李閏婷,陳龍欣,張麗萌,何海迎,王泳,楊若晨,段春輝,劉月琴,王玉琴,張英杰
粒細胞集落刺激因子在羊成纖維細胞中的表達及對細胞增殖和凋亡的影響
1河北農(nóng)業(yè)大學(xué)動物科技學(xué)院,河北保定 071001;2鄭州師范學(xué)院分子生物學(xué)實驗室,鄭州 450044;3河南科技大學(xué)動物科技學(xué)院,河南洛陽 471023
【】研究粒細胞集落刺激因子(granule cell stimulating factor,GCSF)在羊成纖維細胞體外培養(yǎng)中對其增殖、周期和凋亡的影響,為今后基于羊GCSF為靶標(biāo)誘導(dǎo)全能干細胞進行分子遺傳育種研究提供理論依據(jù)。將羊GCSF真核表達質(zhì)粒pRTL1-GCSF和對照載體質(zhì)粒pRTL1分別轉(zhuǎn)染到1×105個細胞/mL的羊成纖維細胞中,培養(yǎng)48 h后,利用Trizol法分別提取總RNA并反轉(zhuǎn)錄為cDNA,通過實時熒光定量PCR檢測羊GCSF在羊成纖維細胞中的瞬時表達水平。通過GCSF依賴型細胞系NFS-60,利用細胞活力檢測試劑alamarBlue測定轉(zhuǎn)染48 h后羊成纖維細胞培養(yǎng)上清中分泌表達的GCSF的生物學(xué)活性。通過HEK 293F懸浮培養(yǎng)細胞系真核表達分泌型羊GCSF蛋白后,用Ni-NTA凝膠對細胞表達至細胞培養(yǎng)基中的GCSF蛋白進行純化,并SDS-PAGE檢測。加入純化的30 ng·mL-1GCSF蛋白后在24和48 h時,通過alamarBlue測定羊成纖維細胞的增殖狀態(tài),利用流式細胞術(shù)檢測羊成纖維細胞的細胞周期和凋亡變化。羊GCSF真核表達質(zhì)粒轉(zhuǎn)染羊成纖維細胞48 h,檢測發(fā)現(xiàn)在羊成纖維細胞中GCSF表達量得到顯著提高。在羊成纖維細胞中,轉(zhuǎn)染了pRTL1-GCSF質(zhì)粒的羊GCSF表達量是轉(zhuǎn)染了pRTL1空載對照組的(50 615.92±4 738.83)倍(<0.01);羊成纖維細胞瞬時分泌表達的含有GCSF蛋白的培養(yǎng)基上清加入到GCSF依賴型細胞系NFS-60后,試驗組和陽性對照組中的NFS-60的熒光強度與陰性對照組和空白對照組相比顯著升高(<0.01),試驗組中的NFS-60的熒光強度與陽性對照組相比均差異不顯著(>0.05),結(jié)果顯示羊GCSF能顯著刺激NFS-60細胞的增殖,表明在羊成纖維細胞中表達的羊GCSF具有生物學(xué)活性。用HEK 293F懸浮培養(yǎng)細胞系真核表達分泌型羊GCSF蛋白后,純化得到羊GCSF蛋白。在羊成纖維細胞中添加30 ng·mL-1的羊GCSF后,體外培養(yǎng)24和48 h,GCSF試驗組與培養(yǎng)基稀釋液對照組相比,細胞活力變化差異不顯著,而細胞周期的分布出現(xiàn)顯著改變。24 h時,與對照組相比試驗組的G1期細胞比例由(55.29±1.68)%增加到(69.37±0.24)%,差異極顯著(<0.01);S期細胞比例由(15.99±0.38)%變?yōu)?15.39±0.60)%,差異不顯著(>0.05);G2/M期細胞顯著增多(<0.05),比例由(22.88±1.00)%增大到(26.76±0.82)%。表明在羊成纖維細胞中加入羊GCSF的24 h后,處于分裂狀態(tài)和間期的細胞顯著增多。48 h時,與對照組相比試驗組G1期細胞比例由(65.96±0.37)%減少為(45.69±0.26)%,差異極顯著(<0.01);S期細胞比例由(13.45±1.33)%增加為(37.87±2.43)%,差異極顯著(<0.01);G2/M期細胞比例由(16.42±1.29)%變?yōu)?21.80±1.86)%,差異不顯著(>0.05)。