• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures*

    2021-07-30 07:40:14ChaoJin金超FengZhuRen任鳳竹WeiSun孫偉JingYuLi李靜玉BingWang王冰andQinFenGu顧勤奮
    Chinese Physics B 2021年7期
    關(guān)鍵詞:王冰孫偉

    Chao Jin(金超) Feng-Zhu Ren(任鳳竹) Wei Sun(孫偉) Jing-Yu Li(李靜玉)Bing Wang(王冰) and Qin-Fen Gu(顧勤奮)

    1Institute for Computational Materials Science,School of Physics and Electronics,International Joint Research Laboratory of New Energy Materials and Devices of Henan Province,Henan University,Kaifeng 475004,China

    2Australian Synchrotron,ANSTO,800 Blackburn Rd,Clayton,VIC,3168,Australia

    Keywords: first-principles calculations, BiFeO3/LaTiO3 heterostructures, magnetoelectric coupling effect,polarization regulation

    1. Introduction

    Traditional perovskite-type multiferroic compounds are a class of materials with general formula ABO3,A-site deviates from the center of symmetry of the crystal to achieve spontaneous polarization and B-sites with unpaired electrons provides for spontaneous magnetic order, so they can accommodate various electronic and magnetic ground states.[1,2]These materials exhibit simultaneous ferromagnetism(FM)and ferroelectricity(FE),and the two ferric properties change with an external magnetic field and electric field. The novel magnetoelectric(ME)coupling effect enables multiferroics application in information storage,spintronic devices,magnetic sensors,and capacitor and inductor integrated devices.[3-8]However,single-phase multiferroics are quite rare at room temperature, because the ferromagnetic requires unpaired electrons in partially occupied d-orbitals or f-orbitals and ferroelectricity requires empty d-orbitals which is mutually exclusive in nature.[9-11]The ME coefficient is usually weak because there is associated with different ions, which is far from the application. Therefore, many researchers make a concerted effort to find the multiferroic composite materials and a study of the ME coefficient improvement at room temperature has become a research hotspot.

    Heterogeneous multiferroics combining ferromagnetic and ferroelectric materials together can produce a strong magnetoelectric coupling effect.[9]Based on the heterostructures(HSs) of perovskite oxides, the FE and FM phases at the interface have been designed through advanced thin film material preparation technology to achieve the magnetoelectric coupling at the atomic scale.[12-14]Due to the strong correlation effect of d-orbital electrons,[15,16]the surface/interface of the HSs has lattice reorganization and electron reorganization which can produce a multi-degree-of-freedom interaction of“spin-orbit-charge-lattice”,[1,6,17-19]such as,transition between metal and insulator,magnetism,two-dimensional electron gas (2DEG),etc.[17,20-22]2DEG with high electron mobility has important applications in spintronic devices, and its existence strongly depends on the composition of the interface.[23]Once the material is synthesized,the characteristics of its interface are fixed,it is difficult to grow the system that can regulate 2DEG and magnetoelectric coupling.[24,25]Therefore,it is necessary to control the polarization direction of the ferroelectric material by applying electric field and then realize the control of properties at the interface.[2,26-28]

    In the typical Mott-Hubbard insulator perovskite oxideRTiO3(Rrepresents the trivalent rare-earth ions),[29-31]LaTiO3(LTO) exhibits G-type antiferromagnetic (GAFM),[32,33]and its band gap is small (~0.2 eV). At low carrier doping levels, LTO can easily become a metal, and thus lead to a metal-to-insulation transition occurs.[34,35]The 2DEG was found at the interface of two insulators SrTiO3/LaTiO3and SrTiO3/LaAlO3.[36,37]In LaAlO3/LTO HSs, the spin orbits in LTO could be effectively controlled by introducing LaAlO3,[38,39]which is particularly important in magnetoelectric coupling devices. The BiFeO3(BFO)is the only room temperature single-phase multiferroic material with significant spontaneous polarization.[40,41]Compared with the rhombohedral phase BFO,the tetragonal phase BFO possesses larger spontaneous polarization and charge transfer excitation.[42-44]Due to the strong magnetoelectric coupling,the tetragonal BFO is often chosen as the substrate.[28]For instance, the study by Yinet al.showed that Fe4N/BFO was anisotropy under the condition of adjustable electric field.[44,45]Yinet al.also found that the BFO/LTO superlattices had metal-insulation transition and 2DEG with different terminations.[19]It is well known, in artificially prepared superlattices, that the application of an external electric field can only affect the magnetic properties of the superlattice surface (it has little internal impact). However, the method of ferroelectric polarization control can effectively regulate the overall magnetic properties of the superlattice. Therefore,the BFO/LTO HSs are constructed, not only to introduce the surface/interface effect into the structure(we hope that the surface/interface effects can bring new characteristics to the HS),but also to control the spontaneous polarization of the material by applying electric field. This may achieve the purpose of controlling magnetism with polarization simultaneously.In addition, it is worthy of attention that the influence of the same interface and different polarization configurations on the electronic structure and magnetic properties for LTO thin films.

