d-orbitals which is mutually exclusive in nature.[9-11]The ME coefficient is usually weak because there is associated with different ions, which is far from the application. Therefore, many researchers make a concerted effort to find the multiferroic composite materials and a study of the ME coefficient improvement at room temperature has become a research hotspot.

    Heterogeneous multiferroics combining ferromagnetic and ferroelectric materials together can produce a strong magnetoelectric coupling effect.[9]Based on the heterostructures(HSs) of perovskite oxides, the FE and FM phases at the interface have been designed through advanced thin film material preparation technology to achieve the magnetoelectric coupling at the atomic scale.[12-14]Due to the strong correlation effect of d-orbital electrons,[15,16]the surface/interface of the HSs has lattice reorganization and electron reorganization which can produce a multi-degree-of-freedom interaction of“spin-orbit-charge-lattice”,[1,6,17-19]such as,transition between metal and insulator,magnetism,two-dimensional electron gas (2DEG),etc.[17,20-22]2DEG with high electron mobility has important applications in spintronic devices, and its existence strongly depends on the composition of the interface.[23]Once the material is synthesized,the characteristics of its interface are fixed,it is difficult to grow the system that can regulate 2DEG and magnetoelectric coupling.[24,25]Therefore,it is necessary to control the polarization direction of the ferroelectric material by applying electric field and then realize the control of properties at the interface.[2,26-28]

    In the typical Mott-Hubbard insulator perovskite oxideRTiO3(Rrepresents the trivalent rare-earth ions),[29-31]LaTiO3(LTO) exhibits G-type antiferromagnetic (GAFM),[32,33]and its band gap is small (~0.2 eV). At low carrier doping levels, LTO can easily become a metal, and thus lead to a metal-to-insulation transition occurs.[34,35]The 2DEG was found at the interface of two insulators SrTiO3/LaTiO3and SrTiO3/LaAlO3.[36,37]In LaAlO3/LTO HSs, the spin orbits in LTO could be effectively controlled by introducing LaAlO3,[38,39]which is particularly important in magnetoelectric coupling devices. The BiFeO3(BFO)is the only room temperature single-phase multiferroic material with significant spontaneous polarization.[40,41]Compared with the rhombohedral phase BFO,the tetragonal phase BFO possesses larger spontaneous polarization and charge transfer excitation.[42-44]Due to the strong magnetoelectric coupling,the tetragonal BFO is often chosen as the substrate.[28]For instance, the study by Yinet al.showed that Fe4N/BFO was anisotropy under the condition of adjustable electric field.[44,45]Yinet al.also found that the BFO/LTO superlattices had metal-insulation transition and 2DEG with different terminations.[19]It is well known, in artificially prepared superlattices, that the application of an external electric field can only affect the magnetic properties of the superlattice surface (it has little internal impact). However, the method of ferroelectric polarization control can effectively regulate the overall magnetic properties of the superlattice. Therefore,the BFO/LTO HSs are constructed, not only to introduce the surface/interface effect into the structure(we hope that the surface/interface effects can bring new characteristics to the HS),but also to control the spontaneous polarization of the material by applying electric field. This may achieve the purpose of controlling magnetism with polarization simultaneously.In addition, it is worthy of attention that the influence of the same interface and different polarization configurations on the electronic structure and magnetic properties for LTO thin films.

    In our work, by using density functional theory (DFT)method, we mainly investigate the effect of the magnetic order and magnetic moment of the LTO film by changing the polarization direction of the BFO.The ideal interface without any defects and adsorption in the heterogeneous structure has been fully considered in our calculation model. In depth analysis shows that the difference of magnetic properties attributes to charge transfer from Ti-t2gorbital to O-px,yorbital and the electronic rearrangement inside Ti-t2g. Besides, the 2DEG is also found in BFO/LTO HSs,and the inversion of the polarization direction gives rise to the change in the density of 2DEG.This work will be of great significance in the practical application of magnetoelectric storage materials.

