• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Assembled Zn2+,Co2+ and Ni2+ Complexes Based on Coumarin Schiff Base Ligands:Synthesis,Crystal Structure and Spectral Properties

    2021-06-19 07:33:42GUOGengLIJuanWUYaDINGWenMinZHANGShuZhenSUNYinXia

    GUO Geng LI Juan WU Ya DING Wen-Min ZHANG Shu-Zhen SUN Yin-Xia

    (School of Chemical and Biological Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

    Abstract:Mononuclear Zn2+,Co2+ complexes and binuclear Ni2+ complex based on coumarin Schiff base ligands,[Zn(L1)2](1)(HL1=6-((4-diethylamino-2-hydroxy-benzylidene)-amino)-benzopyran-2-one),[Co(L2)2](2)(HL2=6-((4-methoxy-2-hydroxy-benzylidene)-amino)-benzopyran-2-one)and[Ni2(L3)2(CH3OH)4](3)(H2L3=4-hydroxy-3-((4-methoxy-2-hydroxy-benzylidene)-amino)-benzopyran-2-one),were synthesized and characterized by elemental analysis,IR,UV-Vis,fluorescence spectra and X-ray single crystal diffraction analysis.The crystal structure analysis represents that the complexes 1 and 2 possess mononuclear structure composed of one metal ion(Zn2+ or Co2+)and two ligand units((L1)-or(L2)-).Whereas complex 3 had binuclear structure,containing two Ni2+ ions,two ligand units(L3)2- and four coordination methanol molecules.The crystals of complexes 1,2 and 3 are solved as monoclinic space group C2/c,triclinic space group P and triclinic space group P21/n,respectively.The spatial configurations of the central metal Zn2+ and Co2+ ions are four-coordinated tetrahedrons,and the Ni2+ ion is six-coordinated twisted octahedrons.In addition,UV-Vis studies demonstrate that the free ligands HL1 in DMF/H2O(4∶1,V/V)solution and HL2 in DMSO/H2O(4∶1,V/V)solution could selectively recognize Hg2+ and Zn2+,respectively.The detection limits were calculated to be 7.45 and 6.10 μmol·L-1,respectively.Fluorescence studies indicate that HL2 exhibits ability of selective recognition Zn2+ against other common cationic including Ag+,Ba2+,Ca2+,Cd2+,Cr3+,Cu2+,Fe3+,Mg2+, Mn2+ and Hg2+ in DMSO/H2O(4∶1,V/V),and the detection limit was calculated to be 2.91 μmol·L-1.CCDC:2034542,1;2034547,2;2034548,3.

    Keywords:coumarin Schiff-base;transition metal complex;crystal structure;spectral property

    0 Introduction

    Coumarin is an excellent fluorescent compound with large Stokes shift,visible light excitation and emission,tunable light wavelength,two-photon effect,stable chemical properties,biocompatibility and high fluorescent rate[1-2].Different positions of coumarin ring can be replaced by different groups,which can obtain different absorption and fluorescent emission wavelengths,show different colors,and derive derivatives with strong fluorescence[3-5].In particular,coumarin modified with amino groups at positions 3 and 6 can react with aldehydes to prepare Schiff base compounds.Schiff base derivatives containing N and O donor site and fluorophore are appealing to tools for designing optical probes for metal ions[6-9].It is already established that Schiff base alone is weakly or nonfluorescent as the fluorescence is quenched due to the free rotation around C=N bond[10-15].Recently,numerous papers described the specific detection of various metal ions through the chelation of Schiff base probes[16-18].Coumarin,as an excellent chromophore,can be invoked as a fluorescent sensor to detect cations,anions and biologically related species[19-22].Meanwhile,coumarin Schiff base can form a variety of metal complexes because of their abundant coordinating atoms and the ability to participate in coordination is outstanding[23-26].Herein,three coumarin Schiff bases ligands and their corresponding complexes,[Zn(L1)2](1)(HL1=6-((4-diethylamino-2-hydroxy-benzylidene)-amino)-benzopyran-2-one),[Co(L2)2](2)(HL2=6-((4-methoxy-2-hydroxy-benzylidene)-amino)-benzopyran-2-one)and[Ni2(L3)2(CH3OH)4](3)(H2L3=4-hydroxy-3-((4-methoxy-2-hydroxy-benzylidene)-amino)-benzopyran-2-one),were synthesized and characterized.In addition,the photochemical properties of HL1,HL2,H2L3and their corresponding complexes 1,2 and 3 were discussed.Hg2+can be selectively identified in DMF/H2O(4∶1,V/V)solution by HL1based on UV-Vis spectrum,and HL2can detect Zn2+in DMSO/H2O(4∶1,V/V)solution by UV-Vis spectrum and the fluorescence spectrum.

    1 Experimental

    1.1 Material

    4-hydroxyl coumarin and coumarin from Alfa Aesar were used without further purification.6-aminocoumarin and 3-amino-4-hydroxy-coumarin were synthesized according to an analogous method reported earlier[27-28].The other reagent and solvent were analytical grade from Tianjin Chemical Reagent Factory,and were used without further purification.

    1.2 Instruments and methods

    C,H and N analysis carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer.FT-IR spectra were recorded on a VERTEX70 FT-IR spectrophotometer with samples prepared as KBr(400~4 000 cm-1)pellets.UV-Vis absorption spectra were recorded on a Hitachi UV-3900 spectrometer.Luminescence spectra in solution were recorded on a Hitachi F-7000 spectrometer.X-ray single crystal structures were determined on a Bruker Smart 1000 CCD area detectors.Melting points were measured by a X-4 microscopic melting point apparatus made by Beijing Taike Instrument Limited Company and were uncorrected.

    1.3 Syntheses of ligands HL1,HL2and H2L3

    The synthetic routes of ligands HL1,HL2and H2L3are shown in Scheme 1.

