• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors

    2021-06-18 02:23:46JIAYaoYANGZheweiLIHuijunWANGYongzhenWANGXiaomin
    新型炭材料 2021年3期

    JIA Yao,YANG Zhe-wei,LI Hui-jun,WANG Yong-zhen,WANG Xiao-min,,

    (1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2.Shanxi Key Laboratory of New Energy Materials and Devices, Taiyuan 030024, China)

    Abstract:Developing an anode material with high-rate Li+ intercalation and stable charge/discharge platform is important for achieving high performance lithium ion capacitors (LICs).Reduced graphene oxide (rGO)-encapsulated MnO microspheres (~2 μm)are obtained by a simple process including solvothermal and calcination techniques.The material contains a large number of mesopores (~2.8 nm diameter).The MnO/rGO has a favorable cycling stability (846 mAh g?1 at 0.1 A g?1 after 110 cycles) and an outstanding rate performance (207 mAh g?1 at 6.4 A g?1).Kinetic analysis reveals that a pseudocapacitive contribution plays a dominant role for the energy storage.The improvement in the pseudocapacitive behavior is ascribed to the fact that the uniform rGO coating on the MnO provides continuous pathways for electron transport,and the mesoporous structure provides numerous migration paths for Li-ions.Furthermore,MnO/rGO//activated carbon (AC) LICs have a high energy density of 98 Wh kg?1 at a relatively high power density of 10 350 W kg?1,and have a capacity retention of 71% after 5 000 cycles at 1.6 A g?1.These outstanding results indicate that the enhanced Li+ intercalation of the anode offsets the kinetic imbalance between the two electrodes.

    Key words:MnO microspheres;Reduced graphene oxide;Rate capability;Lithium ion capacitors

    1 Introduction

    Lithium ion capacitors (LICs) bridge the high energy density of lithium-ion batteries (LIBs) and the high power density of electric double-layer capacitors(EDLCs)[1–4].They have aroused extensive attention in consumer electronics,electric vehicles,smart grids and other areas.Typically,LICs are built on a capacitor-type cathode,a battery-type anode and a lithium salt-contained electrolyte[5].In recent years,some outstanding works about LICs have been reported.Zhang et al.reported a LICs with pre-lithiated hard carbon(HC) anode and activated carbon (AC) cathode,which exhibited an energy density of 85.7 Wh kg?1[6].Auxilia et al.assembled Au@TiO2/RGO//AC LICs showed a capacity retention of 83% over 1 000 times[7].By reason of the slower Li-ions insertion/extraction reaction process in the battery-type anode than the anions adsorption/desorption process on the capacitor-type cathode surface during charge and discharge process,both high energy and power density of LICs are limited[8,9].In most reported LICs,high energy density(>90 Wh kg?1) was achieved only under conditions of low power output (<5 kW kg?1)[10–12].In addition,the potential of anode usually shifts to high values during charge/discharge process,leading to the inferior utilization ratio of cathode materials and poor cycling stability of LICs[13].The long and stable charge/discharge platform is favorable for decelerating anode potential moving towards high values,enhancing the cycling performance[8].

    With the analysis above,developing an anode material with superior rate performance and stable charge/discharge platform is an effective strategy for achieving high performance LICs.Recently,a variety of battery-type anodes have been explored for LICs application,including graphitic carbon[14],hard carbon[15]and metal oxides (Fe3O4[16],TiO2[17],Nb2O5[10,18],MnO[19,20],etc.).Among them,MnO has received adequate attention owing to its high theoretical capacity(756 mAh g?1),low electrochemical potential at 0.5 V(vs Li/Li+) as well as abundant manganese resources[21,22].Yang et al.reported MnO/C//hierarchical porous carbon (HPC) LICs delivered an energy density of 97.3 Wh kg?1[23].Yang et al.assembled MnO/graphene aerogel//LiFePO4LICs delivering a capacity retention of 52.9% over 1 000 times[24].What’s more,the low and stable discharge platform(0.5 V) during the discharge process could not only avoid sacrificing the voltage window for the devices,but also decelerate anode potential moving towards high values,enhancing the cycling performance.Therefore,MnO is regarded as an ideal anode material for developing high performance LICs.

    Unfortunately,MnO suffers from poor rate capability along with unsatisfied cycle life,which is caused by naturally poor electronic conductivity and unstable structure during Li+insertion/extraction[25].In order to ameliorate inferior rate performance and unsatisfied durable life,constructing flexible electrodes[26],designing special structures[27]and hybridizing with carbon materials[28]have been adopted.Among them,the hybridizing MnO with carbon materials can improve its conductivity and structural stability.In addition,MnO with porous structure is favorable for Li+insertion/extraction process.For instance,a CNT@MnO@N-doped carbon with sandwich-like structure displayed 665 mAh g?1at 0.1 A g?1[29].A N-doped MnO/reduced graphene oxide (rGO) composite with rGO coated MnO retained a capacity of 805 and 335 mAh g?1at 0.2 and 1 A g?1,respectively[30].A Sn-MnO@N-doped carbon with yolk-shelled three-dimensional structure presented 757.2 mAh g?1at 0.1 A g?1[31].It is a promising and valid approach to optimize the structure of MnO and compose it with carbon materials,but the unsatisfied rate performance and the complicated preparation processes normally limit its further application in LICs.Additionally,uniformly wrapping rGO along MnO is still a great challenge.Therefore,reasonable construction of MnO structure can improve the cyclic stability and rate capability for further application to LICs.

    Herein,we report a facile chemical synthesis of MnO/rGO via combining solvothermal and calcination treatment.The relationship between the mesoporous and coating structure and the lithium-ion storage performance of MnO/rGO is explored,and the kinetic behavior of the MnO/rGO is also emphasized.Furthermore,MnO/rGO//AC LICs were constructed via the pre-lithiated MnO/rGO anode and the AC cathode,and their electrochemical properties were investigated.The remarkable performances of LICs indicate that the MnO/rGO anode with excellent rate capability is beneficial to the kinetics balance between the two electrodes.