    2. Methods

    Our first-principles calculations are carried out within the Perdew-Burke-Ernzerhof functional revised for solids(PBEsol).[46]The generalized gradient approximation(GGA)and projector-augmented wave (PAW) method are employed for the core-valance interaction and the exchange-correlations function,[5,47]which implemented in the Viennaab initiosimulation package (VASP).[46,48]The valance electrons configurations had been employed for Bi-5d106s26p3, Fe-3d74s1,O-2s22p4, La-5s25p65d16s2, and Ti-3p63d24s2, respectively.The energy cut off for plane wave is chosen to be 500 eV andΓ-centered 7×7×1 Monkhorst-Packk-points meshes are performed in the Brillouin zones integration for the BFO/LTO HSs. Structural relaxation is performed until the Hellmann-Feynman force on each ion converged to be less than 0.03 eV/?A. The thickness of the vacuum layer is set to be 15 ?A to avoid the interaction between periodic images of thezaxis. In addition,to partially correct the Coulomb interaction on d orbitals, we adopt HubbardUeff=4 eV of Fe 3d orbitals andUeff=3 eV for Ti 3d orbitals by the GGA+Umethod of Dudarevet al.’s approach.[10,19,28]Previous studies have shown that spin orbit coupling(SOC)has small influence on BFO and LTO.[19,28,49]Therefore, the SOC effect is not considered in this work.

    Fig.1. (a)-(d)Side view along c axis of the BFO/LTO HSs for different terminals. Panels(a)and(b)are BiO/TiO2 interface;(c)and(d)are FeO2/LaO interface. The grey arrows represent the FE polarization of BFO,the up and down arrows mean respectively+P and-P states. The part enclosed by the yellow solid line is the interface part of the BFO/LTO HSs.

    3. Results and discussion

    In order to determine the stability of our established HSs models,the interfacial formation energy is calculated,which is defined asEform=(EBFO/LTO-EBFO-ELTO)/A,whereEformis the formation energy of per unit area;EBFO/LTO,EBFO,andELTOare the total energy of the BFO/LTO HS, the BFO surface, and the LTO surface, respectively.A(30.264 ?A2)is the interface area of the BFO/LTO HS.The adsorption energies of the all BFO/LTO HSs models are listed in Table 1. The FLtype HSs have lower formation energies (Eform) than the BTtype HSs,indicating the FL-type HSs are more stable than the BT-type HSs. For the BT-type HSs,whether in the case of+Por-P, the overall behaviour is a metallic state, meanwhile,the calculated magnetic order of BFO and LTO parts are all the G-AFM order and ferrimagnetic(FiM)order respectively(Table 1 and Table S1),which means that the physical properties of the BT-type HSs are not regulated by FE polarization.However,for the FL-type HSs,the magnetic order of LTO part changes FiM order from A-AFM when the polarization direction of BFO changes-Pfrom +P, which is also confirmed by the calculated exchange constants (Fig. S1 and Table S2).Thus, it is successfully realized the local FM order switched by the FE polarization at the I-LTO layer. More interestingly,changing the directions of polarization, the direction of the easy magnetization axis (EMA) also changes from [001] to[100]. By switching the different states of the easy magnetization axis, it is expected to be applied to logic devices. Based on the above analysis,it shows that the FL-type HSs are more energetically favourable and their magnetic order as well as magnetic anisotropy can be effectively controlled by FE polarization. Therefore, we only focus on the properties of the FL-type HSs in the below.

    Table 1. Physical properties of the BFO/LTO HSs in the case of +P and-P.

    Fig.2. (a)The average displacements between anions and cations(D)in the interlayer for FL-type HSs. (b)The deformation of the LTO part is described by the Jahn-Teller model of oxygen octahedra(Q2 and Q3). Panels(c),(d),(e)are the schematic diagrams of the tilting and rotation of the oxygen octahedron,Q2 distortion,and Q3 distortion,respectively.

    It is well known that the anion and cation displacement of the system reflects the change of its structure and interlayer electric dipole moment. The average displacements between anions and cations for the FL-type HSs are given in Fig.2(a),the two vertical dotted portion represents the interface portion of the HSs. Firstly, we found that the central positions of the anion could not overlap with that of the cation in each layer at the interface of the LTO parts under the BFO polarization, which indicates that the LTO parts are polarized and the oxygen octahedra of the LTO parts appear ferroelectric distortion and built-in electric field. Secondly, the change trend of the displacements between cations and anions under polarized states+Pis just the same as that of-Pin the LTO parts,which implies the LTO part is not sensitive to the BFO polarization direction. However, the average displacements between anions and cations near the interface in the case of-Pare larger than that of in the case of+P,owing that the direction of the built-in electric field due to ferroelectric distortion in the LTO part is the same as the direction of the polarized electric field of the BFO.[52]This qualitatively shows that the amount of charge transfer in the case of-Pis greater than that of in the case of +P. The transferred electrons caused by this kind of ferroelectric distortion ultimately lead to the emergence of 2DEG in the HSs.