    Scheme 1 Synthetic routes of HL1,HL2 and H2L3

    1.3.1 Synthesis of HL1and HL2

    6-amino coumarin was synthesized depending on an analogous method reported previously in literature[27].Firstly,coumarin(1.46 g,0.010 mol)and sodium nitrate(5.20 g)were placed in a flask,and 5.0 mL of H2O was added to the flask.The mixture was stirred thoroughly until the solid was completely dissolved.Concentrated sulfuric acid(12.0 mL)was slowly added dropwise into the solution under an ice-water bath,and the temperature was kept below 25℃.After stirred at room temperature for 4.0 h,the solution was poured into crushed ice,and a light-yellow solid was precipitated.After filtering,6-nitrocoumarin was obtained by recrystallization with glacial acetic acid.Secondly,3.5 mL water,0.86 g iron powder,0.3 mL glacial acetic acid and an ethanol solution of 6-nitrocoumarin(0.60 g,3.14 mmol)was added and refluxed at 95℃for 1.5 h.The solution was cooled slightly,then 20.0 mL warm saturated sodium carbonate solution was added.The mixture was filtered while it was hot.Yellow solid 6-aminocoumarin was obtained by vacuum filtration after the filtrate was cooled.Yield:67.8%,m.p.172~173℃.In the end,6-amino coumarin(1.00 g,9.50 mmol)and 4-diethylamino-salicylaldehyde(1.20 g,6.01 mmol)were placed in a flask,followed by 5.0 mL anhydrous ethanol and 2~3 drops of glacial acetic acid.The mixture was subjected to reflux at 75℃for 6.0 h and cooled to room temperature,and bright yellow solid precipitates were obtained.HL1was obtained by filtering.Yield:72.5%,m.p.155~156℃.Anal.Calcd.for C18H16N2O3(%):C,70.12;H,5.23;N,9.09.Found(%):C,70.21;H,5.19;N,9.02.

    Ligand HL2was synthesized by a method analogous to that of HL1except substituting 4-diethylaminosalicylaldehyde with 4-methoxy-salicylaldehyde.Yield:77.4%.m.p.187~188 ℃.Anal.Calcd.for C17H13NO4(%):C,69.15;H,4.44;N,4.74.Found(%):C,69.19;H,4.45;N,4.72.

    1.3.2 Synthesis of H2L3

    3-amino-4-hydroxy-coumarin(1.23 g,6.90 mmol)and 4-methoxy-salicylaldehyde(1.00 g,6.60 mmol)were placed in a flask,then 15.0 mL absolute ethanol and 1~2 drops of acetic acid were added to the flask.The mixture was subjected to reflux at 70℃for 6.0 h.After returning to room temperature,the yellow precipitate was filtered and dried to obtain H2L3.Yield:78.6%,m.p.125~126 ℃.Anal.Calcd.for C17H13NO5(%):C,65.59;H,4.21;N,4.50;Found(%):C,65.60;H,4.22,N,4.54.

    1.4 Synthesis of complexes 1,2 and 3

    1.4.1 Synthesis of complex 1

    A colorless methanol solution(3.0 mL)of zinc(Ⅱ)acetate dihydrate(3.0 mg,0.014 mmol)was added dropwise to a dichloromethane solution(3.0 mL)of HL1(4.6 mg,0.014 mmol)at room temperature.The mixing solution turned yellow immediately and was kept at room temperature for about one month.Clear light colorless single crystals of complex 1 suitable for X-ray structural determination were obtained.Anal.Calcd.for C40H38N4O6Zn(%):C,65.26;H,5.20;N,7.61.Found(%):C,66.58;H,5.36;N,7.85.

    1.4.2 Synthesis of complexes 2 and 3

    The complexes 2 and 3 were prepared by the same method as that of the complex 1 except changing the solvent ratios and metal ions.The solvent ratios of complexes 2 and 3 were adjusted from methanol/dichloromethane(3∶3,V/V)to methanol/dichloromethane(5∶5,V/V),and the metal salts were adjusted to the corresponding cobalt(Ⅱ) acetate tetrahydrate and nickel(Ⅱ)acetate tetrachloride.Complex 2:Anal.Calcd.for C34H24N2O8Co(%):C,63.07;H,3.74;N,4.33.Found(%):C,64.80;H,3.63;N,4.52.Complex 3:Anal.Calcd.for C38H38N2Ni2O14(%):C,52.82;H,4.43;N,3.24.Found(%):C,53.83;H,4.32;N,3.46.

    1.5 Crystal structure determinations of complexes 1,2 and 3

    The single crystals of dimensions 0.27 mm×0.23 mm×0.21 mm(1),0.29 mm×0.27 mm×0.25 mm(2)and 0.24 mm×0.22 mm×0.21 mm(3)were used to determine the crystal structures by X-ray diffraction technique on Bruker SMART 1000 CCD area-detector diffractometer.The reflections were collected using graphite-monochromatized MoKαradiation(λ=0.071 073 nm)at 291,295 and 293 K,respectively.The SMART and SAINT software packages[29]were used for data collection and reduction,respectively.Absorption corrections based on multi-scans using the SADABS software[30]were applied.The structures were solved by direct methods and refined by full-matrix least-squares againstF2using the SHELXL program[31].All nonhydrogen atoms were refined anisotropically.The positions of hydrogen atoms were calculated and isotropic fixed in the final refinement.Details of the crystal parameters,data collection,and refinements for complexes 1~3 are summarized in Table 1.

    Table 1 Crystal data and structure refinement for complexes 1~3

    Continued Table 1

    CCDC:2034542,1;2034547,2;2034548,3.