    In our work, by using density functional theory (DFT)method, we mainly investigate the effect of the magnetic order and magnetic moment of the LTO film by changing the polarization direction of the BFO.The ideal interface without any defects and adsorption in the heterogeneous structure has been fully considered in our calculation model. In depth analysis shows that the difference of magnetic properties attributes to charge transfer from Ti-t2gorbital to O-px,yorbital and the electronic rearrangement inside Ti-t2g. Besides, the 2DEG is also found in BFO/LTO HSs,and the inversion of the polarization direction gives rise to the change in the density of 2DEG.This work will be of great significance in the practical application of magnetoelectric storage materials.

    2. Methods

    Our first-principles calculations are carried out within the Perdew-Burke-Ernzerhof functional revised for solids(PBEsol).[46]The generalized gradient approximation(GGA)and projector-augmented wave (PAW) method are employed for the core-valance interaction and the exchange-correlations function,[5,47]which implemented in the Viennaab initiosimulation package (VASP).[46,48]The valance electrons configurations had been employed for Bi-5d106s26p3, Fe-3d74s1,O-2s22p4, La-5s25p65d16s2, and Ti-3p63d24s2, respectively.The energy cut off for plane wave is chosen to be 500 eV andΓ-centered 7×7×1 Monkhorst-Packk-points meshes are performed in the Brillouin zones integration for the BFO/LTO HSs. Structural relaxation is performed until the Hellmann-Feynman force on each ion converged to be less than 0.03 eV/?A. The thickness of the vacuum layer is set to be 15 ?A to avoid the interaction between periodic images of thezaxis. In addition,to partially correct the Coulomb interaction on d orbitals, we adopt HubbardUeff=4 eV of Fe 3d orbitals andUeff=3 eV for Ti 3d orbitals by the GGA+Umethod of Dudarevet al.’s approach.[10,19,28]Previous studies have shown that spin orbit coupling(SOC)has small influence on BFO and LTO.[19,28,49]Therefore, the SOC effect is not considered in this work.

    Fig.1. (a)-(d)Side view along c axis of the BFO/LTO HSs for different terminals. Panels(a)and(b)are BiO/TiO2 interface;(c)and(d)are FeO2/LaO interface. The grey arrows represent the FE polarization of BFO,the up and down arrows mean respectively+P and-P states. The part enclosed by the yellow solid line is the interface part of the BFO/LTO HSs.

    3. Results and discussion

    In order to determine the stability of our established HSs models,the interfacial formation energy is calculated,which is defined asEform=(EBFO/LTO-EBFO-ELTO)/A,whereEformis the formation energy of per unit area;EBFO/LTO,EBFO,andELTOare the total energy of the BFO/LTO HS, the BFO surface, and the LTO surface, respectively.A(30.264 ?A2)is the interface area of the BFO/LTO HS.The adsorption energies of the all BFO/LTO HSs models are listed in Table 1. The FLtype HSs have lower formation energies (Eform) than the BTtype HSs,indicating the FL-type HSs are more stable than the BT-type HSs. For the BT-type HSs,whether in the case of+Por-P, the overall behaviour is a metallic state, meanwhile,the calculated magnetic order of BFO and LTO parts are all the G-AFM order and ferrimagnetic(FiM)order respectively(Table 1 and Table S1),which means that the physical properties of the BT-type HSs are not regulated by FE polarization.However,for the FL-type HSs,the magnetic order of LTO part changes FiM order from A-AFM when the polarization direction of BFO changes-Pfrom +P, which is also confirmed by the calculated exchange constants (Fig. S1 and Table S2).Thus, it is successfully realized the local FM order switched by the FE polarization at the I-LTO layer. More interestingly,changing the directions of polarization, the direction of the easy magnetization axis (EMA) also changes from [001] to[100]. By switching the different states of the easy magnetization axis, it is expected to be applied to logic devices. Based on the above analysis,it shows that the FL-type HSs are more energetically favourable and their magnetic order as well as magnetic anisotropy can be effectively controlled by FE polarization. Therefore, we only focus on the properties of the FL-type HSs in the below.

    Table 1. Physical properties of the BFO/LTO HSs in the case of +P and-P.

    Fig.2. (a)The average displacements between anions and cations(D)in the interlayer for FL-type HSs. (b)The deformation of the LTO part is described by the Jahn-Teller model of oxygen octahedra(Q2 and Q3). Panels(c),(d),(e)are the schematic diagrams of the tilting and rotation of the oxygen octahedron,Q2 distortion,and Q3 distortion,respectively.