    2 Experiment

    2.1 Synthesis of MnO/rGO

    At first,the graphene oxide (GO) solution was obtained via the modified Hummers method[32].Then,GO suspension (3 mg mL?1,15 mL),Mn(CH3COO)2·4H2O (3 mmol) and urea (6 mmol) were dispersed in 30 mL glycerol under magnetic stirring to form a uniform solution.Next,the above mixture solution was placed in the Teflon-lined autoclave at 140 °C for 12 h.The MnCO3/rGO could be gained via alternate centrifugation for three times with deionized water and ethanol and drying in vacuum at 80 °C for 6 h.At last,MnO/rGO was prepared by sintering in N2atmosphere at 800 °C for 4 h.For comparison,pure MnO was also prepared via an identical method without GO solution.

    2.2 Material characterization

    The morphology and structure were investigated via scanning electron microscopy (SEM,MiRA3-LMH) and high-resolution transmission electron microscopy (HRTEM,JEM-2010).The crystalline structures were determined using X-ray diffraction with Cu-Kα radiation (XRD,Ultima IV,λ=0.154 18 nm).The chemical compositions were analyzed via X-ray photoelectron spectrometer with Al-Kα radiation(XPS,PHI-5 000 versaprobe,hν=1 486.6 eV).The textural properties were investigated using nitrogen adsorption-desorption measurements (Beishide 3H-2000PS2) and all materials were degassed at 200 °C for 10 h before testing.Raman spectrum was performed by a Renishaw invia system using 532 nm laser under ambient condition.Thermogravimetric analysis (TGA,TG 209F3) was performed from 30 to 800 °C (10 °C min?1) in air atmosphere.The electronic conductivity of materials was measured by RTS-9 four-point probe techniques.

    2.3 Electrochemical measurement

    The slurry of the working electrodes was prepared via grinding MnO/rGO anode or AC cathode materials (80 wt%),Super P conductive carbon black(10 wt%) and polyvinylidene fluoride (10 wt%) binder dissolved in N-methyl-2-pyrrolidone.Then,the above slurry was coated on Cu foil (anode) and Al foil(cathode),and the as-obtained electrodes were dried in a vacuum oven at 120 °C for 6 h.The loading mass of active material is about 0.9-1.3 mg cm?2.The CR2025 coin cells were fabricated with the MnO/rGO working electrode,polypropylene film separator (Celgard 2400),1 mol L?1LiPF6electrolyte in a mixture of EC,EMC and DMC (1∶1∶1 in volume) and metal lithium counter electrode.

    The button MnO/rGO//AC LICs were assembled via AC cathode and pre-lithiated MnO/rGO anode in the same half-cells system. The pre-lithiated MnO/rGO electrode was obtained by the electrochemical method that the half-cells were charged and discharged 10 times within an operating voltage of 0.01-3 V at 0.05 A g?1and discharged to the potential of 0.5 V.

    The cyclic voltammetry (CV),and the electrochemical impedance spectroscopies (EIS) were tested via the electrochemical workstation (PMC 500).The galvanostatic charge/discharge (GCD) was measured using a LAND CT2001A battery testing system.The power density (P,W kg?1),energy density (E,Wh kg?1) and specific capacitance (C,F g?1) of LICs were calculated via equations (1),(2) and (3)[5]:

    whereIis the current (A),mis the total mass of the cathode and anode (g),Vmaxis the maximum working voltage without the IR drop andVminis the minimum working voltage (V),tis the discharge time (s).

    3 Results and discussion

    3.1 Morphology and structure

    Fig.1 presents the fabrication process for MnO/rGO.Firstly,MnCO3/rGO was prepared by the solvothermal method.During the solvothermal condition,the decomposition urea (CO32?) reacts with the Mn2+to form MnCO3precursor.In this stage,the MnCO3microspheres (JCPDS No.44-1 472,Fig.S1)with smooth surface is formed by the aggregation of flaky particles and rGO is uniformly dispersed on the surface of MnCO3.It could be seen that the average size (~3 μm) of MnCO3in MnCO3/rGO is smaller than that of pure MnCO3(2-5 μm) (Fig.S2),because rGO could restrain the growth of MnCO3.Then,MnO/rGO was prepared by calcination of MnCO3/rGO at 800 °C.The pore structure is formed because of the MnCO3decomposition to create CO2and the shrinkage of the flaky particles during the annealing process,thus increasing the specific surface area.

    Fig.1 Schematic illustration of the preparation process for MnO/rGO.

    The morphology and structure of MnO and MnO/rGO were investigated by SEM,TEM and HRTEM.MnO displays a microspheres structure and the size is about 2 μm (Fig.2a).As for MnO/rGO,it is clearly observed that the MnO microspheres are wrapped and connected by the rGO (Fig.2b).Due to the restriction of the coated rGO,additionally,the size of MnO is smaller than that of pure MnO.Such structure helps to ensure the structural stability of MnO,and the conductive network constructed by rGO can increase the conductivity.The homogeneous distributions of Mn,O and C elements can be revealed by energy dispersion spectrum (EDS) (Fig.2c) which indicates the MnO microspheres are coated uniformly by rGO.It can be further observed that rGO is coated on MnO microspheres from the TEM image (Fig.2d).Besides,the pore structure inside of MnO/rGO was formed due to the MnCO3decomposition to create CO2and the shrinkage of the flaky particles during the annealing process.Porous structure can provide a convenient pathway to transfer Li-ions[33].The SAED pattern (inset Fig.2e) of MnO/rGO shows the diffraction rings,revealing the presence of polycrystalline structure of MnO.From the HRTEM image (Fig.2f),it can be analyzed that the lattice fringes with average distance spacing of 0.26 and 0.34 nm are ascribed to(111) plane of MnO and (002) plane of rGO,respectively.

