• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes

    2021-06-18 02:23:50ZHANGXiaohuaGANXinyuLIUBaoshengYANXiaoyanZHAOXinxin
    新型炭材料 2021年3期

    ZHANG Xiao-hua,GAN Xin-yu,LIU Bao-sheng,YAN Xiao-yan,ZHAO Xin-xin

    (College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China)

    Abstract:Graphitic hollow porous carbon spheres (GHPCSs) have the advantages of a unique cavity structure,high surface area and excellent conductivity,and are promising electrode materials for energy storage.A Fe–tannic acid (TA) framework synthesized using TA as the carbon source and K3 [Fe(C2O4)3] as a complexing agent,was self-assembled onto a melamine foam,which was converted to GHPCSs by carbonization,where the K3 [Fe(C2O4)3] also acts as an activating-graphitizing agent.The outer shell of the asprepared GHPCSs has a large specific surface area,a micropore-dominated structure and excellent electrical conductivity,which ensure a large enough active surface area for charge accumulation and fast ion/electron transport in the partially graphitized carbon framework and pores.The optimum GHPCS has a high capacitance of 332.7 F g?1 at 1 A g?1.An assembled symmetric supercapacitor has a high energy density of 23.7 Wh kg?1 at 459.1 W kg?1 in 1 mol L-1 Na2SO4.In addition,the device has long-term cycling stability with a 92.1% retention rate after 10 000 cycles.This study not only provides an economic and time-saving approach for constructing GHPCSs by a self-assembly method,but also optimizes ion/electron transport in the carbon spheres to give them excellent performance in capacitive energy storage.

    Key words:Hollow carbon sphere;Graphitization;Tannic acid;Supercapacitor

    1 Introduction

    Carbon materials have multiple advantages including abundant sources,outstanding chemical/thermal stability,tunable porosity and environmental friendliness[1,2].They have been considered as promising electrode materials for applications in energy storage devices,such as supercapacitors[3],lithium-ion batteries[4],metal-air batteries[5]and lithium-sulfur batteries[6].Among them,supercapacitors based on carbon electrodes have gained tremendous interests owing to their wide operation temperature region,long cycling lifespan and excellent reversible charge/discharge performance[7].However,the commercial development of carbon-based supercapacitors is limited by the ion/electron kinetic barriers and small energy density (5–8 Wh kg?1)[8].The energy stored in carbon materials greatly depends on their pore structure and electronic conductivity.An excellent pore structure refers to a large effective specific surface area (SBET)and suitable pore size distribution,which can offer abundant active sites for charge accumulation and accelerate ion transport.An excellent electronic conductivity is directly related to the graphitic structure of a carbon material,which can reduce the electron transfer resistance.Thus,it is desirable to fabricate efficient carbon materials with largeSBET,suitable pore size distribution and high graphitization degree.

    Hollow carbon spheres (HCSs) comprise of a huge internal cavity and a thin carbon shell,which endow them unique electrochemical properties.Specifically,the hollow structure of HCSs can not only provide abundant surface area for charge accommodation during charge/discharge process,but also accommodate the volume expansion/contraction,prolong cycling stability.Also,the carbon shell with good conductivity can facilitate electron transfer[9,10].However,the compact structure of the carbon shell seriously inhibits the infiltration and transport of electrolyte ions,resulting in a poor capacitive performance.For the purpose of facilitating ion diffusion and increasing effective surface area,pore engineering has been regarded as a promising strategy[11,12].Wang’s group[13]synthesized HCSs by a hard template method.After subsequent KOH activation,the obtained HCSs have a micro/mesoporous shell and theSBETincreases from 669 to 1 290 m2g?1,achieving a large specific capacitance of 303.9 F g?1.Hu et al.[14]fabricated hierarchical porous HCSs by a polymer template method and subsequent polymer blend carbonization.Poly methyl acrylic acid was used as a sacrificing template to realize the porous carbon shell after pyrolysis,and the obtained HCSs achieved an enhanced capacitance behavior.HCSs with a porous outer shell not only shorten the ion transport path to inner cavity,but also significantly increase the number of active sites of interior region in the carbon shell,achieving a much better utilization of carbon materials.

    Various porous HCSs are synthesized by template methods,because the inner/outer diameter and porous structure can be easily tailored by different templates[9].However,this method usually relies on multi-step procedures including template preparation and removal,which make the procedure tedious,costly,and even environmentally unfriendly (for example,the use of hazardous chemicals,NaOH,HF,or organic solvent to remove templates)[8,15,16].Comparatively,the self-templating method without using additional templates is a time-saving and economic strategy.In this method,HCSs can be directly synthesized by self-templating or a self-assembly method followed by thermal decomposition treatment[9,17].For example,Wu’s group[17]successfully fabricated HCSs from poly(amic acid) and amphiphilic homopolymer vesicles via a self-assembled method.After carbonization,theSBETof the obtained HCSs is 668.1 m2g?1,while the micropore surface area (Smic) accounts for 23.1%[17].Many researches revealed that the micropores contributed maximally to form electrical double-layers[18,19].Qian et al.[7]synthesized HCSs by crosslinking p-phenylenediacetonitrile with terephthalaldehyde and benzene-1,3,5-tricarbaldehyde.The obtained porous HCSs possess a highSBETof 1 963 m2g?1and aSmicof 1 716 m2g?1.Microporous graphitic HCSs were also prepared by a simple carbonization of melamine-formaldhyde resin spheres synthesized by a self-assembly method[20]. However,few carbon sources are available for self-assembly to synthesize the hollow spherical structure.Recently,renewable,inexpensive biomass-based materials are particularly preferred to be adopted as carbon precursors to achieve sustainable development[21].Therefore,design a straightforward self-assembly route to prepare HCSs using renewable precursors is urgently needed.