    It is well known that the anion and cation displacement of the system reflects the change of its structure and interlayer electric dipole moment. The average displacements between anions and cations for the FL-type HSs are given in Fig.2(a),the two vertical dotted portion represents the interface portion of the HSs. Firstly, we found that the central positions of the anion could not overlap with that of the cation in each layer at the interface of the LTO parts under the BFO polarization, which indicates that the LTO parts are polarized and the oxygen octahedra of the LTO parts appear ferroelectric distortion and built-in electric field. Secondly, the change trend of the displacements between cations and anions under polarized states+Pis just the same as that of-Pin the LTO parts,which implies the LTO part is not sensitive to the BFO polarization direction. However, the average displacements between anions and cations near the interface in the case of-Pare larger than that of in the case of+P,owing that the direction of the built-in electric field due to ferroelectric distortion in the LTO part is the same as the direction of the polarized electric field of the BFO.[52]This qualitatively shows that the amount of charge transfer in the case of-Pis greater than that of in the case of +P. The transferred electrons caused by this kind of ferroelectric distortion ultimately lead to the emergence of 2DEG in the HSs.

    The magnetic moments of the FL-type HSs and net magnetization of Fe and Ti atoms are further investigated as listed in Table 2. Combined with Tables 1 and 2,we find out that the BFO part always maintains the G-AFM order (in-plane antiparallel magnetic order and out-plane antiparallel magnetic order)for all the studied systems. This shows that the built-in electric field in the LTO part and interface reconstruction only affect the magnetic moment of the Fe atoms,but not alter the magnetic order of the BFO part. However,due to the reversal of polarization, the magnetic order of the LTO part changes from A-AFM to FiM, and the magnetic moment of Ti atoms decreases significantly. In addition, when LTO (space groupPbnm)and BFO(space groupP4mm)form a heterostruction,BFO will suppress the GdFeO3-type distortion of LTO.Moreover, in the process of structural relaxation, the symmetry of the system is broken due to the joint action of interface reconstruction,substrate fixation and FE polarization. This will cause the magnetic moments of the same layer of magnetic atoms to be slightly different,but this will not affect the qualitative analysis of magnetism. We also measured the average bond lengths of oxygen octahedra at the interface under the case of +Pand-P, which were 1.988 ?A and 1.985 ?A, respectively. The bond length under these two cases is slightly smaller than that of the bulk LTO value(2.002 ?A),indicating that the polarization did not significantly influence the Ti-O bond length and the Ti-O bond length is not the main reason of the magnetic order change.

    Table 2. Magnetic moments(Mag)and net magnetization(M)of Fe and Ti atoms in the FL-type HSs,as well as rotation angles(φ)and tilting angles(θ)for Jahn-Teller distortion of the LTO part in the case of+P and-P.

    In order to qualitatively explain the physical mechanism of magnetic regulation, we analysed the density of states(DOS) of the FL-type HSs (Fig. 3). No matter in the case of +Por-P, the total density of state (TDOS) at the Fermi level is not zero, indicating that HSs exhibit the characteristics of metal. As can be seen from the layered density of state(LDOS), the DOS at Fermi level is attributed dominantly by the Ti-3d states. The BFO part is insulated, while the LTO part is conductive, indicating that the electron can only move in thexy-plane to form a 2DEG.The concentration of 2DEG in the case of+Pis higher than that of in the-Pcase,which further reflects that the conductivity of the HSs in the case+Pis stronger than that of in the case-P. Simultaneously, with the reversal of polarization, the Ti-3d state moves to the high energy region and the occupancy of Ti-3d near the Fermi level is getting smaller gradually,the interface I-LTO layer changes from metal to insulating state. In addition,in the case of+P,the 2DEG exhibits ferromagnetism in I-LTO and II-LTO parts respectively owing to the dominance of same spin polarized(spin-up or spin-down)states,while the whole system exhibits A-AFM.

    Fig. 3. For FL-type HS, panels (a) and (b) are expressed as TDOS and LDOS in the case of +P and -P, respectively. The solid grey line indicates TDOS;The solid blue line represents the Fe-3d states. The solid green line represents the Ti-3d states. The solid red line represents the O-2p states. The black dotted line represents the Fermi level. The up and down grey arrows represent+P and-P states,respectively.

    Table 3. The average transferred electron numbers for the Ti-t2g (dxy, dyz,dzx) orbitals in the FL-type HSs relative to that of the bulk LTO under the+P and-P cases.

