丁凱,王昕捷,黃亨建,吳艷青,黃風(fēng)雷
(1.北京理工大學(xué) 爆炸科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100081;2.中國(guó)工程物理研究院 化工材料研究所,四川 綿陽(yáng) 621999)
高聚物粘結(jié)炸藥(PBX)的點(diǎn)火起爆始終是評(píng)價(jià)其安全性和應(yīng)用其良好爆轟性能的核心問(wèn)題。奧克托今(HMX)單晶作為PBX的主要成分,其在高溫下的沖擊響應(yīng)以及細(xì)觀變形機(jī)制,極大地影響PBX在復(fù)雜環(huán)境下的沖擊響應(yīng)及點(diǎn)火起爆特性。
炸藥單晶的點(diǎn)火起爆與其動(dòng)態(tài)響應(yīng)和力學(xué)變形機(jī)制相關(guān)。Dick等[1-5]對(duì)太恩(PETN)及HMX等單晶進(jìn)行一系列平板撞擊實(shí)驗(yàn),研究表明炸藥單晶的沖擊感度呈現(xiàn)明顯的各向異性,并指出基于位錯(cuò)滑移的塑性是單晶變形的主要機(jī)制。Winey等[6]發(fā)展了考慮非線(xiàn)性彈性的位錯(cuò)模型,可描述PETN單晶的彈塑性沖擊響應(yīng)。Barton等[7]發(fā)展了基于位錯(cuò)的模型表征HMX單晶的沖擊壓縮響應(yīng),模型同時(shí)考慮了熱激活以及聲子拖曳兩種位錯(cuò)運(yùn)動(dòng)機(jī)制,通過(guò)與平板撞擊實(shí)驗(yàn)中粒子速度歷史曲線(xiàn)對(duì)比標(biāo)定了模型參數(shù)。Wu等[8]發(fā)展了動(dòng)高壓晶體熱力學(xué)本構(gòu)模型,引入狀態(tài)方程來(lái)描述高壓條件下炸藥單晶非線(xiàn)性變形,同時(shí)考慮彈性模量的壓力和溫度相關(guān)性,分析不同取向HMX單晶的滑移塑性應(yīng)變分布以及位錯(cuò)密度的變化。Wang等[9-10]對(duì)不同取向的HMX和黑索今(RDX)單晶進(jìn)行常溫下的平板撞擊實(shí)驗(yàn),并構(gòu)建各向異性晶體位錯(cuò)塑性模型,可較好地模擬常溫下單晶沖擊熱力學(xué)響應(yīng)。以上發(fā)展的本構(gòu)模型大多忽略溫度對(duì)彈性及位錯(cuò)塑性的影響,很難用于預(yù)測(cè)高溫下單晶各向異性沖擊熱力學(xué)響應(yīng),同時(shí)模型包含大量參數(shù),不適應(yīng)后續(xù)開(kāi)展工程計(jì)算的需要。
利用位錯(cuò)塑性模型研究高溫下單晶的沖擊響應(yīng)最早開(kāi)始于非含能單晶。Krasnikov等[11]建立了考慮熱激活和聲子拖曳的位錯(cuò)運(yùn)動(dòng)模型,通過(guò)數(shù)值計(jì)算再現(xiàn)了受沖擊單晶鋁Hugoniot彈性極限(HEL)的熱硬化現(xiàn)象,并認(rèn)為聲子拖曳位錯(cuò)機(jī)制為主導(dǎo)原因。Gurrutxaga-Lerma等[12]通過(guò)動(dòng)態(tài)離散位錯(cuò)動(dòng)力學(xué)模型模擬發(fā)現(xiàn),沖擊波作用下彈性先驅(qū)波的演化主要受波陣面上位錯(cuò)形核產(chǎn)生的輻射阻尼影響,輻射阻尼與位錯(cuò)運(yùn)動(dòng)速度呈負(fù)相關(guān)。金屬鋁波陣面上位錯(cuò)運(yùn)動(dòng)速度趨近于剪切波速,而剪切波速受剪切模量控制并且隨溫度升高而減小,因此輻射阻尼效應(yīng)增強(qiáng),導(dǎo)致HEL隨溫度升高而增大。Austin[13]通過(guò)建立的連續(xù)位錯(cuò)動(dòng)力學(xué)模型研究沖擊加載條件下金屬鋁的熱硬化效應(yīng),研究表明彈性先驅(qū)波的演化受聲子散射與輻射阻尼效應(yīng)控制,二者隨著溫度升高而增強(qiáng)。目前,關(guān)于高應(yīng)變率條件下金屬晶體屈服強(qiáng)度的溫度相關(guān)性研究較多[14-16],而炸藥單晶在熱力耦合作用下本構(gòu)模型的發(fā)展由于相關(guān)實(shí)驗(yàn)開(kāi)展的難度較大而發(fā)展緩慢。