    In this paper,we report a feasible Fe–tannic acid(TA) complexing strategy and one-step carbonization to fabricate graphitic hollow porous carbon spheres(GHPCSs).Specifically,TA,as the carbon source,offers the advantages of being abundant,non-toxic,cheap,and wide distribution in plant issues[22].K3[Fe(C2O4)3],as the source of metal coordinating sites,can form Fe–TA complexing framework with the ample phenolic hydroxyl groups in TA.Moreover,the degraded products of Fe species and K2C2O4from K3[Fe(C2O4)3] can act as a graphitizing catalyst and an activating agent,respectively.After carbonization,Fe–TA complexing framework was transformed into GHPCSs,characterized by a graphitic porous carbon shell and internal cavity.Compared with the conventional template methods,the present self-assembly method avoids tedious and time-consuming procedures.More importantly,simultaneous activation and graphitization can be achieved by one-step carbonization,endowing GHPCSs with accessible pore surface and good conductivity.

    2 Experimental

    2.1 Synthesis of GHPCSs

    2.0 g of TA and 2.5 g of K3[Fe(C2O4)3]·H2O were dissolved into 20 mL deionized water to form solutions,separately.Then the K3[Fe(C2O4)3] solution was added dropwise into the TA solution under magnetic stirring to form Fe–TA complexing ink.0.15 g melamine foam with a small cube was immersed into the ink for 1 h and then dried at 80 °C for 18 h.The obtained solid mixture was carbonized at a certain temperature (700,750,800 °C) under N2flow for 2 h.Finally,the carbon power was further washed using 3 mol L?1HCl and deionized water for several times to remove Fe species and other inorganic impurities.The obtained product was labeled as GHPCST(whereTstands for the carbonization temperature of 700,750 and 800 °C).

    For comparison,the sample synthesized without using a melamine foam was also performed,and the related carbonization temperature is 750 °C.The obtained sample was denoted as a graphitic porous carbon (GPC).

    2.2 Materials characterization

    Morphologies and structural features of the samples were measured by JSM-6510F (JEOL,Japan)and Tecnai G2 F20 S-Twin (FEI.org,USA) to obtain scanning electron microscopy (SEM) images and transmission electron microscopy (TEM) images,respectively.TheSBET(calculated by Brunauer–Emmett–Teller method) and pore size distributions (evaluated through density functional theory method) were gained based on the N2adsorption–desorption tests using BELSORP-max (MicrotracBEL Japan Inc.).The miniflex 600 diffractometer (Rigaku,Japan) was employed to obtain X-ray diffraction (XRD) patterns.The LabRAM HR 800 spectrometer (HORIBA JobinYvon,France) was applied to obtain Raman spectra.The ESCALAB 250 (Thermo Fisher Scientific,USA) was used to collect X-ray photoelectron spectra (XPS).

    2.3 Electrochemical measurement

    A CHI760e electrochemical workstation (Shanghai Chenhua Instrument Co.,Ltd.,China) was used to evaluate the electrochemical performance of electrodes.A homogeneous slurry,containing active carbon material (80 wt%,2.4 mg),acetylene black(10 wt%),and polytetrafluoroethylene (10 wt%),was coated on a Ni foam substrate to obtain the working electrode.Three-electrode system was used to assess the performance of carbon electrodes using 6 mol L?1KOH electrolyte.The reference and counter electrodes are Hg/HgO and Pt foil electrode,respectively.As for two-electrode system,the symmetric supercapacitor was prepared by using polypropylene membrane as a separator,6 mol L?1KOH or 1 mol L?1Na2SO4as electrolytes.Two symmetric electrodes have the same mass loading of active materials.

    The specific capacitance in the three-electrode system (C,F g–1) and two-electrode system (Csp,F g–1)can be calculated according to the following equations (1) and (2),respectively:

    whereI,m,Δtand ΔVdenote the response current (A),the mass of active material (g),the discharge time (s),and the potential window (V),respectively[23].

    Energy densityE(Wh Kg–1) of the symmetric supercapacitor was obtained by the equation (3)

    whereV(V) refers to the discharging potential.

    Power densityP(W Kg–1) of the symmetric supercapacitor was obtained by the equation (4):

    3 Results and discussion

    3.1 Morphology and structural properties

    The synthetic procedure of GHPCSTis illustrated in Fig.1,including Fe–TA complexation and carbonization.TA is an environmentally friendly polyphenol,which can provide numerous binding sites for coordinating with Fe ions to form a stable Fe–TA complex.The complexing effect between Fe ions and TA realizes a uniform dispersion of Fe atoms on the carbon precursor,which is beneficial for the formation of carbon with a graphitic structure.Fe–TA complexing ink has excellent penetrability and adhesion[22],which can be easily attached and uniformly dispersed on the skeleton of melamine foam.During carbonization,the Fe–TA complex can be transformed into a hollow sphere structure with internal void.K3[Fe(C2O4)3] can be decomposed into K2C2O4and FeC2O4(2K3[Fe(C2O4)3] → 3K2C2O4+2FeC2O4+2CO2) under high temperature[23].These two oxalates can be further decomposed to K2CO3(K2C2O4→K2CO3+CO) and FeO (FeC2O4→ FeO+CO+CO2).The former is an effective chemical activating agent,which can corrode carbon skeleton to create pores on the carbon shell.While,the latter can be transformed into Fe3C after a series of reactions,which is an effective intermediate product to transform amorphous carbon into graphitized carbon[24].Moreover,the released gases (CO and CO2) during carbonization can act as pore-forming agents.Thus,K3[Fe(C2O4)3] is not only responsible for the complexation of Fe–TA framework to construct hollow carbon spheres,but also acts as an activating–graphitizing agent to develop a graphitic porous carbon structure.

    Fig.1 Scalable fabrication of a Fe–TA complex and its subsequent carbonization to convert into GHPCST.