    For perovskite transition metal oxides, the arrangement of 3d orbitals usually determines its electronic structure and physical properties. Due to the effect of the octahedral symmetry field,the 3d orbitals will split into t2gand eg. To better elucidate the microscopic mechanism of the change of magnetic order and magnetic moment, we perform an elaborate DOS analysis of Ti-3d and O-2p in LTO parts, as shown in Fig.4. It can be clearly seen the states at the Fermi level and the magnetic moments of the LTO parts are substantially ascribed to the partially occupied Ti-t2gorbital. When the polarization is reversed,there is a strong hybrid between the Ti-t2gorbital and the O-px,yorbital, so that the electrons in the t2gorbital move toward O-px,yorbit transfer and the occupation of electrons in the Ti-t2gorbital at the Fermi level decreases.Therefore, the magnetic moment of Ti atoms at the II-LTO layer changes from 0.6μBto 0.166μB,and the magnetic moment of Ti atom at the I-LTO layer changes from 0.487μBto 0.134μB. It can be seen from Figs.4(c)and 4(d)that, in the case of+Pand-P,the shape and trend of the PDOS are significantly different for the I-LTO layer.Therefore, we further draw PDOS of dxy, dyz, and dzxorbits for the I-LTO layer Ti atoms as shown in Figs.4(e)and 4(f). We can see that the energy of the dxyorbit is lower than the dzxand dyzorbits,which is consistent with the tendency of electrons to occupy dxyorbitals due to theQ3distortion induced compression of oxygen octahedron alongzdirection. We also integrate the state density of the dxy,dyz,and dzxorbitals to obtain the corresponding transferred electron numbers for Ti-dxy, Ti-dyz, and Ti-dzxorbits in the FL-type HSs relative to that of in the bulk LTO,as presented in Table 3. When the FE polarization is+P,the Tidxy/yzorbital loses electrons relative to the bulk LTO,and the dzxorbital gains electrons,which is likely to change the magnetic order of the LTO part from G-AFM to A-AFM. When the FE polarization is changed to-P, the main dxy/yzorbital loses electrons, and the overall Ti-t2gorbital loses electrons more. This leads to the emergence of net magnetic moment in the system, which in turn changes the magnetic order of the LTO part from G-AFM to FiM. As simple summary of the above,FL-type HSs exhibits different properties from the bulk LTO. The FE polarization state of the substrate changes the magnetism of the LTO part at the interface. Due to the combined effect of the electron transfer between the Ti-3d and O-2p orbitals and the electron transfer inside the Ti-t2gorbital,the magnetic order of the system changes.

    Fig.4. The projected-DOS(PDOS)are shown for the FL-type HSs in the+P and-P cases. Where panels(a)and(b)are the PDOS of the II-LTO layer;panels(c)and(d)are the PDOS of the I-LTO layer;panels(e)and(f)are the PDOS of Ti-dxy,Ti-dyz,and Ti-dzx orbitals for the I-LTO layer. The up and down grey arrows represent+P and-P states,respectively.

    4. Conclusion

    In summary, we calculated the magnetic and electronic structure of the multiferroic BFO/LTO HSs.This performance can be adjusted by changing the FE polarization direction in the BFO/LTO HSs.We found that for the BT-type heterostructure, the polarization reversal has no effect on the magnetic and electronic structure. For the FL-type heterostructure, in the case of+P,the magnetic order of the LTO part is A-AFM,and the heterojunction as a whole is metallic. The appearance of 2DEG can be clearly observed at the interface, indicating that it has strong conductivity. In the case of-P,the LTO part is FiM ordered and shows metallicity and appears 2DEG as well, but the concentration of 2DEG is lower than that of in the case of+P,which means that the conductivity is reduced.According to the analysis of crystal structure and electronic structure, the change of the magnetic order is mainly caused by the charge transfer inside Ti-t2gorbitals. Our work provides theoretical guidance for the control of physical properties through the re-orientation of FE polarization.This method of using polarization reversal to control conductivity and magnetic properties can be applied in future electronic devices.