    2 Results and discussion

    2.1 Crystal structures of complexes 1,2 and 3

    The molecular structure of complexes 1,2 and 3 are depicted in Fig.1.Selected bond lengths and angles for complexes 1~3 are listed in Table S1(Supporting information).X-ray crystallographic analysis shows that complexes 1 and 2 have similar mononuclear crystal structures.The crystals of complexes 1 and 2 are solved as monoclinic space groupC2/cand triclinic space groupP,respectively.Complexes 1 and 2 all consist of one central ion(Zn2+for 1 and Co2+for 2)and two units((L1)-for 1 and(L2)-for 2).The central metal(Zn2+and Co2+)of complexes 1 and 2 are all fourcoordinated by two deprotonated hydroxyl oxygen atoms(O3,O3A in 1 and O3,O7 in 2)and two nitrogen atoms(N1,N1A in 1 and N1,N2 in 2)from the ligand units((L1)-and(L2)-,respectively),which constitute the[Zn(L1)2](1)and[Co(L2)2](2)moieties,respectively(Fig.1a~1d).Therefore,the coordination geometry around the central Zn2+and Co2+of complexes 1 and 2 all can be described as a tetrahedron space configurations.

    The Schiff base ligand H2L3moiety of complex 3 contains phenolate-O atoms that connect two neighboring nickel units by way of twoμ-O bridges to form binuclear structures,which crystallizes in monoclinic systemP21/nspace group,and the asymmetry unit consists one Ni2+ion,one(L3)2-ligand and two coordinated methanol molecules(Fig.1e).In complex 3,Ni2+center is characterized by a twisted octahedron coordination geometry,with the basal donor atoms coming from the phenolate-O(O4),coumarin′s hydroxyl-O(O1),and imine-N(N1)atoms of the Schiff base ligand,the symmetry-related phenolate-O(O4B)and the two coordinated methanol-O(O6,O7)(Fig.1f).The length of Ni—O and Ni—N falls in a range of 0.200 2~0.216 9 nm and 0.200 4 nm(Table S1),which are within the ranges reported for other similar nickel complexes.

    Fig.1 Molecular structure of complexes 1(a),2(c)and 3(e)showing 30% probability displacement ellipsoids and their coordination pattern diagram for Zn2+(b),Co2+(d),Ni2+(f)

    2.2 IR spectra of HL1,HL2,H2L3 and their corresponding complexes 1,2,3

    The FT-IR spectra of the ligands HL1,HL2and H2L3and their corresponding complexes 1,2 and 3 exhibited various bands in the 400~4 000 cm-1region,and the important FT-IR bands are given in Table 2.The broad O—H group stretching bands at 3 419,3 442 and 3 439 cm-1for the free ligands HL1,HL2and H2L3,respectively,disappeared in complexes 1,2 and 3,which indicates that the oxygen atoms in the phenolic hydroxyl groups are completely deprotonated and coordinated to the metal ion[32-35].Whereas,the stretching bands at 3 483 cm-1in complex 3 are attributed to the stretching vibrations of the O—H group of coordinated methanol[36-37].The Ar—O stretching bands at 1 240,1 207 and 1 259 cm-1of complexes 1,2 and 3 shifted toward lower frequencies byca.13,15 and 24 cm-1,respectively,compared with that of free ligands HL1,HL2and H2L3at 1 253,1 222 and 1 293 cm-1,respectively.The lower frequency of the Ar—O stretching shift indicates that M—O bond is formed between the metal ions and the oxygen atoms of the phenolic groups[38-40].In addition,the free ligand HL1,HL2and H2L3exhibited characteristic band of stretching vibration of C=N group at 1 624,1 644 and 1 674 cm-1,respectively,and their corresponding complexes 1,2 and 3 were observed at 1 611,1 644 and 1 692 cm-1,respectively[41-42].Compared with ligand HL1and HL2,the C=N stretching frequency of complexes 1 and 2 shifted to a lower frequency byca.13 and 8 cm-1,respectively.While complex 3 shifted to a higher frequency byca.18 cm-1.It is indicated that the C=N bond frequencies decreased or increased due to the coordination bond between the metal atom and the ami-no nitrogen lone pair[43-44].The FT-IR spectrum of complex 1 showedν(M—N)andν(M—O)vibration frequencies at 615 and 483 cm-1(or 505 and 467 cm-1for complex 2,582 and 459 cm-1for complex 3).These assignments are consistent with the frequency values in literature[44-45].

    Table 2 Important IR bands of free ligands HL1,HL2,H2L3 and their corresponding complexes 1,2,3 cm-1

    2.3 UV-Vis absorption spectra analyses

    The absorption spectra of ligands HL1,HL2,H2L3and their corresponding complexes 1,2,3 in 50 μmol·L-1DMSO solution are shown in Fig.2.As shown in Fig.2,the typical absorption peaks of HL1(HL2or H2L3)atca.276 nm(ca.285 nm orca.282 and 314 nm)was clearly observed.The peaks can be attributed respectively to theπ-π*transitions of the benzene ring[46-47].Whereas the peak at 382 nm(342 or 411 nm)may be attributed toπ-π*transition of the C=N group in the ligand[48-49].Upon coordination of Zn2+ion with HL1(Co2+ion with HL2or Ni2+ion with H2L3),the absorption peaks had evidently changed to 277 nm in complex 1(287 nm in complex 2 or 277 and 312 nm in complex 3).Compared with free ligands HL1at 276 nm(285 nm in HL2or 282 and 314 nm in H2L3),the absorption peak was red-shifted by about 1 nm in complex 1(2 nm in complex 2),and 282 and 314 nm were slightly shifted hypochromic to 277 and 312 nm in complex 3.Additionally,another absorption peak at 382 nm of ligand HL1(342 nm of HL2or 411 nm of H2L3)disappeared in the UV-Vis absorption spectrum of complex 1(complex 2 or complex 3),which indicates that the imine nitrogen atoms of the ligands HL1(HL2or H2L3)have coordinated to the metal Zn2+(Co2+or Ni2+)ions.The new peak at 467 nm of complex 3 is assigned to transition of ligand to metal charge-transfer[50].