因此,本文發(fā)展基于熱激活和聲子拖曳位錯(cuò)滑移機(jī)制的非線(xiàn)性熱彈黏塑性模型,并基于前期開(kāi)展的高溫(373 K、423 K)下HMX單晶平板撞擊實(shí)驗(yàn),數(shù)值研究相變溫度以下HMX單晶沖擊熱力學(xué)響應(yīng)及相應(yīng)細(xì)觀變形機(jī)制。
針對(duì)高溫、高應(yīng)變率的加載條件,基于Austin等[17]的位錯(cuò)模型,發(fā)展考慮高壓下晶體的非線(xiàn)性熱彈性,及基于熱激活和聲子拖曳位錯(cuò)機(jī)制的熱彈黏塑性模型。
根據(jù)廣義胡克定律,熱彈性本構(gòu)模型[18]可表示為
(1)
(2)
式中:E0為T(mén)0=300 K時(shí)的彈性模量;θ為體積壓縮比,θ=V/Vi,V和Vi分別為比容和初始比容。另外,將應(yīng)力中球量部分以Grüneisen狀態(tài)方程pe替代:
(3)
式中:K為體積模量;s為應(yīng)力偏量部分。pe由Hugoniot壓力的Taylor展開(kāi)[20]得到:
(4)
式中:ρ0為初始密度;c0為體積聲速;s為沖擊波波速D和波后質(zhì)點(diǎn)速度u之間線(xiàn)性關(guān)系的斜率;η為體積相對(duì)變化,η=1-θ.熱彈性模型參數(shù)如表1所示。
表1 熱彈性模型參數(shù)[9,21-22]Tab.1 Parameters for thermoelasticity model[9,21-22]
基于位錯(cuò)滑移的塑性本構(gòu)模型,假設(shè)位錯(cuò)滑移滿(mǎn)足Schmid定律,剪應(yīng)力τ[23]可表示為
(5)
(6)
(7)
(8)
式中:k為玻爾茲曼常數(shù);υe為有效越過(guò)障礙的頻率;T為當(dāng)前溫度;ΔG為熱激活自由能,可表示為
ΔG=gtμb3[1-(τ/τ0)P]Q,
(9)
gt為正則化的總自由能系數(shù),P和Q描述障礙分布[26],τ0為聲子拖曳機(jī)制控制位錯(cuò)滑移的臨界剪應(yīng)力。
(10)
(11)
式中:BT和Tm為歸一化因子;ak為擬合系數(shù)。
根據(jù)Taylor關(guān)系[28],τ0可表示為
(12)
式中:τp0為0 K時(shí)的晶格阻力;α表征位錯(cuò)糾纏的長(zhǎng)程相互作用系數(shù);ρt為總位錯(cuò)密度。
τμ可表示為
(13)
式中:β為比例常數(shù);μ0為0 K時(shí)材料的剪切模量。
根據(jù)位錯(cuò)理論,位錯(cuò)可分為可移動(dòng)和不可移動(dòng)位錯(cuò)兩部分,可移動(dòng)位錯(cuò)密度ρm占總位錯(cuò)密度ρt的比例分?jǐn)?shù)f[29]可表示為
f=exp(-Hγp/τ),
(14)
式中:H為位錯(cuò)硬化系數(shù);γp為滑移剪應(yīng)變。
(15)
(16)
圖2 計(jì)算流程圖Fig.2 Computational flowchart
表2 位錯(cuò)塑性模型參數(shù)Tab.2 Parameters for dislocation plasticity model
圖1 模型參數(shù)敏感性分析曲線(xiàn)Fig.1 Analytical curves of model parameter sensitivity
表3 不同初溫下HMX單晶的實(shí)驗(yàn)結(jié)果[9,34]Tab.3 Experimental results of HMX at different initial temperatures[9,34]
利用ABAQUS有限元軟件建立HMX單晶平板撞擊實(shí)驗(yàn)的二維有限元模型如圖3所示,并使用VUMAT定義HMX單晶本構(gòu)行為。飛片、砧板和窗口均使用Mie-Grüneisen狀態(tài)方程描述,材料參數(shù)如表4所示。2024鋁飛片尺寸為8 mm×20 mm,單元尺寸為0.01 mm并劃分為800個(gè)網(wǎng)格。石英尺寸為4 mm×20 mm,單元尺寸為0.008 mm并劃分為500個(gè)網(wǎng)格。HMX單晶尺寸為1 mm×20 mm,單元尺寸為0.005 mm并劃分為200個(gè)網(wǎng)格。LiF窗口尺寸為4 mm×20 mm,單元尺寸為0.01 mm并劃分為400個(gè)網(wǎng)格。通過(guò)前期網(wǎng)格敏感性分析表明,在此網(wǎng)格密度下能得到精確的計(jì)算結(jié)果。單元類(lèi)型為四節(jié)點(diǎn)雙線(xiàn)性減縮積分單元(CPE4R)。在分析步中設(shè)置線(xiàn)性體積黏性參數(shù)為0.15,從而避免數(shù)值振蕩。對(duì)2024鋁飛片整體施加初始速度,單晶的環(huán)境溫度分別設(shè)置為實(shí)驗(yàn)初始溫度300 K、373 K和423 K.