    猜你喜歡
    王冰孫偉
    流螢和罌粟花
    文學(xué)港(2023年7期)2023-07-14 07:53:54
    孫偉美術(shù)作品
    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
    Analyze the opportunities and challenges faced by financial accounting in the era of big data
    Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
    法眼看平等教學(xué)設(shè)計(jì)
    藝術(shù)百家
    錯(cuò)在哪 ?
    名落孫山
    氣球
    国产久久久一区二区三区| 亚洲专区字幕在线| 国产爱豆传媒在线观看 | 亚洲第一av免费看| 叶爱在线成人免费视频播放| 两人在一起打扑克的视频| 99精品在免费线老司机午夜| 黄网站色视频无遮挡免费观看| 无遮挡黄片免费观看| 国产亚洲欧美在线一区二区| 中文字幕精品亚洲无线码一区 | 亚洲国产精品sss在线观看| 视频区欧美日本亚洲| 一区二区三区精品91| svipshipincom国产片| 不卡av一区二区三区| 亚洲精品在线观看二区| 久久中文字幕一级| 亚洲欧美精品综合久久99| 一级毛片精品| 婷婷精品国产亚洲av在线| 在线天堂中文资源库| 成人手机av| 中文在线观看免费www的网站 | 草草在线视频免费看| 亚洲av第一区精品v没综合| 精品无人区乱码1区二区| 成人一区二区视频在线观看| 亚洲专区中文字幕在线| 精品久久久久久久毛片微露脸| 别揉我奶头~嗯~啊~动态视频| 黄片播放在线免费| 夜夜看夜夜爽夜夜摸| 久久婷婷人人爽人人干人人爱| 久久久久久久精品吃奶| 成人18禁在线播放| 精品一区二区三区视频在线观看免费| 变态另类丝袜制服| 久久这里只有精品19| 久久国产亚洲av麻豆专区| 老司机靠b影院| 亚洲久久久国产精品| 午夜免费激情av| 国产人伦9x9x在线观看| 侵犯人妻中文字幕一二三四区| 日韩欧美一区视频在线观看| a在线观看视频网站| 亚洲第一电影网av| 精品一区二区三区视频在线观看免费| 欧美激情极品国产一区二区三区| 老司机午夜十八禁免费视频| 91在线观看av| 亚洲国产看品久久| 又大又爽又粗| 日日爽夜夜爽网站| 91成人精品电影| 久久中文字幕一级| √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 99re在线观看精品视频| 这个男人来自地球电影免费观看| 国产精品 欧美亚洲| 国产精品一区二区精品视频观看| 精品乱码久久久久久99久播| 国产熟女午夜一区二区三区| 国产精品电影一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产高清有码在线观看视频 | 中文字幕最新亚洲高清| 亚洲中文字幕一区二区三区有码在线看 | 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 午夜影院日韩av| 极品教师在线免费播放| 美女扒开内裤让男人捅视频| 久久香蕉精品热| 黄片小视频在线播放| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 69av精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 成人国产综合亚洲| 久久中文看片网| 大香蕉久久成人网| 99国产精品99久久久久| 亚洲成人精品中文字幕电影| 人成视频在线观看免费观看| 亚洲第一电影网av| 欧美亚洲日本最大视频资源| 国产精品自产拍在线观看55亚洲| 欧美中文综合在线视频| 亚洲精品国产区一区二| 亚洲狠狠婷婷综合久久图片| 成人三级做爰电影| 国产精品98久久久久久宅男小说| 中文字幕人妻丝袜一区二区| 免费在线观看成人毛片| 美女国产高潮福利片在线看| 精品国产美女av久久久久小说| 国产成人影院久久av| 九色国产91popny在线| 国产午夜福利久久久久久| 亚洲av成人av| 成年女人毛片免费观看观看9| 女性被躁到高潮视频| avwww免费| a级毛片在线看网站| 国产高清videossex| 一区二区三区激情视频| 91成年电影在线观看| 国产视频内射| 国产亚洲av高清不卡| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 欧美乱色亚洲激情| 亚洲第一青青草原| 国产国语露脸激情在线看| a级毛片a级免费在线| 性欧美人与动物交配| 国产乱人伦免费视频| 国产免费av片在线观看野外av| 久久亚洲真实| 国产精品野战在线观看| 村上凉子中文字幕在线| 最近最新免费中文字幕在线| 九色国产91popny在线| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 少妇的丰满在线观看| 白带黄色成豆腐渣| 长腿黑丝高跟| 人妻久久中文字幕网| 国产黄片美女视频| 国产黄a三级三级三级人| 午夜老司机福利片| 老司机在亚洲福利影院| 国产午夜精品久久久久久| 国产日本99.