    The magnetic moments of the FL-type HSs and net magnetization of Fe and Ti atoms are further investigated as listed in Table 2. Combined with Tables 1 and 2,we find out that the BFO part always maintains the G-AFM order (in-plane antiparallel magnetic order and out-plane antiparallel magnetic order)for all the studied systems. This shows that the built-in electric field in the LTO part and interface reconstruction only affect the magnetic moment of the Fe atoms,but not alter the magnetic order of the BFO part. However,due to the reversal of polarization, the magnetic order of the LTO part changes from A-AFM to FiM, and the magnetic moment of Ti atoms decreases significantly. In addition, when LTO (space groupPbnm)and BFO(space groupP4mm)form a heterostruction,BFO will suppress the GdFeO3-type distortion of LTO.Moreover, in the process of structural relaxation, the symmetry of the system is broken due to the joint action of interface reconstruction,substrate fixation and FE polarization. This will cause the magnetic moments of the same layer of magnetic atoms to be slightly different,but this will not affect the qualitative analysis of magnetism. We also measured the average bond lengths of oxygen octahedra at the interface under the case of +Pand-P, which were 1.988 ?A and 1.985 ?A, respectively. The bond length under these two cases is slightly smaller than that of the bulk LTO value(2.002 ?A),indicating that the polarization did not significantly influence the Ti-O bond length and the Ti-O bond length is not the main reason of the magnetic order change.

    Table 2. Magnetic moments(Mag)and net magnetization(M)of Fe and Ti atoms in the FL-type HSs,as well as rotation angles(φ)and tilting angles(θ)for Jahn-Teller distortion of the LTO part in the case of+P and-P.

    In order to qualitatively explain the physical mechanism of magnetic regulation, we analysed the density of states(DOS) of the FL-type HSs (Fig. 3). No matter in the case of +Por-P, the total density of state (TDOS) at the Fermi level is not zero, indicating that HSs exhibit the characteristics of metal. As can be seen from the layered density of state(LDOS), the DOS at Fermi level is attributed dominantly by the Ti-3d states. The BFO part is insulated, while the LTO part is conductive, indicating that the electron can only move in thexy-plane to form a 2DEG.The concentration of 2DEG in the case of+Pis higher than that of in the-Pcase,which further reflects that the conductivity of the HSs in the case+Pis stronger than that of in the case-P. Simultaneously, with the reversal of polarization, the Ti-3d state moves to the high energy region and the occupancy of Ti-3d near the Fermi level is getting smaller gradually,the interface I-LTO layer changes from metal to insulating state. In addition,in the case of+P,the 2DEG exhibits ferromagnetism in I-LTO and II-LTO parts respectively owing to the dominance of same spin polarized(spin-up or spin-down)states,while the whole system exhibits A-AFM.

    Fig. 3. For FL-type HS, panels (a) and (b) are expressed as TDOS and LDOS in the case of +P and -P, respectively. The solid grey line indicates TDOS;The solid blue line represents the Fe-3d states. The solid green line represents the Ti-3d states. The solid red line represents the O-2p states. The black dotted line represents the Fermi level. The up and down grey arrows represent+P and-P states,respectively.

    Table 3. The average transferred electron numbers for the Ti-t2g (dxy, dyz,dzx) orbitals in the FL-type HSs relative to that of the bulk LTO under the+P and-P cases.

    For perovskite transition metal oxides, the arrangement of 3d orbitals usually determines its electronic structure and physical properties. Due to the effect of the octahedral symmetry field,the 3d orbitals will split into t2gand eg. To better elucidate the microscopic mechanism of the change of magnetic order and magnetic moment, we perform an elaborate DOS analysis of Ti-3d and O-2p in LTO parts, as shown in Fig.4. It can be clearly seen the states at the Fermi level and the magnetic moments of the LTO parts are substantially ascribed to the partially occupied Ti-t2gorbital. When the polarization is reversed,there is a strong hybrid between the Ti-t2gorbital and the O-px,yorbital, so that the electrons in the t2gorbital move toward O-px,yorbit transfer and the occupation of electrons in the Ti-t2gorbital at the Fermi level decreases.Therefore, the magnetic moment of Ti atoms at the II-LTO layer changes from 0.6μBto 0.166μB,and the magnetic moment of Ti atom at the I-LTO layer changes from 0.487μBto 0.134μB. It can be seen from Figs.4(c)and 4(d)that, in the case of+Pand-P,the shape and trend of the PDOS are significantly different for the I-LTO layer.Therefore, we further draw PDOS of dxy, dyz, and dzxorbits for the I-LTO layer Ti atoms as shown in Figs.4(e)and 4(f). We can see that the energy of the dxyorbit is lower than the dzxand dyzorbits,which is consistent with the tendency of electrons to occupy dxyorbitals due to theQ3distortion induced compression of oxygen octahedron alongzdirection. We also integrate the state density of the dxy,dyz,and dzxorbitals to obtain the corresponding transferred electron numbers for Ti-dxy, Ti-dyz, and Ti-dzxorbits in the FL-type HSs relative to that of in the bulk LTO,as presented in Table 3. When the FE polarization is+P,the Tidxy/yzorbital loses electrons relative to the bulk LTO,and the dzxorbital gains electrons,which is likely to change the magnetic order of the LTO part from G-AFM to A-AFM. When the FE polarization is changed to-P, the main dxy/yzorbital loses electrons, and the overall Ti-t2gorbital loses electrons more. This leads to the emergence of net magnetic moment in the system, which in turn changes the magnetic order of the LTO part from G-AFM to FiM. As simple summary of the above,FL-type HSs exhibits different properties from the bulk LTO. The FE polarization state of the substrate changes the magnetism of the LTO part at the interface. Due to the combined effect of the electron transfer between the Ti-3d and O-2p orbitals and the electron transfer inside the Ti-t2gorbital,the magnetic order of the system changes.