表明加入GCSF的羊成纖維細胞在48 h時,處于間期的細胞顯著減少,同時DNA復(fù)制狀態(tài)的細胞顯著增多。試驗組凋亡率和對照組相比,培養(yǎng)24 h時對照組(Ctr)和試驗組(GCSF)的凋亡率分別是(7.51±0.38)%和(9.16±0.46)%。48 h時對照組和試驗組的凋亡率分別是(5.73±0.29)%和(5.39±0.27)%。72 h時對照組(Ctr)和試驗組(GCSF)的凋亡率分別是(8.88±0.45)%和(5.41±0.27)%,24 h和72 h凋亡率差異極顯著(<0.01),48 h檢測時凋亡率差異不顯著(>0.05),表明在GCSF添加的24 h內(nèi)促進了細胞凋亡,隨著時間的延長,細胞的凋亡受到抑制。羊成纖維細胞中可以瞬時過量表達羊GCSF,并具有生物學(xué)活性。GCSF不影響羊成纖維細胞的增殖,但可調(diào)控其周期,影響細胞凋亡。該結(jié)果為今后通過羊成纖維細胞介導(dǎo)GCSF培育具有高免疫力、高抗病性的羊進行分子遺傳育種奠定了基礎(chǔ)。
GCSF;羊;轉(zhuǎn)染;生物學(xué)活性;細胞周期;細胞凋亡
【研究意義】粒細胞集落刺激因子(granule cell stimulating factor,GCSF)是集落刺激因子糖蛋白生長因子中的家族成員,主要功能是支持造血祖細胞的增殖[1-3],因此廣泛用于提高動物機體免疫力及疾病治療。近年來,誘導(dǎo)干細胞技術(shù)發(fā)展迅速,羊成纖維細胞誘導(dǎo)干細胞的研究也有相關(guān)報道[4-8]。成纖維細胞不但具有較強的分裂和增殖能力,而且其還兼具適應(yīng)性強、易培養(yǎng)、性狀穩(wěn)定并難以發(fā)生細胞轉(zhuǎn)化等優(yōu)勢[9],體外傳代培養(yǎng)綿羊成纖維細胞能夠提供大量并穩(wěn)定的供體細胞,便于轉(zhuǎn)基因操作并得到了廣泛的應(yīng)用[10-11]。探究羊GCSF在成纖維細胞中的瞬時轉(zhuǎn)染表達及體外添加羊GCSF對成纖維細胞的影響,對深入研究以羊GCSF為分子遺傳育種靶點,培育具有高免疫力、高抗病性的羊有著重要的理論指導(dǎo)意義?!厩叭搜芯窟M展】GCSF可刺激多能干細胞的增殖和分化,延長粒細胞的存活時間,但是該蛋白的半衰期較短[12-14],一般只有不到一天的半衰期。有研究表明,通過體外注射GCSF能夠提高牛和狗的免疫力、組織器官移植的成功率、輔助生殖率及治療乳房炎等的報道[15-19]。研究發(fā)現(xiàn)磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB/AKT)以及肝激酶B1(liver kinase B1,LKB1)/AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)信號通路相關(guān)因子共同參與成纖維細胞增和殖骨骼肌生長發(fā)育等生理進程[20-21],報道顯示GCSF在PI3K/AKT通路中起到重要的調(diào)節(jié)作用[22-23]。此外,本研究團隊之前也發(fā)現(xiàn)將羊GCSF蛋白添加到體外培養(yǎng)的羊顆粒細胞中后,可以改變細胞周期,促進顆粒細胞的增殖,抑制細胞凋亡[24]?!颈狙芯壳腥朦c】GCSF表達量的差異可能與某些動物的抗病能力密切相關(guān)[15-20],但在羊上的研究較少,對其在羊成纖維細胞中的瞬時轉(zhuǎn)染表達及影響未見報道?!緮M解決的關(guān)鍵問題】轉(zhuǎn)染GCSF真核表達質(zhì)粒到羊成纖維細胞中,利用qRT-PCR方法檢測GCSF的表達水平,測試羊GCSF的生物學(xué)活性,并真核表達純化了羊GCSF蛋白;為了驗證其功能,將GCSF加入到體外培養(yǎng)的羊成纖維細胞中,通過細胞活力試驗、細胞周期試驗和凋亡試驗研究GCSF對羊成纖維細胞增殖和凋亡的影響,為今后利用羊GCSF為靶點構(gòu)建基因編輯穩(wěn)定細胞系并誘導(dǎo)全能干細胞,培育相應(yīng)的基因編輯動物,進行分子遺傳育種研究奠定基礎(chǔ)。