表4 飛片及靶板系統(tǒng)材料參數(shù)Tab.4 Parameters for flyer and target materials
圖3 二維有限元模型Fig.3 Two-dimensional finite element model
為更好地對(duì)比不同初溫下實(shí)驗(yàn)和計(jì)算得到的HMX/LiF界面粒子速度歷史,將初溫373 K和423 K的實(shí)驗(yàn)和計(jì)算結(jié)果分別向右平移0.1 μs和0.4 μs,如圖4所示為平移后不同初溫下界面粒子速度歷史的實(shí)驗(yàn)與計(jì)算結(jié)果對(duì)比。不同初溫下界面粒子速度曲線(xiàn)第1個(gè)波峰對(duì)應(yīng)的粒子速度為HEL對(duì)應(yīng)的界面粒子速度。從圖4中可以看出,不同初溫下計(jì)算得到的彈塑性雙波結(jié)構(gòu)與實(shí)驗(yàn)結(jié)果吻合較好。對(duì)于300 K,模型能夠很好地描述彈性先驅(qū)波到達(dá)界面以及隨后塑性波的到達(dá),但計(jì)算出的HEL略低于實(shí)驗(yàn)結(jié)果,這可能是由于較快的位錯(cuò)速度或較高的位錯(cuò)密度,導(dǎo)致相應(yīng)塑性松弛速率偏高。而對(duì)于373 K,計(jì)算得到的HEL和塑性波的到達(dá)均與實(shí)驗(yàn)結(jié)果一致。對(duì)于423 K,計(jì)算出的HEL與實(shí)驗(yàn)結(jié)果相同,但隨后的應(yīng)力松弛更為明顯,這是由于位錯(cuò)的擴(kuò)展和形核過(guò)程與實(shí)驗(yàn)存在一定差異。另外,該模型能較好地描述初始溫度較高時(shí)HEL呈現(xiàn)的熱硬化效應(yīng)。
圖4 不同初溫下HMX/LiF界面粒子速度歷史的實(shí)驗(yàn)和計(jì)算結(jié)果對(duì)比Fig.4 Comparison of experimental and calculated particle velocities at interface of HMX/LiF at different initial temperatures
圖5 不同初溫下剪應(yīng)力τ與塑性剪應(yīng)變率的關(guān)系Fig.5 Relationship between resolved shear stress τ and plastic shear strain rate at different initial temperatures
圖6表示不同初溫下界面處可移動(dòng)位錯(cuò)密度ρm以及熱激活臨界剪應(yīng)力τμ歷史曲線(xiàn)。在模型中考慮了位錯(cuò)產(chǎn)生的兩種機(jī)制,即已有位錯(cuò)環(huán)的擴(kuò)展以及新位錯(cuò)的形核,因此當(dāng)剪應(yīng)力達(dá)到熱激活臨界剪應(yīng)力τμ,會(huì)引起位錯(cuò)的增殖和運(yùn)動(dòng)。在圖6(a)中300 K、373 K和423 K對(duì)應(yīng)HEL的可移動(dòng)位錯(cuò)密度依次為3.40×1010m-2、4.52×1010m-2和4.80×1010m-2,由(6)式可知隨著可移動(dòng)位錯(cuò)密度增大,塑性剪應(yīng)變率增大,HEL會(huì)減小,但HEL表現(xiàn)出熱硬化,表明位錯(cuò)演化的溫度相關(guān)性并不對(duì)熱硬化效應(yīng)起決定性作用。