    Fig.2 UV-Vis spectra of(a)HL1 and its Zn2+ complex 1,(b)HL2 and its Co2+ complex 2,(c)H2L3 and its Ni2+ complex 3

    The UV-Vis specific responses of HL1or HL2to partial common cations(Ag+,Ba2+,Ca2+,Cd2+,Cr3+,Cu2+,Fe3+,Mg2+,Mn2+,Hg2+and Zn2+)were carried out in DMF/H2O(4∶1,V/V)or DMSO/H2O(4∶1,V/V)solutions(c=50 μmol·L-1).The UV-Vis spectra of HL1solution had a significant blue-shift from 383 to 348 nm when Hg2+ion was added,and the other measured ions could not lead to apparent changes of the spectrum,except for Hg2+ion and the self-absorption of Cu2+and Fe3+ions(Fig.3a).In order to study the variation of absorption peak intensity with time in UV-Vis spectra of HL1,the UV-Vis absorption intensity was measured at 1 min interval after the addition of Hg2+.It can be seen from Fig.3b that the UV-Vis peak position of HL1solution was significantly red-shifted from 383 to 424 nm after adding Hg2+.With the passage of time,the peak at 424 nm gradually disappeared and the peak intensity at 348 nm gradually increased,and remained stable after 18 min.As for HL2,the UV-Vis spectra of HL2solution had a significant red-shift from 342 to 382 nm when the Zn2+ion was added,and the other tested ions could not lead to obvious changes of spectra except for Zn2+ion and the self-absorption of Cu2+and Fe3+ions(Fig.4a).In the natural light,the color changes from yellow(or colorless)to colorless(or yellow)after adding Hg2+(or Zn2+)to the DMF/H2O(4∶1,V/V)(or DMSO/H2O(4∶1,V/V))solution of HL1(or HL2),and the color changes of other ions except Fe3+are not obvious,as shown in Fig.3d and Fig.4c.The results showed that the HL1and HL2represented excellent selectivity for Hg2+and Zn2+,respectively.

    Fig.3 (a)UV-Vis spectra of HL1 upon addition of different cations(50 eq.)in DMF/H2O(4∶1,V/V)solution(c=50 μmol·L-1)at room temperature;(b)UV-Vis absorption intensity of HL1 varying with time;(c)UV-Vis spectra of HL1 in DMF/H2O(4∶1,V/V)solution(c=50 μmol·L-1)by adding 0~1.15 eq.of Hg2+;(d)Discoloration photos of HL1 in DMF/H2O(4∶1,V/V)solution after adding metal cations under natural light

    Fig.4 UV-Vis spectra of HL2 upon addition of different cations(50 eq.)in DMSO/H2O(4∶1,V/V)solution(c=50 μmol·L-1)at room temperature;(b)UV-Vis spectra of HL2 in DMSO/H2O(4∶1,V/V)solution(c=50 μmol·L-1)by adding 0~0.6 eq.of Zn2+,(c)Discoloration photos of HL2 in DMSO/H2O(4∶1,V/V)solution after adding metal cations under natural light

    The identification characteristics of HL1(or HL2)as Hg2+(or Zn2+)probe were confirmed by UV-Vis titration in DMF/H2O(4∶1,V/V)(or DMSO/H2O(4∶1,V/V))solution(Fig.3c and 4b).The absorption band of HL1(or HL2)decreased at 383 nm(or 342 nm),and a new absorption band appeared gradually at 348 nm(or 382 nm)when the concentration of Hg2+(or Zn2+)increased from 0 to 1.15(or 0.6)eq.,which signs the deprotonation of hydroxyl moiety and coordination with the Hg2+(or Zn2+)ions.The change in absorbance of HL1(or HL2)at 348 nm(382 nm)had a linear relationship with Hg2+(or Zn2+)ion.In the low concentration range,the detection limit of 7.45 μmol·L-1(or 6.10 μmol·L-1)for Hg2+(or Zn2+)was calculated(Fig.S7 and Fig.S8)[51-54].The modified Benesi-Hildebrand formula was used to calculate LOD(limit of detection)and LOQ(limit of quantitation)[55]:LOD=3σ/S,LOQ=10σ/S(N=20).As shown in Table S4,we compared probe HL1and HL2of our work with the previously reported Hg2+and Zn2+probes.The probes in the table all have lower detection limits and are applied in relatively less toxic solvents.The detection limit of HL1(or HL2)is similar with previously reported detection limit,and the obtained LOD value is below the value(76 μmol·L-1for Hg2+and 46 μmol·L-1for Zn2+)approved by World Health Organization(WHO)[56-57].

    2.4 Emission spectra analyses

    The emission spectra of free ligands HL1,HL2,H2L3and its corresponding complexes 1,2,3 in 50 μmol·L-1DMSO solution at room temperature are shown in Fig.5.As shown in Fig.5a and 5b,the free ligand HL1(or HL2)exhibited a relatively strong emission peak atca.546 nm(or 498 nm)and a weaker emission peak at 458 nm(or 384 nm)upon excitation at 380 nm(or 340 nm),which could be assigned to the intra-ligandπ*-πtransition[58-59].Compared with the free ligand HL1(or HL2),the emission intensity of complex 1(or 2)decreased significantly at 546 nm(or 498 nm),but increased at 458 nm(or 384 nm),indicating that the introduction of M2+ions(Zn2+or Co2+)affected the fluorescence properties.These transitions may be related to the coordination of ligand HL1or HL2and Zn2+or Co2+ions,which allows the ligand to develop towards a more stable complex[60].Both H2L3and its complex 3 showed strong fluorescence emission at 482 and 396 nm with excitation at 300 nm,respectively(Fig.5c).Compared with H2L3,the fluorescence intensity of complex 3 reduced slightly and blue-shiftedca.86 nm,which might be related to the coordination of the N and O atom to the metal ions,and allows H2L3to develop towards a more stable complex.