    The morphologies of GHPCSTcarbonized at 700,750 and 800 °C are shown in Fig.2.All carbon samples have a spherical structure (Figs.2a-c),but differ on the surfaces of carbon shells.GHPCS700has a smooth surface (Fig.2a).While,there are a lot of bulges and several macropores on the rough surface of HPGCS750(Fig.2b),which may be caused by the physical activating effects of released gases and etching effect of K2CO3on the carbon shell[25].GHPCS800shows more obvious pores on the surface of the carbon shell in Fig.2c.The difference in the surface morphology of GHPCSTcan be deduced as follows:(i) the activating effect of K3[Fe(C2O4)3] becomes more intense with increasing the carbonization temperature,thus more pores generated on the surface of sphere shell;(ii) the rise of temperature may cause the fusion or collapse of pores,making the pores more obvious[26].The pores on the surface of the carbon shell are beneficial for the penetration of electrolyte ions into inner region,effectively shortening ion transport path,and significantly increasing the number of electroactive sites.The broken carbon sphere in Fig.2c indicates a huge internal cavity in the sphere.During charge/discharge process,the hollow cavity plays a role of“ion-buffering reservoir”,which can effectively shorten the diffusion distance of ions and accommodate the volume change[14].Fig.2d and 2e indicate that the carbon shell exhibits a similar 3D honeycomb-like feature,which not only provides abundant opening channels for effectively accelerating ion transfer rate but also guarantees plentiful active sites for energy storage.It is worth mentioning that melamine foam plays a critical role for the development of the hollow structure.Drying of the Fe–TA ink at 80 °C further promotes the complexation reaction of TA with Fe ions.The melamine foam with extremely high porosity provides supporting skeleton and enough space for the development of Fe–TA spheres.Without using the melamine foam,the Fe–TA framework becomes compact with the water evaporating.As a result,there is no enough space for Fe–TA framework to form a sphere structure.As shown in Fig.2f,GPC without the addition of the melamine foam has an irregular shape.TEM image in Fig.3a shows some mesopores in GHPCS750,which are resulted from the activation effect of K2CO3and elimination of Fe species.High-resolution TEM image (Fig.3b) reveals obvious lattice fringes and worm-like nanopores,indicating a graphitic porous carbon structure.

    Fig.2 SEM images of all samples:(a) GHPCS700,(b) GHPCS750,(c) GHPCS800,(d) and (e) GHPCS750 and (f) GPC.

    Fig.3 (a,b) TEM images of GHPCS750 under different magnifications.

    Nitrogen adsorption–desorption isotherms(Fig.4a) of GPC,GHPCS700,and GHPCS750show the typic I/IV isotherm with a slight hysteresis,which is the characteristic of micropores and mesopores.HPGCS800has the typic I isotherm,suggesting its copious micropores. GPC without the addition of the melamine foam has a smallSBETof 1 072.9 m2g?1,and a pore volume (Vtotal) of only 0.51 cm3g?1.With the presence of the melamine foam,theSBETandVtotalof GHPCSTincrease remarkably up to 2 005.7 m2g–1and 0.99 cm3g?1,respectively (Table 1).With the increase of the carbonization temperature,theSBETandVtotalof GHPCSTfollow the trend of GHPCS700(2 005.7 m2g–1,0.99 cm3g?1) > GHPCS750(1 541.8 m2g–1,0.70 cm3g?1) > GHPCS800(1 250.8 m2g–1,0.58 cm3g?1).This phenomenon is caused by the pore collapse and even disappearance of partial micropores at high temperature[26].The pore size distribution curves of GPC and GHPCSTin Fig.4b demonstrate a microporedominated porous structure[27],which originates from the pyrolysis of TA and activation effect of K3[Fe(C2O4)3].The micropore sizes of GHPCSTare concentrated at~0.78 nm,which is close to the optimized ion-accessible micropores[25].Notably,theSmicof GHPCS750accounts for 74.4% ofSBET.Many researchers proved that micropores play a more important role in charge accommodation and enhanced capacitance[28,29].Compared with template methods to prepare hollow carbon spheres,the Fe–TA complexing framework strategy combined with K3[Fe(C2O4)3] activation does not only simplify the process and save energy consumption,but also ensure a largeSBETand a high content of the micropore structure.

    Table 1 The porosity properties of GPC and GHPCST.

    Fig.4 (a) Nitrogen adsorption–desorption isotherms of GPC and GHPCST,(b) pore size distribution curves of GPC and GHPCST.

    Apart from a largeSBETand suitable pore structure,the partially graphitized carbon structure with excellent conductivity can be easily achieved by this approach.The XRD patterns (Fig.5a) show that GPC,GHPCS700,and GHPCS750possess a broad hump at 2θ~20–30° for the amorphous carbon framework and a weak diffraction peak at 2θ=43.4° for the (101) plane of the graphitic structure (JCPDS No.41-1487)[30].GHPCS800has a better crystallinity with a distinct and sharp peak for the (002) plane of graphite carbon at 2θ=26.4°,suggesting a more perfect and ordered graphitic structure at higher temperature,compared with other samples[31].A higher intensity at low-angle scatter suggests a larger number of micropores[23].Raman spectra of all samples (Fig.5b) present two distinct bands,Gband (1 585 cm–1) for graphitic carbon andDband (1 335 cm–1) for amorphous carbon[32].The intensity ratioIG/IDvalues of GHPCS700,GHPCS750,and GHPCS800are 0.97,1.05 and 1.06,respectively,indicating an increased graphitization degree with the carbonization temperature[25].The partially graphitic carbon structure with an appropriate amount of defects and disorders is characterized by excellent conductivity and developed pore structure,benefiting for electron/ion transport and energy storage.

    Fig.5 (a) XRD patterns of GPC and GHPCST,(b) Raman spectra of GPC and GHPCST.

    XPS spectrum of GHPCS750in Fig.6a presents two distinct peaks of C 1s (~284.8 eV) and O 1s(~533.3 eV),as well as an inconspicuous peak of N 1s (~400.4 eV).The contents of C,O,N are calculated to be 89.43%,7.84% and 2.73%,respectively.The high content of O comes from carbon source(TA) and the small amount of N originates from the melamine foam.The deconvoluted C 1s spectrum(Fig.6b) contains four peaks at 284.5,285.0,286.1 and 288.6 eV,representing sp2-bonded carbon,sp3-bonded carbon,C―O and C=O,respectively.The deconvoluted O 1s spectrum in Fig.6c displays four characteristic peaks,representing O=C―OH(534.3 eV),C―O―C (533.4 eV),C―OH (532.4 eV),and C=O (531.3 eV),respectively[33].The presence of these oxygen-containing groups can enhance the surface wettability of electrodes,benefiting for ion storage during charge/discharge process.