由(13)式可知,可移動(dòng)位錯(cuò)密度增大會(huì)導(dǎo)致τμ增大,但由圖6(b)可知τμ整體隨初溫升高而減小,這是因?yàn)殡S初溫升高、剪切模量減小的程度大于可移動(dòng)位錯(cuò)密度增大的程度。同時(shí)根據(jù)(12)式可知聲子拖曳臨界剪應(yīng)力τ0也減小。由于臨界剪應(yīng)力τμ和τ0的熱軟化效應(yīng),位錯(cuò)更容易啟動(dòng)進(jìn)入熱激活狀態(tài),以及更容易從熱激活狀態(tài)轉(zhuǎn)變?yōu)槁曌油弦窢顟B(tài)。因此,位錯(cuò)演化并不直接導(dǎo)致單晶HEL的熱硬化效應(yīng),剪切模量的溫度相關(guān)性決定臨界剪應(yīng)力的大小,從而影響位錯(cuò)滑移機(jī)制的演變。
圖6 不同初溫下界面處可移動(dòng)位錯(cuò)密度ρm以及熱激活臨界剪應(yīng)力τμ歷史曲線(xiàn)Fig.6 Mobile dislocation density ρm and thermal threshold shear stress τμ at different initial temperatures
圖7 不同初溫下界面處平均位錯(cuò)速度以及剪應(yīng)力τ歷史曲線(xiàn)Fig.7 Mean dislocation velocity and resolved shear stress τ at different initial temperatures
聲子拖曳系數(shù)B隨初溫升高而增大與聲子散射系數(shù)B0以及剪切模量μ的溫度效應(yīng)有關(guān),因此,HEL熱硬化效應(yīng)的實(shí)質(zhì)來(lái)源于由聲子散射和輻射阻尼控制的位錯(cuò)運(yùn)動(dòng)。為量化聲子散射和輻射阻尼對(duì)熱硬化效應(yīng)的影響,計(jì)算獲得不同初溫下考慮聲子散射、輻射阻尼以及二者共同作用時(shí)的HEL相對(duì)值如圖8所示。圖8中HEL相對(duì)值表示相對(duì)300 K時(shí)HEL的大小?;鶞?zhǔn)線(xiàn)是在B0(T0)和?μ/?T=0條件下計(jì)算得到。當(dāng)只考慮輻射阻尼對(duì)熱硬化效應(yīng)的影響時(shí),聲子散射系數(shù)B0無(wú)溫度相關(guān)性;當(dāng)只考慮聲子散射對(duì)熱硬化效應(yīng)的影響時(shí),剪切模量μ無(wú)溫度相關(guān)性;當(dāng)二者共同作用時(shí),需同時(shí)考慮B0和μ的溫度相關(guān)性。從圖8可以看出,聲子散射和輻射阻尼效應(yīng)隨著初溫升高而增強(qiáng),但由于初始溫度對(duì)剪切模量的影響較小,導(dǎo)致輻射阻尼效應(yīng)對(duì)HEL熱硬化效應(yīng)的貢獻(xiàn)小于聲子散射效應(yīng)。
圖8 不同初溫下考慮聲子散射、輻射阻尼以及二者共同作用時(shí)HEL相對(duì)值Fig.8 Relative value of HEL provided separately by phonon scattering,radiation damping and their combined effect at different initial temperatures
圖9 不同初溫下與τ/τ0的關(guān)系Fig.9 Relationship between and τ/τ0 at different initial temperatures
圖10(a)為不同初溫下界面軸向應(yīng)力-s11歷史曲線(xiàn),從中可以看出,300 K、373 K和423 K的動(dòng)態(tài)屈服極限依次為0.904 GPa、1.529 GPa及1.722 GPa,隨著初溫升高動(dòng)態(tài)屈服極限增大。平臺(tái)階段軸向應(yīng)力差別不大,無(wú)明顯溫度相關(guān)性。圖10(b)為423 K時(shí)單晶不同位置的軸向應(yīng)力-s11歷史曲線(xiàn),從中可以看出,由于波的傳播,單晶內(nèi)部形成彈性波及塑性波,隨著離左端面的距離增大,彈性波在傳播過(guò)程中不斷衰減,使動(dòng)態(tài)屈服極限依次減小,但當(dāng)彈性波到達(dá)單晶右端面時(shí)在界面處發(fā)生反射使動(dòng)態(tài)屈服極限突然增大。