    Fig.4. The projected-DOS(PDOS)are shown for the FL-type HSs in the+P and-P cases. Where panels(a)and(b)are the PDOS of the II-LTO layer;panels(c)and(d)are the PDOS of the I-LTO layer;panels(e)and(f)are the PDOS of Ti-dxy,Ti-dyz,and Ti-dzx orbitals for the I-LTO layer. The up and down grey arrows represent+P and-P states,respectively.

    4. Conclusion

    In summary, we calculated the magnetic and electronic structure of the multiferroic BFO/LTO HSs.This performance can be adjusted by changing the FE polarization direction in the BFO/LTO HSs.We found that for the BT-type heterostructure, the polarization reversal has no effect on the magnetic and electronic structure. For the FL-type heterostructure, in the case of+P,the magnetic order of the LTO part is A-AFM,and the heterojunction as a whole is metallic. The appearance of 2DEG can be clearly observed at the interface, indicating that it has strong conductivity. In the case of-P,the LTO part is FiM ordered and shows metallicity and appears 2DEG as well, but the concentration of 2DEG is lower than that of in the case of+P,which means that the conductivity is reduced.According to the analysis of crystal structure and electronic structure, the change of the magnetic order is mainly caused by the charge transfer inside Ti-t2gorbitals. Our work provides theoretical guidance for the control of physical properties through the re-orientation of FE polarization.This method of using polarization reversal to control conductivity and magnetic properties can be applied in future electronic devices.