    Fig.6 (a) XPS survey of GHPCS750,high resolution XPS spectra of (b) C 1s and (c) O 1s.

    3.2 Electrochemical performance

    Fig.7a presents the cyclic voltammetry (CV)curves of GPC and GHPCSTat 10 mV s–1.All CV curves of GHPCSTexhibit larger curve areas than that of GPC,due to their higherSBETof GHPCSTthat provides abundant active sites for charge accumulation.The disordered rectangular shape appeared at?0.8–1.0 V and ?0.1–0 V could be attributed to the limited ion transport and adsorption into irregular micropores and subnanometer pores with narrow bottlenecks[31].Fig.7b presents the CV curves of GHPCS750at different scan rates.The disorder shape at a higher scan rate is attributed to the insufficient time for ion diffusion and deficient contact to electrode surface[34].The typical galvanostatic charge–discharge (GCD)curves of GPC and GHPCSTwith a symmetrical shape at 1 A g–1imply a favorable electric double-layer capacitance characteristic (Fig.7c).The GCD curve of GHPCS750exhibits the longest discharge time,meaning the highest capacitance.Although,GHPCS700has the largestSBETvalue among all samples and the content ofSmicis up to 82.0%,the low graphitization degree limits electron transfer,resulting in a poor electrochemical performance.The micropore sizes of samples are mainly distributed around 0.46–0.86 nm,which enable the solvated ions OH–(0.30 nm) and K+(0.33 nm) to enter into small pores,resulting in a high capacitance[35,36].Specific capacitances of all electrodes gradually decrease with the increase of current densities (Fig.7d),originating from the insufficient diffusion of ions into inner pores in a relatively short time[37].GHPCS750possesses the largest specific capacitance of 332.7 F g–1at 1 A g–1,outperforming those of GPC (298.7 F g–1),GHPCS700(308.1 F g–1) and GHPCS800(282.4 F g–1).Moreover,this value is comparable and even superior to those of reported carbon spheres (Table 2).This could be attributed to the porous carbon shell,large surface area,and high graphitization degree of GHPCS750,which allow fast ion diffusion,large ion storage and rapid charge transfer.A high graphitization degree is important for achieving excellent rate performance.GHPCS700has a specific capacitance of 217.5 F g–1at 30 A g–1,indicating a 70.6% capacitance retention when the current density increases from 1 to 30 A g–1.Notably,GHPCS750maintains 244.5 F g–1at 30 A g–1,corresponding to a 73.5% capacitance retention,and GHPCS800achieves a remarkable retention of 76.8% due to its high graphitization degree.GHPCS750shows a 97.5% capacitance retention after 10 000 cycles (Fig.7e).Compared with the first CV curve,CV curve tested after 10 000 cycles still maintains a similar shape without an obvious distortion,which demonstrates its desirable cycling performance.

    Fig.7 (a) CV curves of GPC and GHPCST at 10 mV s–1,(b) CV curves of GHPCS750 at 10~100 mV s–1,(c) GCD curves of GPC and GHPCST at a current density of 1 A g–1,(d) specific capacitances of all electrodes and (e) cycling stability of GHPCS750 at 100 mV s–1 after 10 000 cycles.

    GHPCS750was assembled into a symmetric supercapacitor using 6 mol L?1KOH electrolyte.The CV curves of GHPCS750//GHPCS750(Fig.8a) under various scan rates show nearly identical and rectangular shapes,reflecting a remarkable rate performance and an outstanding double-electrode layer capacitive behavior.The GCD curves (Fig.8b) exhibit the typical triangular profiles at different current densities and theIRdrop at 10 A g–1is only 0.14 V,suggesting a low internal resistance.The specific capacitance of GHPCS750//GHPCS750is 270.5 F g–1at 0.5 A g–1,and it maintains 219.7 F g–1at 10 A g–1,which indicates a 81.2% rate capability when the current density is increased by 20 times.This good rate capability is resulted from the buffering effect of internal cavity space,easy ion diffusion into pore channels,and fast transfer of charge on the conductive network.

    Supercapacitor GHPCS750//GHPCS750was further measured with 1 mol L?1Na2SO4electrolyte due to its low concentrations of H+and OH–,allowing a high-stability voltage window.Fig.8c shows a set of CV curves at 40 mV s–1with increasing voltage windows.There is no obvious increase of the anodic current in CV curves when voltage window increases to 1.8 V[40].The quasi-rectangular shapes of CV curves(Fig.8d) and the isosceles triangle-shapes of GCD curves (Fig.8e) at the voltage window of 1.8 V further demonstrate an ideal capacitive characteristic.At a high current density,it appears a smallIRdrop owing to the difficulty of ion transport into inner pore network.The specific capacitance of GHPCS750//GHPCS750in Na2SO4electrolyte is 211.2 F g–1at 0.5 A g–1,and it maintains 144.3 F g–1at 10 A g–1,corresponding to a 68.3% rate capability,which is smaller than that in KOH electrolyte.The cycling stability of GHPCS750//GHPCS750tested in 1 mol L?1Na2SO4electrolyte (Fig.8f) displays a 92.1% retention after 10 000 cycles.This value is comparable to those of reported carbon spheres[7,13,14,16,38,39](Table 2).

    Table 2 Performance comparison of various carbon spheres.