圖10 不同初溫下界面軸向應(yīng)力-s11和423 K時(shí)單晶不同位置的軸向應(yīng)力-s11歷史曲線(xiàn)Fig.10 Longitudinal stresses -s11 at different initial temperatures and different distances at 423 K
HMX單晶受到?jīng)_擊時(shí)的溫升主要來(lái)源于沖擊壓縮體積功以及位錯(cuò)滑移塑性功,當(dāng)應(yīng)力水平較高時(shí),會(huì)直接引起較高的溫升。圖11為不同初溫下界面處溫升歷史曲線(xiàn),從中可以看出,隨著初溫升高,HEL對(duì)應(yīng)溫升逐漸增大,而平臺(tái)階段由于應(yīng)力差別不大,對(duì)應(yīng)溫升無(wú)明顯溫度相關(guān)性。
圖11 不同初溫下界面處溫升歷史曲線(xiàn)Fig.11 Temperature rise curves at interface at different initial temperatures
圖12為初溫373 K下不同初始可移動(dòng)位錯(cuò)密度對(duì)位錯(cuò)演化的影響。從圖12可以看出,塑性波到達(dá)界面之前,可移動(dòng)位錯(cuò)密度為初始可移動(dòng)位錯(cuò)密度,隨著塑性波傳播,可移動(dòng)位錯(cuò)密度增大,從圖7(b)看出最后剪應(yīng)力小于圖6(b)對(duì)應(yīng)熱激活臨界剪應(yīng)力,位錯(cuò)最后停止增殖達(dá)到飽和狀態(tài)。當(dāng)初始可移動(dòng)位錯(cuò)密度較高時(shí),位錯(cuò)在較短時(shí)間內(nèi)達(dá)到飽和位錯(cuò)密度,導(dǎo)致圖1(g)中應(yīng)力松弛時(shí)間和塑性波上升時(shí)間縮短。同時(shí),從圖1(g)可以看出,較低的初始可移動(dòng)位錯(cuò)密度對(duì)應(yīng)HEL較高,這是由于較低初始可移動(dòng)位錯(cuò)密度產(chǎn)生較低塑性剪應(yīng)變率,表現(xiàn)出較高HEL.
圖12 初溫373 K下不同初始可移動(dòng)位錯(cuò)密度對(duì)位錯(cuò)演化的影響Fig.12 Effect of different initial mobile dislocation densities on dislocation evolution at 373 K
本文發(fā)展了考慮熱激活和聲子拖曳位錯(cuò)滑移機(jī)制的非線(xiàn)性熱彈黏塑性模型,基于前期開(kāi)展的高溫(373 K、423 K)下HMX單晶平板撞擊實(shí)驗(yàn),可數(shù)值再現(xiàn)HMX單晶HEL的熱硬化效應(yīng)。通過(guò)定量分析聲子散射和輻射阻尼對(duì)熱硬化效應(yīng)的影響并研究位錯(cuò)滑移機(jī)制演變和熱力學(xué)響應(yīng)。得到主要結(jié)論如下:
1) 聲子散射和輻射阻尼隨著初溫升高而增大導(dǎo)致聲子拖曳系數(shù)增大,使可移動(dòng)位錯(cuò)黏性摩擦增強(qiáng)。此時(shí),平均位錯(cuò)速度由2 237 m/s減小至1 537 m/s,進(jìn)而產(chǎn)生較低的塑性剪應(yīng)變率和較高的流動(dòng)應(yīng)力,引起HMX單晶HEL的熱硬化效應(yīng)。
2) 在高溫(373 K、423 K)下,僅考慮輻射阻尼時(shí)對(duì)應(yīng)HEL相對(duì)值分別為1.068和1.112,由于剪切模量隨著初始溫度升高變化較小,導(dǎo)致輻射阻尼對(duì)應(yīng)HEL相對(duì)值均小于聲子散射對(duì)應(yīng)HEL相對(duì)值(1.39、1.63)。因此,輻射阻尼對(duì)HEL熱硬化效應(yīng)的貢獻(xiàn)小于聲子散射。
參考文獻(xiàn)(References)
[1] DICK J J.Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive[J].Applied Physics Letters,1984,44(9):859-861.