    Fig.5 Emission spectra of(a)HL1 and complex 1(λex=380 nm),(b)HL2 and complex 2(λex=340 nm),(c)H2L3 and complex 3(λex=300 nm)in DMSO solutions at room temperature

    Under the excitation wavelength of 380 nm,the fluorescence response of HL2to various metal ions(Ba2+,Ni2+,Pb2+,Cu2+,Cd2+,Co2+,Cr3+,Mn2+,Hg2+,Ca2+,Sn2+and Zn2+)was studied.The DMSO/H2O(4∶1,V/V)solution of HL2(50 μmol·L-1)was added to 50 eq.of the solution with above metal ions(10 mmol·L-1).As shown in Fig.6a,the experimental results showed that when Zn2+ion was added,the fluorescence intensity of HL2solution changed significantly,and a new strong fluorescence emission peak appeared at 464 nm,which may be caused by theπ*-πtransition in the molecules.After the addition of other metal cations,the fluorescence intensity of HL2solution did not change,which indicates that HL2has a single and efficient recognition of Zn2+ion.

    Fig.6 (a)Fluorescence emission spectra of HL2 upon addition of different cations(50 eq.)in DMSO/H2O(4∶1,V/V)solution(c=50 μmol·L-1)at room temperature;(b)Fluorescence titration spectra of HL2 with increasing concentration of Zn2+(0~0.5 eq.)in DMSO/H2O(4∶1,V/V)solution

    Fluorescence titration experiments were used to detect the binding affinity of HL2to Zn2+ion.The Zn2+ion solution was gradually added to the DMSO/H2O(4∶1,V/V)solution of HL2.With the increase of the amount of Zn2+ion,the fluorescence emission intensity of HL2gradually increased at 464 nm until the amount of Zn2+ion reached 0.5 eq.After adding Zn2+,the fluorescence intensity did not change any more,as shown in Fig.6b.It is worth noting that the change in fluorescence intensity of HL2at 464 nm had a linear relationship with Zn2+ion in a range of 0~0.5 eq.The experimental results show that the coordination ratio of HL2to Zn2+is 2∶1.

    In addition,the binding constant of Zn2+ion to HL2was determined by Hill′s equation to beKsv=8.91×104L·mol-1(Fig.S9a).The calculated LOD(2.91 μmol·L-1)and LOQ(0.808 μmol·L-1)of HL2for Zn2+ions were calculated from the titration spectra of HL2containing Zn2+,as shown in Fig.S9b.The detection limit was also lower than the WHO approved LOD value.

    3 Conclusions

    Two mononuclear complexes 1,2 and one binuclear complex 3 based on coumarin Schiff base ligands(HL1,HL2and H2L3)were synthesized and structural characterized.The crystal structure analyses of complexes 1 and 2 illustrated that the Zn2+and Co2+are all four-coordinated distorted tetrahedrons,and the Ni2+in complex 3 are six-coordinated distorted octahedrons.Meanwhile,the optical properties of complexes 1,2 and 3 indicate that the fluorescence and UV-Vis variations of HL1,HL2and H2L3are due to the coordination of Zn2+,Co2+and Ni2+,respectively.UV-Vis studies demonstrate that the free ligands HL1(in DMF/H2O(4∶1,V/V)solution)and HL2(in DMSO/H2O(4∶1,V/V)solution)could selectively recognize Hg2+and Zn2+,respectively.The detection limits were calculated to be 7.45 and 6.10 μmol·L-1,respectively.Fluorescence studies indicate that HL2exhibits selective recognition ability of Zn2+against other common cationic including Ag+,Ba2+,Ca2+,Cd2+,Cr3+,Cu2+,Fe3+,Mg2+,Mn2+and Hg2+in DMSO/H2O(4∶1,V/V).The sensing capability of HL2for Zn2+against other common cationic with a low limit of 2.91 μmol·L-1renders it a candidate probe for Zn2+detection.