    Fig.8g displays the Ragone plots of GHPCS750//GHPCS750supercapacitor.When the electrolyte is 6 mol L?1KOH,the energy density of GHPCS750//GH-PCS750is 9.4 Wh kg–1at a power density of 252.2 W kg–1.Impressively,a large potential window(1.8 V) in 1 mol L?1Na2SO4affords a maximum energy density of 23.7 Wh kg–1when power density is 459.1 W kg–1,and it retains 20.5 Wh kg–1at 3 035.0 W kg–1.which is comparable to or even exceeds some reported supercapacitors using carbon materials as electrodes[41–47].The outstanding capacitive performance and superior cycling stability of GHPCS750are attributed to the following advantages:(i) the pores on the outer shell act as open channels to facilitate ion diffusion and offer abundant electroactive sites for energy storage;(ii) the high graphitization degree and the high conductivity network of the carbon shell promote fast electron transfer to realize efficient utilization of carbon space;(iii) the unique hollow cavity can provide a buffer space and effectively relieve the volume expansion/contraction,thus improving the durability.

    Fig.8 Electrochemical characteristics of GHPCS750//GHPCS750:(a) CV curves and (b) GCD curves in 6 mol L?1 KOH electrolyte,(c) CV curves with a potential window of 1.0–2.0 V in 1 mol L?1 Na2SO4,(d) CV curves at scan rates of 10–100 mV s–1 with 1.8 V in 1 mol L?1 Na2SO4,(e) GCD curves in 1 mol L?1 Na2SO4,(f) cycling stability for 10 000 cycles in 1 mol L?1 Na2SO4,(g) Ragone plots,(h) Nyquist plots,and (i) Bode phase angle plots of GHPCS750//GHPCS750 tested in different electrolytes.

    The ion and electron transport kinetics were measured by electrochemical impedance spectroscopy (EIS).Nyquist plots (Fig.8h) of GHPCS750//GHPCS750show the typical double-layer capacitive behavior with a semicircle at high frequency segment and a nearly perpendicular line at low frequency segment.The equivalent circuit model fitted by the Zsim-Demo software is displayed in the inset.The equivalent series resistance (Rs) of GHPCS750//GHPCS750in KOH electrolyte is 1.0 Ω and the charge transfer resistance (Rct) is 0.25 Ω.In Na2SO4electrolyte,the values ofRsandRctare 4.3 Ω and 1.6 Ω,respectively,which are obviously larger than those ofRsandRctin KOH electrolyte.Such differences are related to the ionic mobility (OH?> SO42?> K+> Na+) and the conductivity of electrolytes (KOH (aq.) > Na2SO4(aq.))[48].Fig.8i shows Bode phase angle plots of GHPCS750//GHPCS750.At the phase angle of–45°,the frequenciesf0for KOH electrolyte and Na2SO4electrolyte are 0.35 Hz and 0.07 Hz,respectively.The corresponding time constantsτ0are 2.88 s (KOH electrolyte) and 13.77 s (Na2SO4electrolyte).The low time constant indicates rapid frequency response,suggesting fast ion transport.

    4 Conclusion

    A simple and novel Fe–TA framework strategy combined with one-step carbonization was employed to synthesize GHPCSs,based on the complexation of TA with Fe ions and the activation–graphitization effect of K3[Fe(C2O4)3].In addition to possessing a porous carbon shell and a huge internal cavity,the obtained carbon spheres have high specific surface area,micropore-dominated structure,and high graphitization degree,which allow the carbon spheres for achieving fast and effective mass diffusion and ion/electron transport.These superiorities endow GHPCS750with a high specific capacitance (332.7 F g–1at 1 A g–1) and excellent rate capability.More importantly,the symmetric supercapacitor in Na2SO4electrolyte processes a maximum energy density of 23.7 Wh kg–1at 459.1 W kg–1,and it has a 92.1% capacitance retention after 10 000 cycles.This study not only provides an economic and sustainable self-assembly strategy to fabricate GHPCSs for high-performance supercapacitor,but also puts a way to optimize ion/electron transport in carbon spheres.

    Acknowledgements

    The Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2020L0330),the Award Fund for Outstanding Doctors in Shanxi Province (No.20202075) and the Doctor Funds of Taiyuan University of Science and Technology (No.20192054).