綿羊胚胎成纖維細胞系由中國科學(xué)院遺傳與發(fā)育生物學(xué)研究所馬潤林教授提供。HEK 293F細胞和NFS-60細胞系由中國科學(xué)院生物物理研究所王峰教授提供。真核分泌表達質(zhì)粒pRTL1-GCSF由鄭州師范學(xué)院分子生物學(xué)實驗室提供。RPMI1640培養(yǎng)基、雙抗、胰酶、293fectinTM轉(zhuǎn)染試劑、FreeStyleTM293表達培養(yǎng)基和胎牛血清(FBS)為Gibco產(chǎn)品。PageRulerTMPrestained Protein Ladder、Lipofectin 2000和碘化丙啶(propidium iodide,PI)為Lifetech產(chǎn)品。hMCSF購自義翹神州生物科技有限公司。HRP標(biāo)記的Goat Anti-Mouse IgG (H+L)和DNA marker購自北京全式金生物技術(shù)有限公司。DNA膠回收試劑盒為QIAgen產(chǎn)品。Ni-NTA凝膠購自南京金斯瑞生物科技有限公司。ECL化學(xué)發(fā)光試劑盒購自晶彩公司。Annexin-V FITC細胞凋亡檢測試劑盒購自碧云天生物技術(shù)有限公司。其他試劑為國產(chǎn)分析純試劑。引物由蘇州金唯智生物科技有限公司合成,引物序列見表1。
表1 引物序列
試驗于2019 年3月至2020年1月在河北省保定市河北農(nóng)業(yè)大學(xué)動物科技學(xué)院和河南省鄭州市鄭州師范學(xué)院分子生物學(xué)實驗室進行。
從液氮中取出保存的羊成纖維細胞,迅速在37℃的水浴中融化,立即將細胞轉(zhuǎn)移到盛有37℃預(yù)熱的含10% FBS和1%雙抗的RPMI1640完全培養(yǎng)基中重懸浮使之成為單細胞懸液。用白細胞計數(shù)板在顯微鏡下計數(shù),調(diào)整細胞密度至2×104個細胞/mL,于37℃、5% CO2條件下靜置培養(yǎng),48 h后更換培養(yǎng)液,去除未貼壁的細胞[11]。貼壁培養(yǎng)的細胞即為羊成纖維細胞,加入RPMI1640完全培養(yǎng)基繼續(xù)擴大培養(yǎng)待用。
從液氮中取出NFS-60細胞,轉(zhuǎn)移至含有62 ng·mL-1hMCSF的基礎(chǔ)培養(yǎng)基中(含有10% FBS、1%雙抗、2nmol·L-1β-巰基乙醇的RPMI1640培養(yǎng)基),方法同上,進行傳代培養(yǎng)。在GCSF生物學(xué)活性檢測前,離心收集細胞,基礎(chǔ)培養(yǎng)基洗滌細胞3次后,加入基礎(chǔ)培養(yǎng)基及含有終濃度為62 ng·mL-1hMCSF或30 ng·mL-1GCSF或0.1倍體積的待測細胞培養(yǎng)上清樣品繼續(xù)培養(yǎng)待用。
從液氮中取出HEK 293F細胞,迅速在37℃的水浴中融化,立即將細胞轉(zhuǎn)移到盛有37℃預(yù)熱的FreeStyleTM293 表達培養(yǎng)基中重懸浮使之成為單細胞懸液,用白細胞計數(shù)板在顯微鏡下計數(shù),調(diào)整細胞密度為5×104個細胞/mL,于37℃、125 r/min、8% CO2條件下振蕩培養(yǎng),72 h后100×離心收集細胞更換培養(yǎng)液。調(diào)整細胞密度為5×104個細胞/mL傳代培養(yǎng)。轉(zhuǎn)染前100×離心收集細胞更換培養(yǎng)液,調(diào)整細胞密度為1×106個細胞/mL,繼續(xù)培養(yǎng)待用。