    Fig.2 (a) SEM image of MnO;(b-f) SEM image,EDS mapping,TEM image and inset (e) SAED pattern and HRTEM image of MnO/rGO.

    The crystal structures of MnO and MnO/rGO were characterized by XRD (Fig.3a).The diffraction peaks at 34.9°,40.5°,58.8°,70.2° and 73.9° are observed,attributing to the (111),(200),(220),(311) and(222) planes for the cubic phase MnO (JCPDS No.07-0230).Meanwhile,a broad hump at 20°?30° is clearly observed in MnO/rGO,which corresponds to(002) plane of rGO[4,34].Other peaks are not found,demonstrating the high purity of substances.The Raman spectrum (Fig.3b) of MnO/rGO displays the two characteristic peaks at 1 341 and 1 590 cm?1,associating to theA1gvibration mode of disordered carbon (Dbond) and theE2gvibration of sp2carbon (G-bond) of rGO,respectively[35].TheID/IGvalue is 1.06,suggesting a more defective and disordered structure for MnO/rGO.Additionally,the peak of 643 cm?1ascribes to the Mn-O vibration band of MnO.

    The element information of MnO/rGO was analyzed via XPS spectrum.In survey spectra (Fig.S3a),the main components of MnO/rGO are carbon (C 1s at~285 eV),oxygen (O 1s at~530 eV) and manganese (Mn 3p,Mn 2p and Mn 2s at~49,~642 and~772 eV,respectively).The Mn 2p spectrum (Fig.3c)depicts two asymmetric peaks located at 641.6 and 653.3 eV,attributing to Mn 2p3/2and Mn 2p1/2of Mn2+[36].The C 1s spectrum (Fig.3d) shows the three energy bands at 284.7,285.6 and 289.3 eV,associating to C=C,C―O and O=C―O bonds,respectively[37].Additionally,the binding energies of 530.1,531.3 and 532.8 eV in the O 1s spectrum (Fig.S3b)represent Mn―O,C=O along with C―O bonds,respectively.

    Fig.3 (a) XRD patterns of MnO/rGO and MnO;(b) Raman spectrum of MnO/rGO;(c) Mn 2p and (d) C 1s high-resolution spectra of MnO/rGO.

    On the basis of nitrogen adsorption/desorption isotherms as presented in Fig.4a,the specific surface area (SSA) can be obtained via the BET equation and the pore size distribution (PSD) was calculated via the BJH theory.The isotherm (Fig.4a) of MnO/rGO shows a type-IV isotherm with an H3 hysteresis loop,revealing the existence of large numbers of mesopores in MnO/rGO.From the PSD curves in Fig.4b,the mesopores size peak of MnO/rGO is appeared at~2.8 nm and the average pore size is 14.31 nm.The mesoporous structure could provide a convenient transport channel for more Li-ions and buffer volume change during cycling,improving rate capability[38].In addition,MnO/rGO possesses a SSA of 63.1 m2g?1,while pure MnO is only 18.1 m2g?1.The carbon content of MnO/rGO was calculated by the TGA curves(Fig.S4),which is measured to be 13.7 wt% based on the reaction formula[28]:2MnO+1.5C+2O2→Mn2O3+1.5CO2.

    3.2 Electrochemical performance

    Fig.5a displays the CV curves of MnO/rGO for the first three cycles.At the first cathodic scan,the irreversible peak at~0.68 V is correlated with the formation of the solid electrolyte interface (SEI) film due to the decomposition of electrolyte.The reduction peak at~0.13 V corresponds to the reduction from Mn2+to Mn,and the peak moves to~0.38 V after the second cycle due to the enhanced kinetics after the first Li-ions insertion process[39].The oxidation peak at~1.31 V is related to the oxidation of Mn and Li2O decomposition.It is demonstrated that MnO stores chemical energy via the following reversible reaction: MnO+2Li++2e??Mn+Li2O[36].Additionally,a weak oxidation peak at~2.1 V is regarded to the oxidation from Mn2+to Mn3+or Mn4+,which contributes to rising of capacities during cycling[40].

    Fig.5b displays the GCD curves of MnO/rGO for different cycles.It is observed that an obvious discharge platform is located at 0.18 or 0.5 V,which is in agreement with the CV analysis.MnO/rGO shows a charge capacity of 814 mAh g?1for the first cycle and an initial coulombic efficiency of 62.9%.What's more,MnO/rGO shows a high capacity of 327 mAh g?1below 0.5 V occupying 45% of total discharge capacity.The relative long and low discharge plateau could not only avoid the formation of lithium dendrites at high rate,but also decelerate anode potential moving towards high values,enhancing the cycling performance of LICs[8].Fig.5c exhibits the electrochemical cycling capability of as-prepared MnO/rGO and MnO at 0.1 A g?1for 110 cycles.The capacity of both MnO/rGO and MnO during cycling shows a continuous rise due to the oxidation from Mn2+to Mn3+or Mn4+[39].After 110 cycles,MnO/rGO displays a capacity of 846 mAh g?1,but the capacity of pure MnO is 486 mAh g?1.Meantime,the discharge capacity of MnO/rGO electrode is 624 mAh g?1after 550 cycles at 1 A g?1(Fig.S6a).Moreover,the morphology of MnO/rGO electrode after cycling was tested by TEM and SEM (Fig.S5).The size of MnO is almost unchanged and the morphology remained well after cycling,indicating the rGO effectively ensures the structural stability of MnO microspheres during chargedischarge process.

    Fig.5 (a) CV curves at 0.1 mV s?1 and (b) GCD curves of MnO/rGO;(c) Cycling performance and (d) Rate capability of MnO/rGO and MnO;(e) Comparison of rate capability of metal oxides or Mn-based anode materials for LIBs anodes;(f) EIS spectra of MnO/rGO and MnO.