    99久久精品国产亚洲精品| a级毛片免费高清观看在线播放| 一个人免费在线观看的高清视频| 麻豆成人午夜福利视频| 又黄又爽又刺激的免费视频.| 99国产精品一区二区三区| 国产精品综合久久久久久久免费| 天堂√8在线中文| 性色avwww在线观看| 亚洲欧美精品综合久久99| 日日摸夜夜添夜夜添小说| 亚洲中文字幕日韩| 男女床上黄色一级片免费看| 久久性视频一级片| 精品久久久久久久久久免费视频| 永久网站在线| 久久中文看片网| 日韩av在线大香蕉| 亚洲欧美精品综合久久99| 久久久久免费精品人妻一区二区| 国产男靠女视频免费网站| 亚洲av成人av| 麻豆成人午夜福利视频| 国产精品野战在线观看| 亚洲专区中文字幕在线| 90打野战视频偷拍视频| 午夜激情欧美在线| 亚洲午夜理论影院| 久久久久亚洲av毛片大全| 天堂√8在线中文| 青草久久国产| 亚洲欧美日韩高清在线视频| 我的老师免费观看完整版| 久久久久久久久大av| 亚洲国产精品成人综合色| 欧美3d第一页| 搞女人的毛片| avwww免费| 最近中文字幕高清免费大全6 | 99国产精品一区二区蜜桃av| 欧美极品一区二区三区四区| 亚洲色图av天堂| 成人三级黄色视频| 久久6这里有精品| 欧美丝袜亚洲另类 | 久久久久国产精品人妻aⅴ院| 久久久久亚洲av毛片大全| a级毛片免费高清观看在线播放| 亚洲国产色片| 赤兔流量卡办理| 国产精品综合久久久久久久免费| 有码 亚洲区| 精品欧美国产一区二区三| 亚洲不卡免费看| 国产精品乱码一区二三区的特点| 少妇丰满av| 超碰av人人做人人爽久久| 一级黄片播放器| 美女被艹到高潮喷水动态| 身体一侧抽搐| 床上黄色一级片| 亚洲最大成人手机在线| 免费在线观看日本一区| 1000部很黄的大片| АⅤ资源中文在线天堂| 久久久色成人| 日日摸夜夜添夜夜添小说| 亚洲不卡免费看| netflix在线观看网站| 亚洲专区中文字幕在线| 美女xxoo啪啪120秒动态图 | 久久99热这里只有精品18| 成人午夜高清在线视频| 亚洲精品乱码久久久v下载方式| 韩国av一区二区三区四区| 亚洲一区二区三区色噜噜| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 国产又黄又爽又无遮挡在线| 成年女人看的毛片在线观看| 亚洲熟妇熟女久久| 日本一二三区视频观看| 天堂网av新在线| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 国产麻豆成人av免费视频| 成人欧美大片| 最好的美女福利视频网| 一区二区三区四区激情视频 | 久久精品国产亚洲av香蕉五月| 亚洲欧美日韩卡通动漫| 中文在线观看免费www的网站| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区三| 一区二区三区免费毛片| 国内精品久久久久精免费| 精品一区二区三区人妻视频| 九九热线精品视视频播放| 三级毛片av免费| 赤兔流量卡办理| 午夜福利在线在线| 一区二区三区四区激情视频 | 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 国产伦精品一区二区三区四那| 一进一出抽搐gif免费好疼| 久久精品影院6| 成人av在线播放网站| 99热精品在线国产| 午夜福利18| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 白带黄色成豆腐渣| 精品一区二区免费观看| www.www免费av| 亚洲av成人精品一区久久| 悠悠久久av| 欧美性猛交黑人性爽| 精品无人区乱码1区二区| 国产亚洲精品av在线| 亚洲真实伦在线观看| av在线天堂中文字幕| 又爽又黄无遮挡网站| 亚洲最大成人中文| 色吧在线观看| 久久午夜亚洲精品久久| x7x7x7水蜜桃| 热99re8久久精品国产| 老熟妇仑乱视频hdxx| 国产黄片美女视频| h日本视频在线播放| 久久国产乱子伦精品免费另类| 亚洲精品粉嫩美女一区| 男女视频在线观看网站免费| 国产亚洲精品久久久com| 久久精品国产亚洲av天美| av在线老鸭窝| 欧美高清成人免费视频www| 亚洲精品一卡2卡三卡4卡5卡| 99久久久亚洲精品蜜臀av| 日韩精品青青久久久久久| 久久久久亚洲av毛片大全| 久久这里只有精品中国| 黄色视频,在线免费观看| 国内精品久久久久久久电影| 国产成人a区在线观看| 精品日产1卡2卡| 国产白丝娇喘喷水9色精品| 女同久久另类99精品国产91| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看| 午夜久久久久精精品| 伊人久久精品亚洲午夜| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 俺也久久电影网| 成年女人毛片免费观看观看9| 久久国产精品人妻蜜桃| 韩国av一区二区三区四区| 又黄又爽又免费观看的视频| 免费av不卡在线播放| 人妻夜夜爽99麻豆av| 免费在线观看影片大全网站| 美女免费视频网站| 少妇的逼好多水| 天天躁日日操中文字幕| 成人av在线播放网站| 极品教师在线视频| 看免费av毛片| 成年版毛片免费区| 中文字幕av成人在线电影| 欧美bdsm另类| 五月玫瑰六月丁香| bbb黄色大片| 国产免费男女视频| 国内揄拍国产精品人妻在线| 国产精品嫩草影院av在线观看 | 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 美女xxoo啪啪120秒动态图 | 亚洲精品粉嫩美女一区| 亚洲人成网站在线播| 三级国产精品欧美在线观看| 国产黄色小视频在线观看| 如何舔出高潮| 亚洲专区中文字幕在线| 亚洲欧美清纯卡通| 日韩欧美在线乱码| 天堂动漫精品| 欧美极品一区二区三区四区| 真人一进一出gif抽搐免费| 国产精品永久免费网站| 精品人妻1区二区| 亚洲五月天丁香| 日日摸夜夜添夜夜添小说| 欧美bdsm另类| 亚洲成a人片在线一区二区| 欧美最新免费一区二区三区 | 亚洲国产精品久久男人天堂| 午夜免费成人在线视频| 午夜精品在线福利| 