    猜你喜歡
    王冰孫偉
    流螢和罌粟花
    文學(xué)港(2023年7期)2023-07-14 07:53:54
    孫偉美術(shù)作品
    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
    Analyze the opportunities and challenges faced by financial accounting in the era of big data
    Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
    法眼看平等教學(xué)設(shè)計(jì)
    藝術(shù)百家
    錯(cuò)在哪 ?
    名落孫山
    氣球
    黄色视频不卡| 日日摸夜夜添夜夜添小说| 国产精品久久久人人做人人爽| 久久人人爽av亚洲精品天堂| 两个人免费观看高清视频| 99久久99久久久精品蜜桃| 国产亚洲欧美精品永久| x7x7x7水蜜桃| 香蕉国产在线看| 亚洲精品久久国产高清桃花| 黄色视频不卡| 欧美黑人欧美精品刺激| 日韩精品免费视频一区二区三区| 久久久久久人人人人人| 久久香蕉精品热| bbb黄色大片| 日日爽夜夜爽网站| 真人做人爱边吃奶动态| 啪啪无遮挡十八禁网站| 国产91精品成人一区二区三区| 在线观看免费视频日本深夜| 自拍欧美九色日韩亚洲蝌蚪91| 操美女的视频在线观看| 后天国语完整版免费观看| 国产精品 国内视频| 男女下面插进去视频免费观看| 女性生殖器流出的白浆| 一级毛片高清免费大全| 操出白浆在线播放| 免费看十八禁软件| 欧美另类亚洲清纯唯美| 9热在线视频观看99| 美女大奶头视频| 久久久精品欧美日韩精品| 可以在线观看的亚洲视频| 欧美一级a爱片免费观看看 | 嫁个100分男人电影在线观看| 国产成人啪精品午夜网站| 成人欧美大片| 好男人电影高清在线观看| 久久精品影院6| 欧美乱妇无乱码| 国产精品一区二区免费欧美| 老司机靠b影院| 黄片小视频在线播放| 色精品久久人妻99蜜桃| 久久久久久久久免费视频了| 成人av一区二区三区在线看| 日韩视频一区二区在线观看| 精品欧美一区二区三区在线| 一二三四在线观看免费中文在| av欧美777| 国产成人精品久久二区二区91| www国产在线视频色| 精品国产国语对白av| av天堂在线播放| 国产精品爽爽va在线观看网站 | 亚洲成国产人片在线观看| 亚洲中文日韩欧美视频| 国产三级在线视频| av网站免费在线观看视频| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 欧美av亚洲av综合av国产av| 色播亚洲综合网| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美激情在线| 日韩三级视频一区二区三区| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 色在线成人网| 亚洲黑人精品在线| 久久人妻av系列| 国产一级毛片七仙女欲春2 | 极品人妻少妇av视频| 成人欧美大片| 国产伦人伦偷精品视频| 久久婷婷人人爽人人干人人爱 | 国产一级毛片七仙女欲春2 | 午夜免费鲁丝| 精品国产乱子伦一区二区三区| 久久 成人 亚洲| 在线十欧美十亚洲十日本专区| 757午夜福利合集在线观看| 一边摸一边抽搐一进一出视频| 亚洲成人免费电影在线观看| 女性被躁到高潮视频| 精品久久蜜臀av无| 精品乱码久久久久久99久播| 亚洲电影在线观看av| 亚洲一区中文字幕在线| 欧美激情久久久久久爽电影 | 午夜福利免费观看在线| 91av网站免费观看| 午夜亚洲福利在线播放| 亚洲九九香蕉| 精品日产1卡2卡| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区在线不卡| 成人永久免费在线观看视频| 国产99白浆流出| 欧美av亚洲av综合av国产av| 免费看美女性在线毛片视频| 免费不卡黄色视频| 色综合婷婷激情| 国产亚洲精品综合一区在线观看 | 变态另类丝袜制服| 日本精品一区二区三区蜜桃| 久久精品人人爽人人爽视色| 美女高潮到喷水免费观看| 色精品久久人妻99蜜桃| 国产精品美女特级片免费视频播放器 | 成人国语在线视频| 美女高潮到喷水免费观看| 国产高清激情床上av| 亚洲激情在线av| 国产亚洲欧美在线一区二区| 欧美日韩亚洲综合一区二区三区_| 日韩高清综合在线| 久9热在线精品视频| 在线av久久热| 亚洲情色 制服丝袜| 国产伦一二天堂av在线观看| 精品久久久久久久久久免费视频| 欧美性长视频在线观看| 免费一级毛片在线播放高清视频 | 少妇粗大呻吟视频| 啦啦啦免费观看视频1| 亚洲成av片中文字幕在线观看| 人人妻,人人澡人人爽秒播| 国产99久久九九免费精品| 级片在线观看| a在线观看视频网站| 中国美女看黄片| 在线观看日韩欧美| 91麻豆av在线| 