免费观看| 色婷婷久久久亚洲欧美| 久久精品国产清高在天天线| 免费在线观看亚洲国产| 欧美精品亚洲一区二区| 国产三级黄色录像| 日韩欧美在线二视频| 动漫黄色视频在线观看| 少妇裸体淫交视频免费看高清 | 啦啦啦观看免费观看视频高清| 日韩精品青青久久久久久| 黄频高清免费视频| 精品国内亚洲2022精品成人| 巨乳人妻的诱惑在线观看| 在线观看午夜福利视频| 亚洲国产日韩欧美精品在线观看 | 看免费av毛片| 国产不卡一卡二| 俺也久久电影网| 可以在线观看毛片的网站| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点| 亚洲精品色激情综合| 黄色片一级片一级黄色片| 不卡av一区二区三区| 免费电影在线观看免费观看| 美女 人体艺术 gogo| 色老头精品视频在线观看| 国产91精品成人一区二区三区| 免费在线观看黄色视频的| 不卡av一区二区三区| 免费在线观看完整版高清| 18禁黄网站禁片午夜丰满| 欧美国产精品va在线观看不卡| 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 又紧又爽又黄一区二区| 淫秽高清视频在线观看| 久久热在线av| 久久久久亚洲av毛片大全| 久久久久久久精品吃奶| 精品卡一卡二卡四卡免费| 日韩 欧美 亚洲 中文字幕| 禁无遮挡网站| 不卡av一区二区三区| 99热只有精品国产| 91麻豆av在线| 天天躁夜夜躁狠狠躁躁| 在线观看午夜福利视频| 亚洲av片天天在线观看| 一a级毛片在线观看| 99在线视频只有这里精品首页| av电影中文网址| 久久99热这里只有精品18| 欧美人与性动交α欧美精品济南到| 美国免费a级毛片| 国产一卡二卡三卡精品| aaaaa片日本免费| 久热爱精品视频在线9| 啦啦啦 在线观看视频| 色av中文字幕| 国产精品久久久久久亚洲av鲁大| 两性夫妻黄色片| 美国免费a级毛片| 免费电影在线观看免费观看| 久久久久久亚洲精品国产蜜桃av| 久久久久久九九精品二区国产 | 国产成人啪精品午夜网站| 麻豆久久精品国产亚洲av| 国产亚洲精品久久久久5区| 欧美大码av| 国产三级在线视频| 免费在线观看黄色视频的| 成年版毛片免费区| 香蕉丝袜av| 精品第一国产精品| 午夜影院日韩av| 国产亚洲av嫩草精品影院| 无限看片的www在线观看| 岛国视频午夜一区免费看| www国产在线视频色| 亚洲国产高清在线一区二区三 | 窝窝影院91人妻| 一a级毛片在线观看| 欧美日韩福利视频一区二区| 女同久久另类99精品国产91| 大型av网站在线播放| 丁香六月欧美| 日韩欧美一区二区三区在线观看| 久久久精品国产亚洲av高清涩受| 身体一侧抽搐| a在线观看视频网站| 国产精品亚洲美女久久久| 中文字幕人妻丝袜一区二区| 校园春色视频在线观看| 国产野战对白在线观看| 99久久国产精品久久久| 国产一区二区三区视频了| 性色av乱码一区二区三区2| 精品国产乱子伦一区二区三区| 国产又爽黄色视频| 99久久精品国产亚洲精品| 在线观看www视频免费| 叶爱在线成人免费视频播放| 亚洲精品国产一区二区精华液| 亚洲专区国产一区二区| 在线免费观看的www视频| 国产成人av教育| 一本大道久久a久久精品| 国产高清激情床上av| 欧美成人一区二区免费高清观看 | 91av网站免费观看| 久久久久国产一级毛片高清牌| 熟妇人妻久久中文字幕3abv| 久久久国产欧美日韩av| 99国产综合亚洲精品| 午夜福利成人在线免费观看| 成人一区二区视频在线观看| 精品电影一区二区在线| 国产精品自产拍在线观看55亚洲| 免费看日本二区| 亚洲国产精品合色在线| 男人舔奶头视频| 日本免费a在线| 校园春色视频在线观看| 亚洲五月色婷婷综合| 中文字幕人妻丝袜一区二区| 久久亚洲真实| 淫妇啪啪啪对白视频| 亚洲成人久久性| 国产精品精品国产色婷婷| 在线av久久热| 成人国产综合亚洲| 亚洲,欧美精品.| 免费在线观看黄色视频的| 中文字幕高清在线视频| 国产男靠女视频免费网站| 成在线人永久免费视频| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清在线视频| 99久久久亚洲精品蜜臀av| 国产三级黄色录像| 国产97色在线日韩免费| 手机成人av网站| 在线免费观看的www视频| 可以在线观看的亚洲视频| 久久久久久久久中文| 无遮挡黄片免费观看| 99久久无色码亚洲精品果冻| 国产人伦9x9x在线观看| 黄色 视频免费看| 亚洲人成77777在线视频| 免费看日本二区| 一级黄色大片毛片| 国产精品二区激情视频| 18禁黄网站禁片午夜丰满| 91九色精品人成在线观看| 日韩欧美国产一区二区入口| 久久久国产精品麻豆| 老司机午夜福利在线观看视频| 婷婷亚洲欧美| 免费在线观看完整版高清| 99久久国产精品久久久| 日韩精品中文字幕看吧| 