国产黄片美女视频| 在线观看美女被高潮喷水网站 | 少妇丰满av| 一级作爱视频免费观看| 成人高潮视频无遮挡免费网站| 99热只有精品国产| 亚洲人成网站在线播| 国产爱豆传媒在线观看| 亚洲av熟女| 天堂网av新在线| 一级a爱片免费观看的视频| 亚洲成av人片免费观看| 一个人看的www免费观看视频| 亚洲精品粉嫩美女一区| 国产综合懂色| 国产一区二区在线观看日韩| 一级黄片播放器| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 免费观看精品视频网站| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 日韩欧美免费精品| 久久久久久久久中文| 久久婷婷人人爽人人干人人爱| 少妇人妻精品综合一区二区 | 99国产综合亚洲精品| 国产又黄又爽又无遮挡在线| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 一区二区三区激情视频| 男女视频在线观看网站免费| 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| 亚洲avbb在线观看| 人人妻人人澡欧美一区二区| 成人av在线播放网站| 亚洲av二区三区四区| 露出奶头的视频| 99久久成人亚洲精品观看| 中文字幕av成人在线电影| 成人无遮挡网站| 中文资源天堂在线| 男女床上黄色一级片免费看| 久久伊人香网站| 国产三级中文精品| 午夜精品在线福利| 午夜两性在线视频| 99久久无色码亚洲精品果冻| 一个人看视频在线观看www免费| 深夜精品福利| 亚洲不卡免费看| 婷婷精品国产亚洲av在线| 高清毛片免费观看视频网站| 91狼人影院| 国产欧美日韩精品亚洲av| 色av中文字幕| 最好的美女福利视频网| 亚洲欧美日韩高清专用| 全区人妻精品视频| 国模一区二区三区四区视频| 亚洲av五月六月丁香网| 一个人免费在线观看电影| 怎么达到女性高潮| 欧美黄色片欧美黄色片| 国产精品久久电影中文字幕| 亚洲精品日韩av片在线观看| 国产视频内射| 久久久久亚洲av毛片大全| 亚洲成av人片免费观看| 国产精品久久久久久久电影| 免费搜索国产男女视频| 国内精品一区二区在线观看| 亚洲av一区综合| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 久久国产乱子免费精品| 成人鲁丝片一二三区免费| 日本免费一区二区三区高清不卡| 欧美色视频一区免费| .国产精品久久| 搡老妇女老女人老熟妇| 日日摸夜夜添夜夜添av毛片 | 国产亚洲av嫩草精品影院| 日本熟妇午夜| 欧美性猛交╳xxx乱大交人| 精品国内亚洲2022精品成人| 免费电影在线观看免费观看| 一卡2卡三卡四卡精品乱码亚洲| 97碰自拍视频| 三级毛片av免费| 色哟哟哟哟哟哟| 97热精品久久久久久| 成人高潮视频无遮挡免费网站| 久久久久久大精品| 成人精品一区二区免费| 国产三级黄色录像| 美女被艹到高潮喷水动态| 精品乱码久久久久久99久播| 黄色丝袜av网址大全| 精品久久久久久久久亚洲 | 国产精品人妻久久久久久| 精品午夜福利在线看| 欧美国产日韩亚洲一区| 在线观看一区二区三区| 婷婷丁香在线五月| 久久国产乱子免费精品| xxxwww97欧美| av中文乱码字幕在线| 简卡轻食公司| 久久久久久九九精品二区国产| 国产亚洲av嫩草精品影院| av天堂中文字幕网| 欧美成人a在线观看| 国产免费男女视频| 午夜亚洲福利在线播放| 国产精品亚洲美女久久久| 90打野战视频偷拍视频| 免费av观看视频| 天堂动漫精品| 免费在线观看日本一区| 九色成人免费人妻av| 又黄又爽又刺激的免费视频.| 久久久成人免费电影| 亚洲欧美精品综合久久99| 亚洲乱码一区二区免费版| 精品人妻熟女av久视频| 成人国产一区最新在线观看| 可以在线观看的亚洲视频| 亚洲第一区二区三区不卡| 成人无遮挡网站| 亚洲经典国产精华液单 | 亚洲精品在线美女| 亚洲五月婷婷丁香| 国产一区二区三区视频了| 男插女下体视频免费在线播放| .国产精品久久| 色播亚洲综合网| 老司机深夜福利视频在线观看| 一个人免费在线观看的高清视频| 在线观看舔阴道视频| 欧美一区二区国产精品久久精品| 99久久精品一区二区三区| 哪里可以看免费的av片| 国产伦精品一区二区三区四那| АⅤ资源中文在线天堂| 丁香六月欧美| 国产精品日韩av在线免费观看| 午夜精品一区二区三区免费看| 日韩欧美三级三区| 啦啦啦观看免费观看视频高清| 美女黄网站色视频| 高潮久久久久久久久久久不卡| 免费电影在线观看免费观看| 精品一区二区三区av网在线观看| 亚洲国产欧洲综合997久久,| 国产欧美日韩精品一区二区| 色综合站精品国产| 中文资源天堂在线| 精品免费久久久久久久清纯| 少妇人妻一区二区三区视频| 99热这里只有是精品在线观看 | 精品久久久久久成人av| 国产免费av片在线观看野外av| 直男gayav资源| 国产伦精品一区二区三区视频9| 人妻久久中文字幕网| 3wmmmm亚洲av在线观看| 日本在线视频免费播放| 美女黄网站色视频| 怎么达到女性高潮| 国产亚洲欧美在线一区二区| 国产精品不卡视频一区二区 | 亚洲专区国产一区二区| 日韩欧美精品免费久久 | 欧美xxxx性猛交bbbb| 嫩草影视91久久| 非洲黑人性xxxx精品又粗又长| 日韩欧美国产一区二区入口| 亚洲一区高清亚洲精品| 婷婷色综合大香蕉| 免费黄网站久久成人精品 | 日日夜夜操网爽| 麻豆国产97在线/欧美| 国产av麻豆久久久久久久| 国产成年人精品一区二区| 国产精品永久免费网站| 色吧在线观看| 日日夜夜操网爽| 久久久久久久午夜电影| 亚洲一区二区三区不卡视频| 观看美女的网站| 久久久久国产精品人妻aⅴ院| 欧美在线一区亚洲| 欧美区成人在线视频| 禁无遮挡网站| 在线观看av片永久免费下载| 成年免费大片在线观看| 日韩中字成人| 国内久久婷婷六月综合欲色啪| 亚洲av.av天堂| 亚洲人成网站高清观看| 久久精品综合一区二区三区| 成人永久免费在线观看视频| 国产高清有码在线观看视频| 波野结衣二区三区在线| 