    Fig.5d displays the rate capability of as-prepared MnO/rGO and MnO at 0.05,0.1,0.2,0.4,0.8,1.6,3.2 and 6.4 A g?1.At 1.6 A g?1,MnO/rGO exhibits a reversible capacity of 483 mAh g?1,which is much higher than MnO (97 mAh g?1).Even at 6.4 A g?1,MnO/rGO still delivers a good reversible capacity of 207 mAh g?1.Compared with the manganese based or other metal oxide anodes reported in literature[20,24,31,41–47](Fig.5e),the as-prepared MnO/rGO exhibits much higher rate capability.

    Fig.5f presents the EIS spectra and the simulated equivalent circuit model as shown in the inset.MnO/rGO displays a charge-transfer resistance (Rct)value of 40.4 Ω,much smaller than MnO (327 Ω).And the electronic conductivity of MnO/rGO is 1.49 S cm?1using an RTS-9 type four-point probe tests,while that of MnO is only 1.42×10?4S cm?1,which indicates that uniform rGO coating facilitates the transfer of electron.Additionally,the Li-ions diffusion coefficient value (D) was calculated by the following equation[21]:

    whereσis the slope value (σMnO/rGO=243.77,σMnO=859.26) of the fittedZ′-ω?1/2(Fig.S6b).The calculatedDLi+of MnO/rGO electrode is 3.29×10?14cm2S?1,higher than that of pure MnO (2.65×10?15cm2S?1).The enhance of MnO/rGO ion diffusion ability of MnO/rGO is owing to the continuous and convenient pathways supplied by rGO and mesoporous structure.

    To further explore the electrochemical kinetics for the enhanced capacity and rate performance,CV tests are performed from 0.1 to 1 mV s?1(Fig.6a).In general,the current response (i) is a function of the sweep rate (v),which could be shown by equations (5)and (6)[48]:

    Typically,it can be drawn that the electrode reactions are controlled via diffusion process asb-value is close to 0.5,and the pseudocapacitive process dominated whenb-value tends to 1[49].

    Fig.6b displays the logv-logiplots for the cathodic (peak 1) and anodic (peak 2) scans.The calculatedb-values of MnO/rGO are 0.79 and 0.76 for peak 1 and 2,respectively,indicating that the reaction process is mostly dominated by the pseudocapacitive behavior.Furthermore,the equations (7) and (8) are used to further quantitatively differentiate the pseudocapacitive contribution from the capacity[50]:

    wherek1v1/2andk2vcorrespond to diffusion control contribution and pseudocapacitive contribution,respectively.

    Fig.6c shows the percentage of pseudocapacitive contribution of 71% (0.6 mV s?1),also indicating that the capacity contribution of the MnO/rGO electrode is mainly derived from the pseudocapacitive contribution.Fig.6d displays the pseudocapacitive contributions of MnO/rGO are 54%,60%,67%,74%and 76% at 0.1,0.2,0.4,0.8 and 1 mV s?1,respectively.Obviously,the strengthen in pseudocapacitive contribution of MnO/rGO as the scan rate increasing,which further explains that its excellent rate capability is related to the higher pseudocapacitive contribution.The enhancement of the pseudocapacitive behavior can be ascribed to that the rGO uniformly coating on the MnO microspheres supplies a three-dimensional channels for electron/ions transportation,and the mesoporous structure provides plenty of active sites and convenient transport shifting pathways for Li-ions.

    Fig.6 MnO/rGO:(a) CV curves at different scan rates;(b) b-values fitting results;(c) the capacitive contribution at 0.6 mV s?1;(d) the proportion of pseudocapacitive and diffusion contributions.

    3.3 Electrochemical performance of LICs

    MnO/rGO exhibits a favorable rate performance(207 mAh g?1at 6.4 A g?1),enhancing the kinetics matching ability between the two electrodes for LICs.The MnO/rGO//AC LICs were assembled using AC cathode and MnO/rGO anode.Pre-lithiation of anode in LICs is necessary and the potential of MnO/rGO anode after pre-lithiation by electrochemical method decreases to 0.5 V to keep at the stable plateau and the leaving sufficient utilizable capacity for cathode.During charge and discharge,PF6?1anions are adsorbed/desorbed on AC surface,while Li-ions insertion/extraction in MnO/rGO[51](Fig.7a).Additionally,the electrochemical performance is optimized via four sets for LICs (LIC-1,LIC-2,LIC-3 and LIC-4)based on the mass ratio between cathode and anode(1∶1,2∶1,3∶1 and 4∶1).

    To explore the electrochemical behavior of AC as cathode for LICs,the CV and rate performance were recorded in the potential range of 2-4 V.The CV curve (Fig.S7a) of AC shows no clear redox peaks implying that it really behaves as the capacitor-liked features.Fig.S7b exhibits the rate capability of AC at 0.05,0.1,0.2,0.4,0.8,1.6,3.2 and 6.4 A g?1.The specific capacity of AC is 53.3 mAh g?1at 0.05 A g?1.The specific capacity decreases with the increase of current density.

    The CV curves (Fig.7b) of LIC-1,LIC-2,LIC-3 and LIC-4 at 2 mV s?1present near-rectangular shape indicative of well capacitance behavior.Among as-assembled LICs,LIC-3 possesses the largest area implying the largest capacity.Furthermore,the CV curves(Fig.S8a) of LIC-3 remain approximately rectangular shape as the sweep rate increases showing excellent rate performance.The GCD curves (Fig.7c) at 0.8 A g?1present the triangular shapes,delivering the well capacitance behavior.The GCD curves (Fig.S8b) of LIC-3 display a linear relationship for different current densities,delivering the excellent performance,which in agreement with the CV analysis.LIC-1,LIC-2,LIC-3 and LIC-4 exhibit the specific capacity of 52,56,63 and 45 F g?1at 0.8 A g?1based on the total mass of two electrodes,respectively.