午夜免费观看网址| 午夜老司机福利片| 国产精品国产高清国产av| 1024香蕉在线观看| 18禁黄网站禁片午夜丰满| 欧美性长视频在线观看| 久久天堂一区二区三区四区| 一级作爱视频免费观看| 国产伦在线观看视频一区| 久久精品国产清高在天天线| 国产成人av教育| 欧美亚洲日本最大视频资源| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 日韩大码丰满熟妇| 夜夜看夜夜爽夜夜摸| 中亚洲国语对白在线视频| 久久精品亚洲精品国产色婷小说| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| 美女高潮到喷水免费观看| 人妻丰满熟妇av一区二区三区| 亚洲激情在线av| svipshipincom国产片| 午夜福利欧美成人| 色av中文字幕| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 午夜福利欧美成人| 国产成人啪精品午夜网站| 美女午夜性视频免费| 在线av久久热| 巨乳人妻的诱惑在线观看| 亚洲成国产人片在线观看| 国产男靠女视频免费网站| 中文字幕精品亚洲无线码一区 | 色精品久久人妻99蜜桃| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 欧美性长视频在线观看| 69av精品久久久久久| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 国产黄片美女视频| www.www免费av| 久久国产精品影院| www.www免费av| 侵犯人妻中文字幕一二三四区| a级毛片在线看网站| 777久久人妻少妇嫩草av网站| av视频在线观看入口| 超碰成人久久| 99国产精品一区二区蜜桃av| 黄色成人免费大全| 日韩大码丰满熟妇| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 动漫黄色视频在线观看| 午夜精品久久久久久毛片777| 麻豆久久精品国产亚洲av| tocl精华| 国内少妇人妻偷人精品xxx网站 | 国产欧美日韩一区二区精品| 少妇粗大呻吟视频| 久久久精品国产亚洲av高清涩受| 国产三级在线视频| 亚洲欧美精品综合久久99| 18禁黄网站禁片免费观看直播| 狂野欧美激情性xxxx| 97人妻精品一区二区三区麻豆 | www.自偷自拍.com| av片东京热男人的天堂| 久久国产乱子伦精品免费另类| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| x7x7x7水蜜桃| 国产在线观看jvid| 美女扒开内裤让男人捅视频| 欧美午夜高清在线| 久久热在线av| 欧美激情极品国产一区二区三区| 成人精品一区二区免费| 听说在线观看完整版免费高清| 99久久99久久久精品蜜桃| 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院| 最近最新中文字幕大全免费视频| 一级a爱视频在线免费观看| 久久久久国内视频| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 人人妻,人人澡人人爽秒播| 成年免费大片在线观看| 国产不卡一卡二| 欧美国产日韩亚洲一区| 亚洲成av片中文字幕在线观看| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 免费女性裸体啪啪无遮挡网站| 不卡av一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看完整版高清| 夜夜躁狠狠躁天天躁| 亚洲精品粉嫩美女一区| 亚洲午夜理论影院| 亚洲av第一区精品v没综合| 激情在线观看视频在线高清| 十八禁人妻一区二区| 日本黄色视频三级网站网址| 国产极品粉嫩免费观看在线| 村上凉子中文字幕在线| 欧美中文综合在线视频| 88av欧美| 亚洲国产欧美网| 俄罗斯特黄特色一大片| 白带黄色成豆腐渣| 给我免费播放毛片高清在线观看| 亚洲专区中文字幕在线| 国产单亲对白刺激| 久久精品aⅴ一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 欧美激情 高清一区二区三区| 夜夜躁狠狠躁天天躁| 国产精品日韩av在线免费观看| 91在线观看av| 夜夜爽天天搞| 老汉色∧v一级毛片| 可以在线观看的亚洲视频| 2021天堂中文幕一二区在线观 | 国产精品一区二区三区四区久久 | 亚洲,欧美精品.| 怎么达到女性高潮| 久久中文字幕人妻熟女| 男人舔奶头视频| 日韩一卡2卡3卡4卡2021年| 精品久久久久久,| 法律面前人人平等表现在哪些方面| 在线永久观看黄色视频| 窝窝影院91人妻| 国产精品av久久久久免费| 757午夜福利合集在线观看| 1024视频免费在线观看| 国产精品综合久久久久久久免费| xxxwww97欧美| avwww免费| 人人澡人人妻人| 亚洲精品粉嫩美女一区| 国产免费男女视频| 欧美zozozo另类| 欧美成人午夜精品| 黄色片一级片一级黄色片| 亚洲欧美日韩无卡精品| 国产av一区在线观看免费| 亚洲男人天堂网一区| 一区二区三区国产精品乱码| av视频在线观看入口| 亚洲人成网站在线播放欧美日韩| 操出白浆在线播放| 精华霜和精华液先用哪个| 正在播放国产对白刺激| 国产精品九九99| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| www.