人妻丰满熟妇av一区二区三区| 国产成人免费无遮挡视频| 精品福利观看| 妹子高潮喷水视频| 丁香欧美五月| 国产精品,欧美在线| 女性生殖器流出的白浆| 又大又爽又粗| 久久久国产成人免费| 50天的宝宝边吃奶边哭怎么回事| 久久人人精品亚洲av| 日韩av在线大香蕉| 中文字幕高清在线视频| 午夜免费观看网址| 99久久精品国产亚洲精品| 手机成人av网站| 99精品欧美一区二区三区四区| 精品国产一区二区久久| 岛国在线观看网站| 99在线人妻在线中文字幕| 十分钟在线观看高清视频www| 色婷婷久久久亚洲欧美| 欧美激情久久久久久爽电影 | 动漫黄色视频在线观看| 精品一区二区三区视频在线观看免费| avwww免费| 叶爱在线成人免费视频播放| 午夜精品在线福利| 国内久久婷婷六月综合欲色啪| 天天一区二区日本电影三级 | 国产成人欧美在线观看| 久久久久久久久中文| 日韩免费av在线播放| 亚洲熟妇熟女久久| 久久久久久大精品| 国产精品久久久久久亚洲av鲁大| 亚洲电影在线观看av| 亚洲精品在线观看二区| 色综合亚洲欧美另类图片| 国产伦人伦偷精品视频| 亚洲欧美激情综合另类| 亚洲人成伊人成综合网2020| 久久精品国产99精品国产亚洲性色 | 久久久国产成人精品二区| 最近最新中文字幕大全电影3 | 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区国产精品乱码| 亚洲色图av天堂| 日本五十路高清| 国产一卡二卡三卡精品| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 激情视频va一区二区三区| 变态另类丝袜制服| 欧美日韩亚洲国产一区二区在线观看| 黄网站色视频无遮挡免费观看| 嫩草影院精品99| 国产精品永久免费网站| 国产精品影院久久| 久久性视频一级片| 亚洲午夜精品一区,二区,三区| 久久精品影院6| 亚洲第一欧美日韩一区二区三区| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 久久国产亚洲av麻豆专区| 国产又爽黄色视频| 国产麻豆成人av免费视频| 欧美国产精品va在线观看不卡| 91麻豆精品激情在线观看国产| 人人妻人人澡人人看| 午夜激情av网站| 人人妻人人爽人人添夜夜欢视频| 成年女人毛片免费观看观看9| 女同久久另类99精品国产91| 国产伦人伦偷精品视频| 夜夜躁狠狠躁天天躁| 丁香欧美五月| 国产麻豆成人av免费视频| 九色亚洲精品在线播放| av在线天堂中文字幕| 国产片内射在线| 欧美+亚洲+日韩+国产| a级毛片在线看网站| 成人欧美大片| 在线免费观看的www视频| 老司机午夜十八禁免费视频| 久久婷婷成人综合色麻豆| 狠狠狠狠99中文字幕| 啦啦啦韩国在线观看视频| 日本欧美视频一区| 国产成人av教育| 亚洲专区字幕在线| 动漫黄色视频在线观看| 午夜免费鲁丝| 岛国在线观看网站| 欧美+亚洲+日韩+国产| 天天躁夜夜躁狠狠躁躁| 精品一品国产午夜福利视频| cao死你这个sao货| 久久久久九九精品影院| 国产精品精品国产色婷婷| 国产高清有码在线观看视频 | 国产1区2区3区精品| 国语自产精品视频在线第100页| 欧美日本亚洲视频在线播放| 国产一区二区激情短视频| 久久九九热精品免费| 美女午夜性视频免费| 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 午夜激情av网站| 色综合站精品国产| 国产成人av激情在线播放| 美女大奶头视频| 久99久视频精品免费| 97人妻天天添夜夜摸| 欧美日韩中文字幕国产精品一区二区三区 | 在线十欧美十亚洲十日本专区| 亚洲精品粉嫩美女一区| 国产片内射在线| 人人妻,人人澡人人爽秒播| 禁无遮挡网站| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 久久人妻av系列| 久久国产精品男人的天堂亚洲| 女警被强在线播放| 亚洲中文字幕一区二区三区有码在线看 | 亚洲 欧美一区二区三区| 久热这里只有精品99| 美女 人体艺术 gogo| 国产视频一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 夜夜躁狠狠躁天天躁| 婷婷六月久久综合丁香| 精品欧美一区二区三区在线| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 欧美日韩精品网址| 国产精品免费一区二区三区在线| 叶爱在线成人免费视频播放| 日韩欧美国产一区二区入口| 亚洲精品美女久久久久99蜜臀| 中文字幕久久专区| 精品熟女少妇八av免费久了| 国产精品一区二区在线不卡| 精品国产亚洲在线| 91精品三级在线观看| 欧美中文日本在线观看视频| 亚洲精华国产精华精| 亚洲五月天丁香| 亚洲色图综合在线观看| 99国产精品一区二区三区| 91成人精品电影| 狠狠狠狠99中文字幕| 欧美大码av| 人人妻,人人澡人人爽秒播| 