[2] DICK J J,MULFORD R N,SPENCER W J,et al.Shock response of pentaerythritol tetranitrate single crystals[J].Journal of Applied Physics,1991,70(7):3572-3587.
[3] DICK J,RITCHIE J.Molecular mechanics modeling of shear and the crystal orientation dependence of the elastic precursor shock strength in pentaerythritol tetranitrate[J].Journal of Applied Physics,1994,76(5):2726-2737.
[4] DICK J J,MARTINEZ A R.Elastic precursor decay in HMX explosive crystals[J].AIP Conference Proceedings,2002,620:817-820.
[5] DICK J J,HOOKS D E,MENIKOFF R,et al.Elastic-plastic wave profiles in cyclotetramethylene tetranitramine crystals[J].Journal of Applied Physics,2004,96(1):374-379.
[6] WINEY J M,GUPTA Y M.Anisotropic material model and wave propagation simulations for shocked pentaerythritol tetranitrate single crystals[J].Journal of Applied Physics,2010,107(10):103505.
[7] BARTON N R,WINTER N W,REAUGH J E.Defect evolution and pore collapse in crystalline energetic materials[J].Modelling and Simulation in Materials Science and Engineering,2009,17(3):035003.
[8] WU Y Q,HUANG F L.Thermal mechanical anisotropic constitutive model and numerical simulations for shocked β-HMX single crystals[J].European Journal of Mechanics A/Solids,2012,36:66-82.
[9] WANG X J,WU Y Q,HUANG F L,et al.Dynamic anisotropic response ofβ-HMX andα-RDX single crystals using plate impact experiments at ~1 GPa[J].Propellants,Explosives,Pyrotechnics,2018,43(8):759-770.
[10] WANG X J,WU Y Q,HUANG F L,et al.An anisotropic elastoviscoplasticity model of thermomechanical responses of shockedβ-HMX andα-RDX single crystals[J].Propellants,Explosives,Pyrotechnics,2019,44(7):870-888.
[11] KRASNIKOV V S,MAYER A E,YALOVETS A P.Dislocation based high-rate plasticity model and its application to plate-impact and ultra short electron irradiation simulations[J].International Journal of Plasticity,2011,27(8):1294-1308.
[12] GURRUTXAGA-LERMA B,SHEHADEH A M,BALINT D S,et al.The effect of temperature on the elastic precursor decay in shock loaded FCC aluminum and BCC iron[J].International Journal of Plasticity,2017,96:135-155.
[13] AUSTIN R.Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature[J].Journal of Applied Physics,2018,123(3):035103-1-035103-14.
[14] YAO S L,PEI X Y,LIU Z L,et al.Numerical investigation of the temperature dependence of dynamic yield stress of typical BCC metals under shock loading with a dislocation-based constitutive model[J].Mechanics of Materials,2019,140:103211.
[15] KOSITSKI R,MORDEHAI D.On the origin of the stress spike decay in the elastic precursor in shocked metals[J].Journal of Applied Physics,2019,126(8):085901.
[16] KANEL G I,SAVINYKH A S,GARKUSHIN G V,et al.Effects of temperature on the flow stress of aluminum in shock waves and rarefaction waves[J].Journal of Applied Physics,2020,127(3):035901.
[17] AUSTIN R A,MCDOWELL D L.A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates[J].International Journal of Plasticity,2011,27(1):1-24.