    Supporting information is available at http://www.wjhxxb.cn

    婷婷色麻豆天堂久久| 国产综合精华液| 天天影视国产精品| 日韩免费高清中文字幕av| 秋霞伦理黄片| 国产精品偷伦视频观看了| 国产精品不卡视频一区二区| 国产精品一区二区在线不卡| freevideosex欧美| 欧美激情 高清一区二区三区| 久久久久久免费高清国产稀缺| 久久久久久久久免费视频了| 国产日韩欧美亚洲二区| 精品国产国语对白av| 成人国语在线视频| 亚洲国产精品一区二区三区在线| 国产爽快片一区二区三区| 不卡av一区二区三区| 国产免费福利视频在线观看| 午夜日韩欧美国产| 岛国毛片在线播放| 高清欧美精品videossex| 亚洲av男天堂| 在线看a的网站| 天天影视国产精品| 免费看av在线观看网站| 天堂8中文在线网| 如日韩欧美国产精品一区二区三区| 久久精品国产亚洲av天美| 免费日韩欧美在线观看| 亚洲 欧美一区二区三区| 亚洲精品国产一区二区精华液| 亚洲精品自拍成人| 人妻一区二区av| 国产日韩欧美在线精品| 成人二区视频| 嫩草影院入口| 一本色道久久久久久精品综合| 欧美日韩成人在线一区二区| 久久久久久久久久人人人人人人| 免费黄色在线免费观看| 美女福利国产在线| 欧美精品一区二区大全| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 纯流量卡能插随身wifi吗| 青春草亚洲视频在线观看| 各种免费的搞黄视频| 亚洲av欧美aⅴ国产| 国产av一区二区精品久久| 精品少妇一区二区三区视频日本电影 | 精品久久蜜臀av无| 婷婷色综合大香蕉| 肉色欧美久久久久久久蜜桃| 国产毛片在线视频| 伊人久久国产一区二区| 夜夜骑夜夜射夜夜干| 国产高清国产精品国产三级| 2018国产大陆天天弄谢| 亚洲一级一片aⅴ在线观看| 搡女人真爽免费视频火全软件| 日韩不卡一区二区三区视频在线| 日本午夜av视频| 精品国产乱码久久久久久小说| 免费观看a级毛片全部| a级毛片在线看网站| 亚洲人成电影观看| 国产精品成人在线| 高清黄色对白视频在线免费看| av.在线天堂| 亚洲中文av在线| 在线观看免费视频网站a站| 少妇熟女欧美另类| 欧美国产精品一级二级三级| 街头女战士在线观看网站| 80岁老熟妇乱子伦牲交| 精品国产国语对白av| 各种免费的搞黄视频| 91aial.com中文字幕在线观看| 亚洲av日韩在线播放| 深夜精品福利| 久久人人97超碰香蕉20202| 久久精品夜色国产| 欧美另类一区| 天天操日日干夜夜撸| 成人亚洲精品一区在线观看| 久久av网站| 夜夜骑夜夜射夜夜干| av国产精品久久久久影院| 日韩精品有码人妻一区| 亚洲精品自拍成人| 亚洲人成网站在线观看播放| 亚洲三区欧美一区| 日本爱情动作片www.在线观看| 亚洲av福利一区| 你懂的网址亚洲精品在线观看| 欧美日韩一区二区视频在线观看视频在线| 午夜福利在线免费观看网站| 大香蕉久久网| 亚洲国产精品国产精品| 国产精品99久久99久久久不卡 | 成年动漫av网址| 欧美人与性动交α欧美软件| 国产免费一区二区三区四区乱码| 国产人伦9x9x在线观看 | 亚洲av男天堂| 26uuu在线亚洲综合色| 欧美日韩精品成人综合77777| 男的添女的下面高潮视频| 黄频高清免费视频| 精品人妻熟女毛片av久久网站| 日韩视频在线欧美| 狠狠精品人妻久久久久久综合| 色视频在线一区二区三区| 久久综合国产亚洲精品| 亚洲精品国产色婷婷电影| 少妇的丰满在线观看| 交换朋友夫妻互换小说| 波野结衣二区三区在线| 欧美变态另类bdsm刘玥| 涩涩av久久男人的天堂| 建设人人有责人人尽责人人享有的| 国产精品99久久99久久久不卡 | 菩萨蛮人人尽说江南好唐韦庄| 免费大片黄手机在线观看| 欧美激情 高清一区二区三区| 国产精品不卡视频一区二区| 亚洲国产精品999| 国产成人一区二区在线| 亚洲成av片中文字幕在线观看 | 欧美+日韩+精品| 热99久久久久精品小说推荐| 亚洲久久久国产精品| 国产一区二区三区综合在线观看| 久久鲁丝午夜福利片| 90打野战视频偷拍视频| 亚洲在久久综合| 久久国产精品大桥未久av| 精品国产露脸久久av麻豆| 亚洲人成77777在线视频| 99国产综合亚洲精品| 香蕉丝袜av| 日本-黄色视频高清免费观看| 美女脱内裤让男人舔精品视频| 亚洲精品中文字幕在线视频| 国产精品久久久久成人av| 国产 精品1| 欧美日韩精品网址| 9热在线视频观看99| 夜夜骑夜夜射夜夜干| 免费日韩欧美在线观看| 我要看黄色一级片免费的| 韩国av在线不卡| 精品国产超薄肉色丝袜足j| 麻豆乱淫一区二区| 国产爽快片一区二区三区| 男女无遮挡免费网站观看| 国产午夜精品一二区理论片| 亚洲人成网站在线观看播放| 午夜免费男女啪啪视频观看| 一级毛片黄色毛片免费观看视频| 精品国产露脸久久av麻豆| 午夜福利在线观看免费完整高清在| 成人免费观看视频高清| 亚洲一区二区三区欧美精品| 亚洲一区二区三区欧美精品| 哪个播放器可以免费观看大片| 大话2 男鬼变身卡| 亚洲精品自拍成人| av网站在线播放免费| 男人操女人黄网站| 日本色播在线视频| 免费观看a级毛片全部| 91国产中文字幕| 老鸭窝网址在线观看| 日韩中字成人| 久久午夜综合久久蜜桃| 欧美国产精品一级二级三级| 啦啦啦在线免费观看视频4| 嫩草影院入口| 国产老妇伦熟女老妇高清| 亚洲综合精品二区| 黄色怎么调成土黄色| 老司机亚洲免费影院| 欧美精品亚洲一区二区| 丝袜在线中文字幕| 久久精品国产鲁丝片午夜精品| 亚洲国产毛片av蜜桃av| 777久久人妻少妇嫩草av网站| 高清欧美精品videossex| 欧美人与性动交α欧美软件| 久热久热在线精品观看| 婷婷成人精品国产| 国产精品久久久久久久久免| 999久久久国产精品视频| 国产亚洲av片在线观看秒播厂| 久久精品熟女亚洲av麻豆精品| 国产又色又爽无遮挡免| 国产欧美亚洲国产| 久久久久久久久久久免费av| 黄频高清免费视频| 精品人妻偷拍中文字幕| 亚洲美女黄色视频免费看| 满18在线观看网站| 一级毛片黄色毛片免费观看视频| 最近最新中文字幕大全免费视频 | 久久久精品国产亚洲av高清涩受| 99热国产这里只有精品6| 亚洲av免费高清在线观看| 男人爽女人下面视频在线观看| 