久久久色成人| 国产三级中文精品| 亚洲精品456在线播放app | 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| 国产成人影院久久av| 亚洲一区二区三区色噜噜| 欧美日韩福利视频一区二区| 最好的美女福利视频网| 99热这里只有精品一区| 欧美黄色片欧美黄色片| 午夜视频国产福利| 午夜亚洲福利在线播放| av天堂中文字幕网| 久久久国产成人免费| 成人国产一区最新在线观看| 蜜桃亚洲精品一区二区三区| 免费av毛片视频| 国产在线精品亚洲第一网站| 精品久久国产蜜桃| 欧美日韩国产亚洲二区| 啪啪无遮挡十八禁网站| 国产极品精品免费视频能看的| 1024手机看黄色片| 人人妻,人人澡人人爽秒播| 国产精品伦人一区二区| 久久久成人免费电影| 精品一区二区三区av网在线观看| 综合色av麻豆| 国产毛片a区久久久久| 久久午夜福利片| 成年女人看的毛片在线观看| 午夜激情福利司机影院| 亚洲精品日韩av片在线观看| 级片在线观看| 色综合站精品国产| 757午夜福利合集在线观看| 一边摸一边抽搐一进一小说| 久久久久久九九精品二区国产| 亚洲人与动物交配视频| 一级a爱片免费观看的视频| 国内久久婷婷六月综合欲色啪| 99热只有精品国产| 国产综合懂色| 高清日韩中文字幕在线| 亚洲欧美日韩高清在线视频| 黄色视频,在线免费观看| 看片在线看免费视频| 亚州av有码| 国产精品电影一区二区三区| 国产伦人伦偷精品视频| 午夜两性在线视频| 非洲黑人性xxxx精品又粗又长| 日韩欧美在线二视频| 91麻豆精品激情在线观看国产| 国产色婷婷99| 在线观看美女被高潮喷水网站 | 在线观看美女被高潮喷水网站 | 亚洲av第一区精品v没综合| 欧美最新免费一区二区三区 | 欧美区成人在线视频| 成人av在线播放网站| 午夜福利18| 国产精品永久免费网站| 国产一区二区激情短视频| 熟妇人妻久久中文字幕3abv| 18美女黄网站色大片免费观看| 两个人的视频大全免费| 免费看日本二区| 国产欧美日韩一区二区三| 国产精品电影一区二区三区| 男女之事视频高清在线观看| 一区二区三区激情视频| 欧美色欧美亚洲另类二区| 欧美bdsm另类| 国产探花在线观看一区二区| 免费看美女性在线毛片视频| 在线观看免费视频日本深夜| 在线免费观看不下载黄p国产 | 欧美zozozo另类| 国产极品精品免费视频能看的| 久久久久性生活片| 黄色女人牲交| 成人精品一区二区免费| 久久亚洲真实| 日本免费一区二区三区高清不卡| 午夜福利成人在线免费观看| 十八禁网站免费在线| 欧美日韩国产亚洲二区| 俺也久久电影网| 国产精品久久久久久亚洲av鲁大| 亚洲精品乱码久久久v下载方式| 国产av不卡久久| 一个人看视频在线观看www免费| 一本久久中文字幕| 国产三级在线视频| 精品久久久久久久久久久久久| 色哟哟·www| 欧美日韩瑟瑟在线播放| 1024手机看黄色片| 精华霜和精华液先用哪个| 99热这里只有是精品50| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播放欧美日韩| 国产成人av教育| 久久亚洲精品不卡| 国产在线男女| 最近最新免费中文字幕在线| 欧美+亚洲+日韩+国产| 欧美极品一区二区三区四区| 床上黄色一级片| 国内精品一区二区在线观看| 亚洲国产色片| 色噜噜av男人的天堂激情| 亚洲在线观看片| 性色av乱码一区二区三区2| 亚洲第一区二区三区不卡| 美女高潮的动态| 美女黄网站色视频| 久久久久久久久久成人| 亚洲av免费高清在线观看| 亚洲欧美日韩无卡精品| 九色国产91popny在线| 欧美性感艳星| 久久精品91蜜桃| 久久久国产成人精品二区| 我的女老师完整版在线观看| 国产亚洲精品综合一区在线观看| 日韩欧美精品免费久久 | 日本在线视频免费播放| a级毛片a级免费在线| 黄色日韩在线| 亚洲欧美激情综合另类| 久久中文看片网| 成人永久免费在线观看视频| 亚洲av免费高清在线观看| 亚洲精品日韩av片在线观看| 国产探花在线观看一区二区| 亚洲国产精品成人综合色| 精品人妻偷拍中文字幕| 丰满人妻熟妇乱又伦精品不卡| or卡值多少钱| 亚洲中文字幕日韩| 男人狂女人下面高潮的视频| 久久精品影院6| 少妇高潮的动态图| 能在线免费观看的黄片| 国产伦精品一区二区三区视频9| 中文字幕av在线有码专区| 欧美成人一区二区免费高清观看| av中文乱码字幕在线| 国产色爽女视频免费观看| 日本免费a在线| 国产午夜福利久久久久久| 亚洲第一欧美日韩一区二区三区| 九色成人免费人妻av| 网址你懂的国产日韩在线| 日韩 亚洲 欧美在线| 丰满的人妻完整版| 韩国av一区二区三区四区| 国产亚洲精品久久久com| 一级a爱片免费观看的视频| 99精品在免费线老司机午夜| 性插视频无遮挡在线免费观看| 国产三级中文精品| 最近最新中文字幕大全电影3| 国产黄色小视频在线观看| 99久久久亚洲精品蜜臀av| 亚洲精品乱码久久久v下载方式| 国产一区二区三区在线臀色熟女| 成人特级黄色片久久久久久久| 国产单亲对白刺激| 亚洲精品粉嫩美女一区| 三级男女做爰猛烈吃奶摸视频| 成年免费大片在线观看| 国产欧美日韩精品亚洲av| 国产乱人伦免费视频| 非洲黑人性xxxx精品又粗又长| 美女黄网站色视频| 国内精品一区二区在线观看| 热99re8久久精品国产| 国产精品免费一区二区三区在线| 国产探花极品一区二区| 美女cb高潮喷水在线观看| 久久国产乱子免费精品| 免费一级毛片在线播放高清视频| 一边摸一边抽搐一进一小说| 亚洲国产精品999在线| 欧美最黄视频在线播放免费| 国产精品久久视频播放| 国产真实伦视频高清在线观看 | 国产爱豆传媒在线观看| 国产在视频线在精品| 超碰av人人做人人爽久久| 一区二区三区高清视频在线| 99久久成人亚洲精品观看| 性色av乱码一区二区三区2| 国产乱人视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品永久免费网站| 制服丝袜大香蕉在线| 国产乱人视频| 又黄又爽又刺激的免费视频.| 欧美在线一区亚洲| 2021天堂中文幕一二区在线观| 99热精品在线国产|