    Fig.7d displays the rate capability of LIC-1,LIC-2,LIC-3 and LIC-4 for different current densities,the capacity is 57,67,69 and 61 F g?1at 0.1 A g?1,and 49,48,60 and 35 F g?1at 1.6 A g?1,respectively.At 12.8 A g?1,LIC-3 shows the highest capacity of 47 F g?1.Fig.7e exhibits the cycling capability and the Coulombic efficiency of LIC-3,showing superior cycling performance with a capacity retention of 71%and the Coulombic efficiency maintains above 99%during cycling.

    Fig.7 Electrochemical performance of MnO/rGO//AC LICs:(a) Schematic illustration of working principle;(b) CV curves at 2 mV s?1;(c) GCD curves at 0.8 A g?1 and (d) Rate capability of LICs;(e) Cyclic performance of LIC-3 at 1.6 A g?1;(f) Ragone plots of LIC-3 and similar LICs reported in literature,inset (f) is the digital photo of the LED lighting application.

    Fig.7f displays the Ragone plots of LIC-3 which is similar to LICs devices reported in literature.LIC-3 delivers a maximum energy density of 135 Wh kg?1at 47 W kg?1.Even at the ultrahigh power density of 10 350 W kg?1,LIC-3 can still maintain a high energy density of 98 Wh kg?1.Compared with some configurations reported in literatures,such as TiO2@PCNFGAs//AC[17],NixFeyOz@rGO//AC[52],3DC@LTSO//LDAC[12],Fe3O4@C//Ppy@CNT[16],LiMnO2//AC[11],Mn3O4-G//APDC[53],MoO2-CNT//AC[54],Nb2O5film//AC[18],SnO2-rGO//AC[55],and MnO/C//CNS[19],our LIC-3 presents much better energy-power characteristics.Additionally,the“TYUT”logo constituted by 31 LED bulbs could be easily lighted by LIC-3 indicating its practical application.The outstanding performances of MnO/rGO//AC LICs reveal that the superior rate capability of MnO/rGO anode with the rGO coating and the mesoporous structure effectively alleviates the kinetics gap with cathode improving the energy storage performance of LICs device.

    4 Conclusion

    In summary,MnO/rGO was successfully designed and fabricated as anode for enhanced performance in LICs.In the hybrid structure,the rGO is uniformly coated on MnO microspheres,and the mesoporous structure is existed in the substrate.The uniform coating of rGO on the MnO microspheres can not only ensure the structural stability of MnO microspheres during the conversion reaction,but also increase the conductivity (1.49 S cm?1) and supply more paths for electron transportation,and the optimized structure further promotes the improvement of cycle stability. Meanwhile,the mesoporous structure provides plenty of active sites and convenient transport pathways for the Li-ions,which greatly improves the diffusion rate of Li-ions (D=3.29×10?14cm2S?1).In addition,the excellent electrochemical performances arise from the high pseudocapacitive contribution.Moreover,MnO/rGO//AC LICs exhibit a high energy density of 98 Wh kg?1at 10 350 W kg?1.The high-rate Li+intercalation of the anode and the reasonable design of the device ensure a high performance LICs.Our work presents a promising method to prepare high performance MnO anode for LICs.

    Acknowledgements

    National Natural Science Foundation of China(U1710256,U1810204,U1810115).