黄片小视频在线播放| 两性夫妻黄色片| 中文字幕av电影在线播放| 久久人人97超碰香蕉20202| 亚洲av日韩精品久久久久久密| 国产极品粉嫩免费观看在线| netflix在线观看网站| 国产精品一区二区精品视频观看| 免费看a级黄色片| 亚洲狠狠婷婷综合久久图片| 精品欧美一区二区三区在线| 精品国产乱子伦一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩一区二区精品| 国产片内射在线| 亚洲五月色婷婷综合| 午夜福利一区二区在线看| 黄色视频,在线免费观看| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 久久久久久久午夜电影| 日韩高清综合在线| 操美女的视频在线观看| 9191精品国产免费久久| 99re在线观看精品视频| 两个人视频免费观看高清| 午夜精品久久久久久毛片777| 国产99久久九九免费精品| 在线观看www视频免费| 久久中文看片网| 欧美人与性动交α欧美精品济南到| 九色国产91popny在线| 亚洲电影在线观看av| 露出奶头的视频| 国产精品美女特级片免费视频播放器 | 搞女人的毛片| 999精品在线视频| 在线天堂中文资源库| 久久天躁狠狠躁夜夜2o2o| 高清在线国产一区| 国产高清视频在线播放一区| 国产精品精品国产色婷婷| 欧美成人免费av一区二区三区| 看黄色毛片网站| 国产亚洲精品久久久久久毛片| 99热只有精品国产| 久久精品成人免费网站| 欧美中文日本在线观看视频| 午夜激情av网站| 午夜福利一区二区在线看| 精品欧美国产一区二区三| 一本综合久久免费| 亚洲精品在线美女| 午夜a级毛片| 嫩草影院精品99| 可以在线观看的亚洲视频| 搞女人的毛片| 色综合亚洲欧美另类图片| 高清黄色对白视频在线免费看| 极品人妻少妇av视频| 美女国产高潮福利片在线看| 999久久久国产精品视频| 国产精品精品国产色婷婷| www国产在线视频色| 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 美女扒开内裤让男人捅视频| 老熟妇仑乱视频hdxx| 最近最新中文字幕大全免费视频| 亚洲在线自拍视频| 国产又色又爽无遮挡免费看| 99久久国产精品久久久| 黑人操中国人逼视频| 99国产精品一区二区蜜桃av| a级毛片在线看网站| 精品卡一卡二卡四卡免费| 精品一品国产午夜福利视频| 99在线视频只有这里精品首页| 日日夜夜操网爽| 午夜福利欧美成人| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| 亚洲片人在线观看| 麻豆国产av国片精品| 曰老女人黄片| 久久久国产精品麻豆| xxx96com| 国产xxxxx性猛交| 亚洲五月婷婷丁香| 又黄又粗又硬又大视频| 久久精品影院6| 丰满人妻熟妇乱又伦精品不卡| 亚洲全国av大片| 夜夜爽天天搞| 91精品国产国语对白视频| 精品国产一区二区三区四区第35| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 亚洲成人精品中文字幕电影| 国产熟女午夜一区二区三区| 不卡av一区二区三区| 1024香蕉在线观看| 成人手机av| 精品卡一卡二卡四卡免费| 久久天堂一区二区三区四区| 久久久久久久精品吃奶| 欧美成人免费av一区二区三区| 身体一侧抽搐| 久久精品国产亚洲av高清一级| 可以在线观看毛片的网站| 少妇被粗大的猛进出69影院| 桃色一区二区三区在线观看| 成人特级黄色片久久久久久久| 18禁美女被吸乳视频| 日日夜夜操网爽| 视频区欧美日本亚洲| 咕卡用的链子| 狠狠狠狠99中文字幕| 欧美日本视频| 日韩av在线大香蕉| 久久精品91蜜桃| 国产熟女午夜一区二区三区| 老熟妇仑乱视频hdxx| 国产成人一区二区三区免费视频网站| 日本五十路高清| 亚洲欧美精品综合久久99| 免费少妇av软件| 久久久久国产一级毛片高清牌| 久久亚洲精品不卡| 夜夜躁狠狠躁天天躁| 成人免费观看视频高清| 亚洲午夜理论影院| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一电影网av| 人人妻人人爽人人添夜夜欢视频| 一区二区三区国产精品乱码| 免费观看人在逋| 757午夜福利合集在线观看| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 国产99白浆流出| 麻豆国产av国片精品| 久久久久亚洲av毛片大全| 在线av久久热| 他把我摸到了高潮在线观看| 黄色a级毛片大全视频| 宅男免费午夜| 可以在线观看毛片的网站| 国产精品精品国产色婷婷| 欧美激情久久久久久爽电影 | 999久久久国产精品视频| av片东京热男人的天堂| 国产又爽黄色视频| 两个人看的免费小视频| 成人免费观看视频高清| 女性被躁到高潮视频| 又大又爽又粗| 自线自在国产av| 首页视频小说图片口味搜索| 丰满的人妻完整版| 啦啦啦韩国在线观看视频| 久久中文字幕人妻熟女| 国产精品免费视频内射| 精品欧美国产一区二区三| 久久久久亚洲av毛片大全| 色av中文字幕| 精品乱码久久久久久99久播| 一级毛片精品| 久久人妻熟女aⅴ| 欧美不卡视频在线免费观看 | 两个人视频免费观看高清| 国产亚洲精品久久久久久毛片| 精品熟女少妇八av免费久了| 久久人人精品亚洲av| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 一区二区三区国产精品乱码| 69av精品久久久久久| 亚洲国产高清在线一区二区三 | www.