久久精品国产综合久久久| 亚洲男人天堂网一区| 少妇 在线观看| 久久人人爽av亚洲精品天堂| 观看av在线不卡| 国产白丝娇喘喷水9色精品| 成年动漫av网址| 男女午夜视频在线观看| 精品国产超薄肉色丝袜足j| 嫩草影院入口| 久久久久人妻精品一区果冻| 午夜激情久久久久久久| 美女主播在线视频| 只有这里有精品99| 国产成人精品福利久久| 精品亚洲成a人片在线观看| 97人妻天天添夜夜摸| 男男h啪啪无遮挡| 国产综合精华液| 国产高清国产精品国产三级| 免费不卡的大黄色大毛片视频在线观看| 日本-黄色视频高清免费观看| 18禁国产床啪视频网站| 精品亚洲乱码少妇综合久久| 麻豆乱淫一区二区| 免费在线观看视频国产中文字幕亚洲 | 国产爽快片一区二区三区| 26uuu在线亚洲综合色| 国产爽快片一区二区三区| 亚洲色图 男人天堂 中文字幕| 欧美 日韩 精品 国产| 久久久久视频综合| 深夜精品福利| 黑人猛操日本美女一级片| 亚洲在久久综合| 亚洲 欧美一区二区三区| 捣出白浆h1v1| 高清不卡的av网站| 一级毛片黄色毛片免费观看视频| 2021少妇久久久久久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦中文免费视频观看日本| 9191精品国产免费久久| 在线 av 中文字幕| 在线亚洲精品国产二区图片欧美| 国产一区有黄有色的免费视频| 国产毛片在线视频| 伦理电影大哥的女人| 永久网站在线| 久久久精品国产亚洲av高清涩受| 麻豆精品久久久久久蜜桃| 久久久久精品性色| 国产精品99久久99久久久不卡 | 我的亚洲天堂| 不卡av一区二区三区| 欧美亚洲日本最大视频资源| 十八禁高潮呻吟视频| 亚洲精华国产精华液的使用体验| 国产白丝娇喘喷水9色精品| 亚洲av日韩在线播放| 亚洲熟女精品中文字幕| 在线观看三级黄色| 黑人猛操日本美女一级片| 男男h啪啪无遮挡| 一级a爱视频在线免费观看| 香蕉精品网在线| 在线观看免费视频网站a站| 在线天堂中文资源库| 纵有疾风起免费观看全集完整版| 日本色播在线视频| 成人漫画全彩无遮挡| 99九九在线精品视频| 如何舔出高潮| av视频免费观看在线观看| 亚洲成人av在线免费| 中文天堂在线官网| 搡女人真爽免费视频火全软件| 免费av中文字幕在线| 大片免费播放器 马上看| 免费在线观看视频国产中文字幕亚洲 | 99国产综合亚洲精品| 男女啪啪激烈高潮av片| 成人国产av品久久久| 美女视频免费永久观看网站| 青春草视频在线免费观看| 精品酒店卫生间| 欧美精品人与动牲交sv欧美| 精品久久久久久电影网| 亚洲情色 制服丝袜| 久久精品夜色国产| 国产乱人偷精品视频| 秋霞伦理黄片| 国产有黄有色有爽视频| 日韩制服骚丝袜av| 国产成人一区二区在线| 成人二区视频| 国产免费又黄又爽又色| 最近中文字幕2019免费版| 国产国语露脸激情在线看| 9色porny在线观看| 男人爽女人下面视频在线观看| 999久久久国产精品视频| 国产精品香港三级国产av潘金莲 | 久久影院123| 一本大道久久a久久精品| 丝瓜视频免费看黄片| 久久婷婷青草| 最近中文字幕2019免费版| 亚洲天堂av无毛| 国产精品免费大片| 亚洲综合精品二区| 久久久久久人妻| 九草在线视频观看| 香蕉国产在线看| 自拍欧美九色日韩亚洲蝌蚪91| 观看美女的网站| 一二三四在线观看免费中文在| 极品少妇高潮喷水抽搐| 久久国产精品大桥未久av| 久久久精品国产亚洲av高清涩受| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影小说| 18禁观看日本| kizo精华| 在线观看免费日韩欧美大片| 精品久久蜜臀av无| 久久久精品94久久精品| 热99国产精品久久久久久7| 成人二区视频| 另类亚洲欧美激情| 亚洲国产精品一区二区三区在线| 亚洲美女视频黄频| 久久热在线av| 麻豆乱淫一区二区| 国产淫语在线视频| 精品国产乱码久久久久久男人| 亚洲av男天堂| 黄色毛片三级朝国网站| 亚洲精品第二区| 午夜福利乱码中文字幕| 寂寞人妻少妇视频99o| 又大又黄又爽视频免费| 高清不卡的av网站| 久久久久久人妻| 久久久久久久久久人人人人人人| 精品久久久久久电影网| 丝袜美足系列| 国产成人欧美| 尾随美女入室| 国产精品偷伦视频观看了| 一区在线观看完整版| 亚洲国产av影院在线观看| 久久 成人 亚洲| 久久久久久久国产电影| 亚洲久久久国产精品| 亚洲欧美一区二区三区黑人 | 欧美中文综合在线视频| 人人澡人人妻人| 亚洲精品久久午夜乱码| 精品卡一卡二卡四卡免费| 王馨瑶露胸无遮挡在线观看| av国产精品久久久久影院| 国精品久久久久久国模美| 热re99久久国产66热| 日本爱情动作片www.在线观看| 国产日韩一区二区三区精品不卡| 国产精品 欧美亚洲| 欧美另类一区| 亚洲精品av麻豆狂野| 午夜福利影视在线免费观看| 热re99久久国产66热| 91精品国产国语对白视频| 中文字幕精品免费在线观看视频| 中文乱码字字幕精品一区二区三区| 午夜激情av网站| 日韩一区二区视频免费看| 伊人亚洲综合成人网| 黑人欧美特级aaaaaa片| 久久精品国产a三级三级三级| 一级片免费观看大全| 黄色毛片三级朝国网站| 国产xxxxx性猛交| 男人操女人黄网站| 一区二区三区乱码不卡18| 免费看不卡的av| 久久久精品国产亚洲av高清涩受| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| 一边亲一边摸免费视频| 国产成人欧美| 国产熟女欧美一区二区| 777米奇影视久久| 亚洲三区欧美一区| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 精品少妇一区二区三区视频日本电影 | 亚洲欧洲日产国产| 婷婷成人精品国产| 国产成人精品久久二区二区91 | 亚洲美女视频黄频| 欧美日韩精品网址| 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| 中文字幕亚洲精品专区| 国产在线免费精品| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 午夜福利在线免费观看网站| 国产高清国产精品国产三级| 欧美成人午夜免费资源| 午夜福利在线观看免费完整高清在| 国产精品 欧美亚洲| 久久人人97超碰香蕉20202| 久久99一区二区三区| 看免费av毛片| 日韩精品免费视频一区二区三区| 国产精品国产av在线观看| 欧美成人午夜精品| 国产av一区二区精品久久| 免费观看在线日韩| 女人精品久久久久毛片| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| 亚洲,欧美精品.