    日韩欧美国产在线观看| 国产精品久久久久久久电影 | 日韩欧美在线乱码| 又紧又爽又黄一区二区| 亚洲精品一卡2卡三卡4卡5卡| 999精品在线视频| 日韩欧美国产一区二区入口| 国产激情欧美一区二区| 又紧又爽又黄一区二区| 美女午夜性视频免费| 中文字幕人妻丝袜一区二区| 久久中文字幕人妻熟女| 两性夫妻黄色片| 美女高潮的动态| 精品久久久久久成人av| 国产精品电影一区二区三区| 国产伦精品一区二区三区四那| 欧美乱色亚洲激情| 国产高潮美女av| 一a级毛片在线观看| 欧美午夜高清在线| 国产精品九九99| 国产黄色小视频在线观看| 久久亚洲真实| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 在线十欧美十亚洲十日本专区| 亚洲精品一卡2卡三卡4卡5卡| ponron亚洲| av福利片在线观看| 亚洲自拍偷在线| 亚洲av免费在线观看| 偷拍熟女少妇极品色| 丝袜人妻中文字幕| 少妇的丰满在线观看| 两个人看的免费小视频| 一本综合久久免费| 悠悠久久av| av国产免费在线观看| 国产成年人精品一区二区| 偷拍熟女少妇极品色| 欧美xxxx黑人xx丫x性爽| 女警被强在线播放| 久久久久久久久免费视频了| 国语自产精品视频在线第100页| 亚洲 欧美 日韩 在线 免费| 亚洲自拍偷在线| 国产精品一区二区三区四区久久| 91久久精品国产一区二区成人 | 亚洲中文av在线| 精品免费久久久久久久清纯| 精品熟女少妇八av免费久了| 看黄色毛片网站| 欧美一区二区精品小视频在线| 亚洲国产欧洲综合997久久,| 国模一区二区三区四区视频 | 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲精品久久久久久毛片| 99久久久亚洲精品蜜臀av| 国产成人系列免费观看| 淫秽高清视频在线观看| 久久久色成人| 校园春色视频在线观看| 在线观看舔阴道视频| 91在线观看av| 嫩草影视91久久| 国产伦精品一区二区三区视频9 | 九九久久精品国产亚洲av麻豆 | 99国产精品一区二区蜜桃av| 日韩有码中文字幕| 99热这里只有是精品50| 一本综合久久免费| 亚洲真实伦在线观看| 黄色女人牲交| 国产免费av片在线观看野外av| 日韩欧美三级三区| АⅤ资源中文在线天堂| 国产成人精品久久二区二区91| 18禁美女被吸乳视频| 成人av一区二区三区在线看| 欧美日本亚洲视频在线播放| 国产伦精品一区二区三区视频9 | 亚洲色图 男人天堂 中文字幕| 成人性生交大片免费视频hd| 国产在线精品亚洲第一网站| 老司机在亚洲福利影院| 久久香蕉精品热| 巨乳人妻的诱惑在线观看| 在线免费观看的www视频| 黄频高清免费视频| 亚洲欧美激情综合另类| 国产欧美日韩精品一区二区| 色哟哟哟哟哟哟| 久久精品夜夜夜夜夜久久蜜豆| 国产精品影院久久| 久久久国产精品麻豆| 我要搜黄色片| 欧美中文日本在线观看视频| 精品久久久久久久久久久久久| 欧美高清成人免费视频www| 精品国产亚洲在线| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕熟女人妻在线| 啪啪无遮挡十八禁网站| 午夜精品久久久久久毛片777| 婷婷丁香在线五月| 一个人看视频在线观看www免费 | 一二三四在线观看免费中文在| 又粗又爽又猛毛片免费看| 免费电影在线观看免费观看| 91在线精品国自产拍蜜月 | 欧美精品啪啪一区二区三区| 男人舔奶头视频| 国产欧美日韩精品亚洲av| 欧美黑人巨大hd| 国产69精品久久久久777片 | 久久中文字幕一级| 亚洲精品乱码久久久v下载方式 | 美女黄网站色视频| 国产真实乱freesex| 国产激情偷乱视频一区二区| 美女大奶头视频| 国产精品久久久久久人妻精品电影| 美女扒开内裤让男人捅视频| 久久香蕉精品热| 亚洲精品美女久久久久99蜜臀| 亚洲国产色片| 老司机深夜福利视频在线观看| 黑人巨大精品欧美一区二区mp4| 巨乳人妻的诱惑在线观看| 黄色视频,在线免费观看| 国产成人影院久久av| 成人亚洲精品av一区二区| 欧美日韩一级在线毛片| 欧美性猛交黑人性爽| 丰满的人妻完整版| 亚洲av成人不卡在线观看播放网| 国产毛片a区久久久久| 欧美日韩国产亚洲二区| 韩国av一区二区三区四区| 亚洲av中文字字幕乱码综合| 久久久久久久久免费视频了| 久久久国产成人免费| 给我免费播放毛片高清在线观看| 久久天躁狠狠躁夜夜2o2o| 黄色视频,在线免费观看| 宅男免费午夜| 1024香蕉在线观看| 国产欧美日韩一区二区三| 天天添夜夜摸| 99riav亚洲国产免费| 色av中文字幕| 国产精品99久久99久久久不卡| avwww免费| 亚洲国产欧美人成| 久久这里只有精品19| 免费在线观看日本一区| 大型黄色视频在线免费观看| 国产精品自产拍在线观看55亚洲| 国产成人aa在线观看| 国内精品久久久久精免费| av福利片在线观看| 久久中文看片网| 免费看十八禁软件| 成人18禁在线播放| 中文亚洲av片在线观看爽| 国产乱人视频| 我的老师免费观看完整版| 亚洲五月天丁香| 国产精品一及| 欧美性猛交╳xxx乱大交人| 欧美一区二区国产精品久久精品| 色播亚洲综合网| 欧美乱妇无乱码| 国产亚洲精品久久久com| 禁无遮挡网站| 麻豆av在线久日| 亚洲精品久久国产高清桃花| 国产精品av久久久久免费| 亚洲精品粉嫩美女一区| 亚洲精品国产精品久久久不卡| 五月玫瑰六月丁香| 亚洲精品色激情综合| 中文字幕人妻丝袜一区二区| 久久久成人免费电影| 久久精品夜夜夜夜夜久久蜜豆| 国产91精品成人一区二区三区| 精品久久久久久,| 日韩欧美一区二区三区在线观看| 国产一区二区在线av高清观看| 97超视频在线观看视频| 亚洲精品一区av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产美女av久久久久小说| 精品国产美女av久久久久小说| 99热只有精品国产| 日韩三级视频一区二区三区| 亚洲精品色激情综合| 美女cb高潮喷水在线观看 | 成人国产综合亚洲| 国产精品一区二区三区四区免费观看 | 成人永久免费在线观看视频| 久久这里只有精品中国| 99热6这里只有精品| 欧美激情久久久久久爽电影| 久久精品综合一区二区三区| www.