[18] LUSCHER D J,BUECHLER M A,WALTERS D J,et al.On computing the evolution of temperature for materials under dynamic loading[J].International Journal of Plasticity,2018,111:188-210.
[19] STEINBERG D J,COCHRAN S G,GUINAN M W,et al.A constitutive model for metals applicable at high-strain rate[J].Journal of Applied Physics,1980,51(3):1498-1504.
[20] LUKYANOV A A.Constitutive behaviour of anisotropic materials under shock loading[J].International Journal of Plasticity,2008,24(1):140-167.
[21] PALMER S J P,FIELDJ E.The deformation and fracture ofβ-HMX[J].Proceedings of the Royal Society of London .Series A,Mathematical and Physical Sciences,1982,383(1785):399-407.
[22] CUI H L,JI G F,CHEN X R,et al.Phase transitions and mechanical properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in different crystal phases by molecular dynamics simulation[J].Journal of Chemical &Engineering Data,2010,55(9):3121-3129.
[23] BISHOP J F W,HILL R.XLVI.A theory of the plastic distortion of a polycrystalline aggregate under combined stresses[J].The London,Edinburgh and Dublin Philosophical Magazine and Journal of Science,1951,42(327):414-427.
[24] GILMAN J J,JOHNSTON W G.Dislocations in lithium fluoride crystals[J].Solid State Physics,1962,13:147-222.
[25] FOLLANSBEE P S,KOCKS U F.A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J].Acta Metallurgica,1988,36(1):81-93.
[26] KOCKS U F,MECKING H.Physics and phenomenology of strain hardening:the FCC case[J].Progress in Materials Science,2003,48(3):171-273.
[27] KOCKS U F,ARGON A S,ASHBY M F.Thermodynamics and kinetics of slip[M]∥Chalmers B,Christian J W,Massalski T B.Progress in Materials Science.Oxford,UK:Pergamon Press,1975:141-145.
[28] TAYLOR G I.The mechanism of plastic deformation of crystals.Part Ⅱ.Comparison with observations[J].Proceedings of the Royal Society.Series A,Containing Papers of a Mathematical and Physical Character,1934,145(855):388-404.
[29] WINEY J M,GUPTA Y M.Nonlinear anisotropic description for the thermomechanical response of shocked single crystals:inelastic deformation[J].Journal of Applied Physics,2006,99(2):023510.
[30] GUPTA Y M,DUVALL G E,FOWLES G R. Dislocation me-chanisms for stress relaxation in shocked LiF[J].Journal of Applied Physics,1975,46(2):532-546.
[31] HULL D,BACON D J.Introduction to dislocations[J].Materials Today,2011,19(12):91-92.
[32] CLIFTON R J.On the analysis of elastic/visco-plastic waves of finite uniaxial strain[C]∥Proceedings of Sagamore Army Materials Research Conference.Syracuse,NY,US:Syracuse University Press,1971:73-116.
[33] ARMSTRONG R W,ELBAN W L.Materials science and technology aspects of energetic (explosive) materials[J].Materials Science and Technology,2013,22(4):381-395.
[34] 丁凱,王昕捷,吳艷青,等.高溫下奧克托今單晶的沖擊響應(yīng)特性[J].兵工學(xué)報(bào),2020,41(9):1783-1791.
DING K,WANG X J,WU Y Q,et al.Shock response of HMX single crystal at elevated temperatures[J].Acta Armamentarii,2020,41(9):1783-1791.(in Chinese)
[35] MARSH S P.LASL shock Hugoniot data[M].Berkeley,CA,US:University of California Press,1980:165-166.
[36] BARRIOS M A,BOEHLY T R,HICKS D G,et al.Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves[J].Journal of Applied Physics,2012,111(9):093515.
[37] JONES S C,GUPTA Y M.Refractive index and elastic properties of z-cut quartz shocked to 60 kbar[J].Journal of Applied Physics,2000,88(10):5671-5679.
[38] AO T,KNUDSON M D,ASAY J R,et al.Strength of lithium fluoride under shockless compression to 114 GPa[J].Journal of Applied Physics,2009,106(10):103507
[39] LALONE B M,FATYANOV O V,ASAY J R,et al.Velocity correction and refractive index changes for [100] lithium fluoride optical windows under shock compression,recompression,and unloading[J].Journal of Applied Physics,2008,103(9):093505.