| 婷婷色麻豆天堂久久| 男女边吃奶边做爰视频| 久久国内精品自在自线图片| av在线app专区| 日韩熟女老妇一区二区性免费视频| 久久99蜜桃精品久久| 久久久久人妻精品一区果冻| 日本欧美国产在线视频| 国产欧美日韩一区二区三区在线| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看av| 亚洲精品久久午夜乱码| 免费黄色在线免费观看| 精品一品国产午夜福利视频| 1024视频免费在线观看| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 中文字幕制服av| 麻豆av在线久日| 午夜91福利影院| 亚洲成av片中文字幕在线观看 | 性色avwww在线观看| 精品人妻熟女毛片av久久网站| 成年女人毛片免费观看观看9 | 亚洲中文av在线| 国产成人精品婷婷| 纯流量卡能插随身wifi吗| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 成人午夜精彩视频在线观看| 日韩伦理黄色片| 777久久人妻少妇嫩草av网站| 黑丝袜美女国产一区| 制服人妻中文乱码| 美女午夜性视频免费| 色婷婷av一区二区三区视频| 在线免费观看不下载黄p国产| 精品国产露脸久久av麻豆| 青青草视频在线视频观看| 久久婷婷青草| 18禁裸乳无遮挡动漫免费视频| 亚洲成人一二三区av| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 亚洲三级黄色毛片| 精品国产乱码久久久久久小说| 久久人人爽人人片av| 国产av精品麻豆| 国产成人av激情在线播放| 成年动漫av网址| 可以免费在线观看a视频的电影网站 | www.精华液| 国产亚洲av片在线观看秒播厂| 99香蕉大伊视频| 日韩一区二区三区影片| 亚洲第一区二区三区不卡| 啦啦啦视频在线资源免费观看| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 久久精品夜色国产| 你懂的网址亚洲精品在线观看| 精品少妇久久久久久888优播| 少妇的逼水好多| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 国产精品成人在线| 一二三四在线观看免费中文在| 中文字幕人妻丝袜制服| 久久韩国三级中文字幕| 伦精品一区二区三区| 丰满乱子伦码专区| 久久精品熟女亚洲av麻豆精品| 日韩一卡2卡3卡4卡2021年| 999久久久国产精品视频| 青草久久国产| 少妇 在线观看| 国产av码专区亚洲av| 国产成人a∨麻豆精品| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品中文字幕在线视频| 亚洲精品日韩在线中文字幕| 久久久久精品性色| 国产免费福利视频在线观看| 99九九在线精品视频| 亚洲经典国产精华液单| 中文字幕av电影在线播放| 亚洲在久久综合| 在线观看美女被高潮喷水网站| 赤兔流量卡办理| 国产精品三级大全| 精品国产一区二区三区四区第35| 日韩三级伦理在线观看| 91成人精品电影| 日韩大片免费观看网站| 免费黄频网站在线观看国产| 久久久久视频综合| 精品亚洲成a人片在线观看| 精品国产一区二区久久| 国产爽快片一区二区三区| 青草久久国产| 少妇人妻精品综合一区二区| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 国产一区二区激情短视频 | 亚洲国产最新在线播放| 亚洲成人av在线免费| 亚洲国产最新在线播放| 日韩熟女老妇一区二区性免费视频| 免费观看无遮挡的男女| 在线天堂中文资源库| 男男h啪啪无遮挡| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 久久久久精品人妻al黑| 久久青草综合色| 捣出白浆h1v1| 亚洲精品久久午夜乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丰满少妇做爰视频| 亚洲,欧美精品.| 中文字幕色久视频| 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| av在线老鸭窝| 国产精品亚洲av一区麻豆 | 免费黄频网站在线观看国产| 精品久久久久久电影网| 久久精品国产a三级三级三级| 亚洲av.av天堂| 国产精品久久久av美女十八| 精品久久蜜臀av无| 日韩一区二区视频免费看| 97在线视频观看| 宅男免费午夜| 人人澡人人妻人| 99国产精品免费福利视频| 亚洲,一卡二卡三卡| videosex国产| 日韩欧美精品免费久久| 中文字幕人妻丝袜制服| 亚洲一区中文字幕在线| 交换朋友夫妻互换小说| 下体分泌物呈黄色| 亚洲精品视频女| 性色av一级| 日韩伦理黄色片| 亚洲少妇的诱惑av| 国产一区亚洲一区在线观看| 久久婷婷青草| 国产人伦9x9x在线观看 | 免费久久久久久久精品成人欧美视频| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 亚洲在久久综合| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 国产片特级美女逼逼视频| 亚洲精品自拍成人| 激情视频va一区二区三区| av免费观看日本| 国产在线一区二区三区精| 日韩三级伦理在线观看| 久热这里只有精品99| 青春草亚洲视频在线观看| 亚洲中文av在线| 夜夜骑夜夜射夜夜干| 久久免费观看电影| 成人二区视频| 亚洲av成人精品一二三区| 波多野结衣av一区二区av| 欧美中文综合在线视频| 久久毛片免费看一区二区三区| 国产综合精华液| 亚洲经典国产精华液单| 一本大道久久a久久精品| 久久久国产一区二区| 午夜影院在线不卡| www.熟女人妻精品国产| 精品少妇黑人巨大在线播放|