精华液| 久久久久久九九精品二区国产| 18禁美女被吸乳视频| 亚洲人成伊人成综合网2020| 国产精品一区二区免费欧美| 国产亚洲av高清不卡| 日韩欧美一区二区三区在线观看| 嫩草影院入口| 99热这里只有精品一区 | 欧美精品啪啪一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产精品九九99| 丝袜人妻中文字幕| 又黄又粗又硬又大视频| 亚洲国产欧美人成| 男女那种视频在线观看| 亚洲国产精品sss在线观看| 性色av乱码一区二区三区2| 两个人看的免费小视频| 久久精品夜夜夜夜夜久久蜜豆| 99精品久久久久人妻精品| 搞女人的毛片| 欧美性猛交黑人性爽| 法律面前人人平等表现在哪些方面| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 日日摸夜夜添夜夜添小说| 18禁黄网站禁片免费观看直播| 青草久久国产| 色老头精品视频在线观看| 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看| 巨乳人妻的诱惑在线观看| 亚洲国产色片| 欧美精品啪啪一区二区三区| 九色成人免费人妻av| 老司机福利观看| 999久久久国产精品视频| 91久久精品国产一区二区成人 | 又黄又粗又硬又大视频| 亚洲无线在线观看| 日本一本二区三区精品| 国产免费av片在线观看野外av| 久久久久性生活片| 我的老师免费观看完整版| 日韩av在线大香蕉| 亚洲自偷自拍图片 自拍| 久久精品影院6| 校园春色视频在线观看| 无遮挡黄片免费观看| 一本一本综合久久| 天天一区二区日本电影三级| 美女高潮喷水抽搐中文字幕| 日韩有码中文字幕| 一二三四在线观看免费中文在| 午夜福利免费观看在线| 黑人欧美特级aaaaaa片| 久久久国产欧美日韩av| 嫩草影院入口| 亚洲av片天天在线观看| 精品乱码久久久久久99久播| 麻豆成人午夜福利视频| 久久精品亚洲精品国产色婷小说| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 久久天堂一区二区三区四区| www.精华液| 国产三级在线视频| 久99久视频精品免费| 婷婷亚洲欧美| 精品国产乱码久久久久久男人| 国产高清三级在线| 色综合亚洲欧美另类图片| 国内精品久久久久久久电影| 两个人的视频大全免费| 嫩草影院入口| 亚洲av五月六月丁香网| 中文字幕熟女人妻在线| 一区二区三区国产精品乱码| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 国产欧美日韩一区二区三| 国产成人欧美在线观看| 亚洲专区中文字幕在线| 亚洲精品中文字幕一二三四区| 法律面前人人平等表现在哪些方面| ponron亚洲| 最近最新中文字幕大全免费视频| 99热精品在线国产| 欧美+亚洲+日韩+国产| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 久久国产乱子伦精品免费另类| 国产黄色小视频在线观看| 欧美大码av| 精品人妻1区二区| 99久久无色码亚洲精品果冻| 九色国产91popny在线| 人人妻,人人澡人人爽秒播| 麻豆av在线久日| 成人精品一区二区免费| 波多野结衣高清无吗| 国产精品九九99| 校园春色视频在线观看| 国产午夜福利久久久久久| av在线天堂中文字幕| 天堂影院成人在线观看| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲自偷自拍图片 自拍| 18禁国产床啪视频网站| 操出白浆在线播放| 岛国在线观看网站| 丰满人妻一区二区三区视频av | 久久久久久久久久黄片| 国产成人aa在线观看| 少妇熟女aⅴ在线视频| 国产精品一及| 亚洲色图 男人天堂 中文字幕| 好看av亚洲va欧美ⅴa在| 亚洲乱码一区二区免费版| 嫩草影院精品99| 狂野欧美激情性xxxx| 亚洲精品一卡2卡三卡4卡5卡| 国产伦精品一区二区三区视频9 | 人人妻人人澡欧美一区二区| 听说在线观看完整版免费高清| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 97人妻精品一区二区三区麻豆| 久久中文字幕人妻熟女| 桃色一区二区三区在线观看| 看黄色毛片网站| 亚洲欧美日韩无卡精品| 久久久久九九精品影院| 国产1区2区3区精品| 1024香蕉在线观看| 天堂影院成人在线观看| 丰满的人妻完整版| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美一区二区三区在线观看| 亚洲第一电影网av| 他把我摸到了高潮在线观看| www.熟女人妻精品国产| 他把我摸到了高潮在线观看| 最新美女视频免费是黄的| 色综合亚洲欧美另类图片| 国产成人啪精品午夜网站| 搡老岳熟女国产| 欧美3d第一页| 美女免费视频网站| 亚洲男人的天堂狠狠| 日韩 欧美 亚洲 中文字幕| 欧美3d第一页| www日本黄色视频网| 成人鲁丝片一二三区免费| 男女午夜视频在线观看| 国产亚洲欧美98| 2021天堂中文幕一二区在线观| 狂野欧美白嫩少妇大欣赏| 两个人的视频大全免费| 亚洲国产色片| 老熟妇仑乱视频hdxx| 禁无遮挡网站| 国产精品一区二区精品视频观看| 18美女黄网站色大片免费观看| 曰老女人黄片| 18美女黄网站色大片免费观看| 亚洲欧美精品综合一区二区三区| 午夜福利在线观看吧| 成人高潮视频无遮挡免费网站| 天天添夜夜摸| 超碰成人久久| 最近最新中文字幕大全免费视频| 国内精品一区二区在线观看| 嫩草影院入口| 国产精品99久久99久久久不卡| 免费看美女性在线毛片视频| 757午夜福利合集在线观看| 91在线精品国自产拍蜜月 | 日本免费一区二区三区高清不卡| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久亚洲av鲁大| 首页视频小说图片口味搜索| 丁香欧美五月| 欧洲精品卡2卡3卡4卡5卡区| 丰满人妻一区二区三区视频av | 久久久久久久久中文| 久久久久久久午夜电影| 国产熟女xx| 制服丝袜大香蕉在线| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩卡通动漫| 麻豆成人av在线观看| 久久精品91无色码中文字幕| 日韩中文字幕欧美一区二区| 麻豆成人午夜福利视频| 午夜福利在线在线| 最新在线观看一区二区三区| 搡老岳熟女国产| 欧美中文日本在线观看视频| 