自偷自拍.com| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 怎么达到女性高潮| 少妇裸体淫交视频免费看高清 | 亚洲专区中文字幕在线| 色综合欧美亚洲国产小说| 91麻豆精品激情在线观看国产| 一级毛片精品| 满18在线观看网站| 999精品在线视频| 在线观看日韩欧美| 国产成人欧美| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 国产精品 国内视频| 久久精品亚洲精品国产色婷小说| 亚洲狠狠婷婷综合久久图片| 看黄色毛片网站| 国产精品九九99| 午夜免费鲁丝| 88av欧美| 人人澡人人妻人| 亚洲av美国av| 日本一本二区三区精品| 国产私拍福利视频在线观看| 天堂影院成人在线观看| 黄色女人牲交| 午夜成年电影在线免费观看| av欧美777| 欧美成人免费av一区二区三区| 久久人人精品亚洲av| 国产区一区二久久| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 神马国产精品三级电影在线观看 | 国产av又大| 熟女电影av网| 高清毛片免费观看视频网站| 在线观看66精品国产| 国产色视频综合| 国产三级在线视频| 国产aⅴ精品一区二区三区波| 午夜福利免费观看在线| 国产精品1区2区在线观看.| 亚洲人成电影免费在线| 在线观看一区二区三区| 怎么达到女性高潮| 欧美成人性av电影在线观看| 国产午夜福利久久久久久| 国产亚洲欧美98| 国产蜜桃级精品一区二区三区| 久久国产亚洲av麻豆专区| cao死你这个sao货| 日韩免费av在线播放| 国产亚洲欧美精品永久| 国产av不卡久久| 757午夜福利合集在线观看| 精品欧美国产一区二区三| 国产成人系列免费观看| 久久久久久久久免费视频了| 国产黄色小视频在线观看| 精品国产亚洲在线| 狂野欧美激情性xxxx| 中文字幕人妻丝袜一区二区| 超碰成人久久| 99在线视频只有这里精品首页| 亚洲第一av免费看| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 日本免费一区二区三区高清不卡| 午夜久久久在线观看| 啦啦啦 在线观看视频| 成人国产综合亚洲| bbb黄色大片| 欧美黑人精品巨大| 午夜日韩欧美国产| 欧美成人一区二区免费高清观看 | 老熟妇仑乱视频hdxx| 亚洲精品国产一区二区精华液| 亚洲精品粉嫩美女一区| 午夜激情av网站| 午夜老司机福利片| 久久精品国产清高在天天线| av电影中文网址| 国产色视频综合| 一级a爱片免费观看的视频| 久久青草综合色| 满18在线观看网站| 天天躁夜夜躁狠狠躁躁| 国产片内射在线| 欧美性猛交╳xxx乱大交人| 黑人巨大精品欧美一区二区mp4| xxxwww97欧美| 99精品欧美一区二区三区四区| 免费在线观看视频国产中文字幕亚洲| 最近在线观看免费完整版| 国产不卡一卡二| 精品高清国产在线一区| 在线观看午夜福利视频| 久久人人精品亚洲av| 欧美一级a爱片免费观看看 | 国内久久婷婷六月综合欲色啪| 欧美性猛交黑人性爽| 少妇 在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品美女久久久久99蜜臀| 久久久久国产精品人妻aⅴ院| 国产国语露脸激情在线看| 国产欧美日韩一区二区三| 一本综合久久免费| 国产熟女午夜一区二区三区| 久久精品aⅴ一区二区三区四区| 9191精品国产免费久久| 久久性视频一级片| 一级a爱片免费观看的视频| 成人欧美大片| 1024视频免费在线观看| 久久久国产欧美日韩av| 国产精品电影一区二区三区| 精品久久久久久久末码| 最好的美女福利视频网| 中文字幕久久专区| 午夜福利在线观看吧| 亚洲成人精品中文字幕电影| 精品国内亚洲2022精品成人| 国产精品久久视频播放| 无遮挡黄片免费观看| 日日爽夜夜爽网站| www.www免费av| 精华霜和精华液先用哪个| 精品久久久久久久人妻蜜臀av| 99riav亚洲国产免费| 一级a爱片免费观看的视频| 一区二区三区国产精品乱码| 国产精华一区二区三区| 欧美在线黄色| 亚洲av成人一区二区三| 真人一进一出gif抽搐免费| 男女下面进入的视频免费午夜 | 19禁男女啪啪无遮挡网站| 在线观看免费视频日本深夜| 欧美中文日本在线观看视频| 琪琪午夜伦伦电影理论片6080| 成人特级黄色片久久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 日韩视频一区二区在线观看| 黄色 视频免费看|