精华液| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 黑丝袜美女国产一区| 欧美日韩瑟瑟在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲 国产 在线| 久久草成人影院| 国产欧美日韩一区二区三| 精品国产乱子伦一区二区三区| 亚洲性夜色夜夜综合| 欧美精品亚洲一区二区| 可以在线观看的亚洲视频| 免费少妇av软件| 久久久久久久久免费视频了| 久久中文字幕人妻熟女| 一边摸一边做爽爽视频免费| АⅤ资源中文在线天堂| 亚洲av片天天在线观看| 色精品久久人妻99蜜桃| 12—13女人毛片做爰片一| 亚洲成国产人片在线观看| 1024香蕉在线观看| 欧美日本视频| www.www免费av| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美精品永久| 亚洲精品美女久久av网站| 精品久久久精品久久久| a在线观看视频网站| 久久欧美精品欧美久久欧美| www.熟女人妻精品国产| 一个人免费在线观看的高清视频| 亚洲精品一卡2卡三卡4卡5卡| 操出白浆在线播放| 在线观看免费视频网站a站| 欧美最黄视频在线播放免费| 亚洲av熟女| 丝袜在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 深夜精品福利| 国产精品亚洲美女久久久| 一本久久中文字幕| 国产亚洲精品第一综合不卡| 中文字幕最新亚洲高清| 国产一区二区激情短视频| 成人国产综合亚洲| 免费在线观看黄色视频的| 国产在线观看jvid| 日韩大尺度精品在线看网址 | 久久久久久免费高清国产稀缺| 很黄的视频免费| 啦啦啦免费观看视频1| 高潮久久久久久久久久久不卡| 性色av乱码一区二区三区2| 精品国产超薄肉色丝袜足j| 女人被狂操c到高潮| 88av欧美| 无限看片的www在线观看| 久久性视频一级片| 亚洲欧美日韩无卡精品| 亚洲欧美日韩高清在线视频| 两个人视频免费观看高清| 免费在线观看影片大全网站| 国产亚洲欧美精品永久| 亚洲中文av在线| 亚洲午夜精品一区,二区,三区| av福利片在线| avwww免费| 真人做人爱边吃奶动态| av网站免费在线观看视频| 久久人人97超碰香蕉20202| 国产精品 欧美亚洲| 国产精品爽爽va在线观看网站 | 日韩欧美国产一区二区入口| 日韩欧美国产在线观看| 91av网站免费观看| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | 男男h啪啪无遮挡| 18美女黄网站色大片免费观看| 91字幕亚洲| 久久久久精品国产欧美久久久| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩另类电影网站| 老司机午夜十八禁免费视频| 免费在线观看完整版高清| 超碰成人久久| 久99久视频精品免费| av视频免费观看在线观看| 9191精品国产免费久久| 国产色视频综合| 99re在线观看精品视频| 波多野结衣巨乳人妻| 日韩大码丰满熟妇| 国产野战对白在线观看| 国内精品久久久久精免费| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡 | 国产一区二区激情短视频| 一二三四在线观看免费中文在| 97超级碰碰碰精品色视频在线观看| 日韩欧美三级三区| 岛国在线观看网站| 国产麻豆69| 1024香蕉在线观看| 99国产精品一区二区三区| 欧美日韩一级在线毛片| 一区福利在线观看| 久久久久久久久中文| 丝袜人妻中文字幕| 无遮挡黄片免费观看| 50天的宝宝边吃奶边哭怎么回事| 日日干狠狠操夜夜爽| www.自偷自拍.com| 9色porny在线观看| 免费人成视频x8x8入口观看| 亚洲精品在线观看二区| 国产成人av激情在线播放| 国产精品久久久久久人妻精品电影| 亚洲精品在线观看二区| 欧美一级a爱片免费观看看 | 香蕉丝袜av| 欧美日韩黄片免| 亚洲av电影不卡..在线观看| 亚洲熟妇熟女久久| 精品不卡国产一区二区三区| 中出人妻视频一区二区| 90打野战视频偷拍视频| 国产99白浆流出| √禁漫天堂资源中文www| 香蕉丝袜av| 亚洲专区中文字幕在线| 伦理电影免费视频| 制服丝袜大香蕉在线| 男人舔女人的私密视频| 中文字幕最新亚洲高清| 两个人视频免费观看高清|