国产又色又爽无遮挡免费看| 亚洲欧洲精品一区二区精品久久久| 热99在线观看视频| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 天堂av国产一区二区熟女人妻| 床上黄色一级片| 看黄色毛片网站| 亚洲性夜色夜夜综合| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久久久毛片| 一边摸一边抽搐一进一小说| 成年女人看的毛片在线观看| 1024手机看黄色片| 亚洲av成人不卡在线观看播放网| www国产在线视频色| 在线观看一区二区三区| 天堂影院成人在线观看| 99在线人妻在线中文字幕| 中文字幕高清在线视频| a级毛片a级免费在线| 中文资源天堂在线| 日韩av在线大香蕉| 日本黄色视频三级网站网址| 亚洲成人久久爱视频| 婷婷精品国产亚洲av在线| 国产精品九九99| 中文在线观看免费www的网站| 国产一区二区在线观看日韩 | 两个人看的免费小视频| 欧美一区二区国产精品久久精品| 国产免费男女视频| 日本 欧美在线| 黑人巨大精品欧美一区二区mp4| 欧美成狂野欧美在线观看| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 欧美日本亚洲视频在线播放| 亚洲国产精品久久男人天堂| 欧美黄色片欧美黄色片| 中文字幕高清在线视频| 岛国在线免费视频观看| 在线a可以看的网站| 午夜免费激情av| 老汉色∧v一级毛片| 精品一区二区三区四区五区乱码| 欧美又色又爽又黄视频| 精品欧美国产一区二区三| 久久久久久久久免费视频了| 无限看片的www在线观看| 国产精品,欧美在线| 国产精品久久电影中文字幕| 久久国产乱子伦精品免费另类| 国产成人精品无人区| 无限看片的www在线观看| 男女之事视频高清在线观看| 91九色精品人成在线观看| 国产亚洲欧美在线一区二区| 日本一本二区三区精品| 日韩 欧美 亚洲 中文字幕| 特大巨黑吊av在线直播| 国产一区在线观看成人免费| 成年女人毛片免费观看观看9| 久久久国产欧美日韩av| 夜夜夜夜夜久久久久| 精品电影一区二区在线| 1024手机看黄色片| 我的老师免费观看完整版| 久久久久国内视频| 亚洲av五月六月丁香网| 亚洲欧美一区二区三区黑人| 在线观看舔阴道视频| 国产一区二区激情短视频| 免费观看精品视频网站| 亚洲精品色激情综合| 99精品在免费线老司机午夜| 亚洲av免费在线观看| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 久久久久久人人人人人| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看 | 免费电影在线观看免费观看| 国产人伦9x9x在线观看| 婷婷六月久久综合丁香| 桃色一区二区三区在线观看| 无遮挡黄片免费观看| e午夜精品久久久久久久| 亚洲真实伦在线观看| 18禁黄网站禁片午夜丰满| 亚洲中文字幕一区二区三区有码在线看 | 狂野欧美白嫩少妇大欣赏| 国产99白浆流出| 18美女黄网站色大片免费观看| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯| 天堂网av新在线| 亚洲18禁久久av| xxx96com| 宅男免费午夜| 亚洲天堂国产精品一区在线| 色综合亚洲欧美另类图片| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片| 美女扒开内裤让男人捅视频| 午夜福利欧美成人| 欧美极品一区二区三区四区| 巨乳人妻的诱惑在线观看| 国产v大片淫在线免费观看| 国产真人三级小视频在线观看| 狂野欧美激情性xxxx| 巨乳人妻的诱惑在线观看| 亚洲欧美精品综合久久99| 99re在线观看精品视频| 国产成人欧美在线观看| 巨乳人妻的诱惑在线观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利欧美成人| 日韩欧美在线二视频| 一进一出好大好爽视频| 国产久久久一区二区三区| 国产欧美日韩一区二区三| 在线国产一区二区在线| 久久久久国内视频| 日本五十路高清| av黄色大香蕉| 极品教师在线免费播放| 九九在线视频观看精品| 一级作爱视频免费观看| 一区福利在线观看| 窝窝影院91人妻| 日韩av在线大香蕉| 12—13女人毛片做爰片一| 成人三级做爰电影| 国产一区二区在线av高清观看| 成人国产综合亚洲| 国产美女午夜福利| 久久亚洲精品不卡| 国产1区2区3区精品| 欧美激情在线99| av在线天堂中文字幕| 手机成人av网站| 国产麻豆成人av免费视频| 男女做爰动态图高潮gif福利片| 精品久久久久久久人妻蜜臀av| 国产精品 国内视频| 18禁观看日本| 午夜成年电影在线免费观看| 久久久久久久午夜电影| 黄色日韩在线| 97超级碰碰碰精品色视频在线观看| 一进一出好大好爽视频| 中文字幕av在线有码专区| 这个男人来自地球电影免费观看| 国产野战对白在线观看| 国产 一区 欧美 日韩| 欧美性猛交╳xxx乱大交人| 成人特级黄色片久久久久久久| 欧美丝袜亚洲另类 | 久久伊人香网站| 国产精品爽爽va在线观看网站| 成人国产综合亚洲| 国产成人av教育| 婷婷六月久久综合丁香| 欧美日本视频| 欧美成狂野欧美在线观看| 美女大奶头视频| 可以在线观看毛片的网站| av视频在线观看入口| 国产一区二区三区视频了| 欧美3d第一页| 精品乱码久久久久久99久播| 搞女人的毛片| 欧美日韩福利视频一区二区| 在线观看一区二区三区| 亚洲国产欧美网| 俺也久久电影网| 午夜福利18| 国产成人av激情在线播放| 国产高清有码在线观看视频| 色哟哟哟哟哟哟| www国产在线视频色| 麻豆国产97在线/欧美| 亚洲精品一卡2卡三卡4卡5卡| 国产视频内射| 长腿黑丝高跟| 免费无遮挡裸体视频| 在线看三级毛片| www.999成人在线观看| 又黄又爽又免费观看的视频| 无人区码免费观看不卡| 他把我摸到了高潮在线观看| 欧美乱码精品一区二区三区| 一本久久中文字幕| 美女午夜性视频免费| 天堂av国产一区二区熟女人妻| 成人午夜高清在线视频| 亚洲av成人不卡在线观看播放网| 高清在线国产一区| 国产黄色小视频在线观看| 亚洲专区中文字幕在线| 制服人妻中文乱码| 日本a在线网址| 999久久久国产精品视频| 最新美女视频免费是黄的|