按照2 μg質(zhì)粒對應(yīng)4.8 μL的Lipofectin 2000的劑量,進行細胞轉(zhuǎn)染。對照組用pRTL1載體質(zhì)粒,試驗組用pRTL1-GCSF質(zhì)粒,轉(zhuǎn)染至1×105個細胞/mL的羊成纖維細胞中,連續(xù)培養(yǎng)48 h,利用Trizol試劑提取轉(zhuǎn)染后24和48 h的細胞總RNA,經(jīng)NanoDrop-2000C微量核酸測定儀檢測總RNA的純度和濃度,RNA的濃度和純度達到要求,以總RNA為模板反轉(zhuǎn)錄為cDNA。
實時熒光定量(qRT-PCR)反應(yīng)體系(20 μL):cDNA 1.0 μL,上、下游引物GCSF-pF和GCSF-pR或者GAPDH-pF和GAPDH-pR(10 pmol·L-1)各0.4 μL, SYBR Green Real-time PCR Master Mix (2×)10 μL, RNase free ddH2O補足至總體積為20 μL。擴增程序為:95℃ 5 min;95℃ 15 s,60℃ 15 s,72℃ 15s,共45個循環(huán);同時以熔解曲線分析擴增產(chǎn)物的特異性,擴增程序為:95℃ 15 s,60℃ 1 min;95℃ 15 s,60℃ 15 s。每個樣本重復(fù)3次,取平均值。
為了測定GCSF的生物學(xué)活性,本研究將轉(zhuǎn)染了GCSF的羊成纖維細胞瞬時表達上清加入到GCSF依賴型細胞系NFS-60中,測試是否能促進NFS-60細胞的增殖[25]。詳情如下:pRTL1-GCSF為GCSF的分泌型真核表達質(zhì)粒,轉(zhuǎn)染羊成纖維細胞48 h后,12 000 ×離心去除細胞碎片,收集培養(yǎng)液上清測試待用。接種1×104個細胞/孔的NFS-60細胞到96孔板中,分成4個處理組:試驗組(在基礎(chǔ)培養(yǎng)基中添加了10%的pRTL1-GCSF轉(zhuǎn)染羊成纖維細胞的培養(yǎng)上清),陽性對照組(在基礎(chǔ)培養(yǎng)基中額外添加了終濃度為62 ng·mL-1的hMCSF)[26],陰性對照組(在基礎(chǔ)培養(yǎng)基中額外添加了10%的pRTL1空載轉(zhuǎn)染羊成纖維細胞培養(yǎng)上清)和空白對照組(基礎(chǔ)培養(yǎng)基),每組設(shè)3個重復(fù)孔,加樣后繼續(xù)培養(yǎng)24和48 h,分別加入10 μL alamarBlueTMHS Cell Viability Reagent試劑后在細胞培養(yǎng)箱內(nèi)繼續(xù)孵育3 h,用EnVision? multimode plate reader酶標(biāo)儀檢測Ex/Em分別為560 nm/590 nm波長下的讀值。
按照100 μg質(zhì)粒對應(yīng)200 μL的293fectinTM轉(zhuǎn)染試劑的劑量將真核表達質(zhì)粒pRTL1-GCSF轉(zhuǎn)染到HEK 293F細胞中從而表達GCSF蛋白。簡要步驟為:HEK 293F細胞在多個500 mL體積的透氣細胞搖瓶中用FreeStyleTM293培養(yǎng)基培養(yǎng)100 mL細胞至濃度為1×106個細胞/mL,轉(zhuǎn)染100 μg pRTL1-GCSF質(zhì)粒到細胞中;轉(zhuǎn)染7 d后收集細胞培養(yǎng)上清。按照說明書操作步驟通過Ni-NTA凝膠純化細胞培養(yǎng)上清中的GCSF蛋白,純化后進行SDS-PAGE檢測。
待羊成纖維細胞長至培養(yǎng)瓶的80%時用胰酶消化,并按1×105個細胞/mL分別接種于96孔板中,每孔100 μL,分成2個處理組:對照組(不添加羊GCSF的基礎(chǔ)培養(yǎng)基)和試驗組(添加了30 ng·mL-1羊GCSF蛋白的基礎(chǔ)培養(yǎng)基),每組設(shè)3個重復(fù)孔,連續(xù)培養(yǎng)2 d,每天定時加入10 μL alamarBlueTMHS Cell Viability Reagent試劑后放置在細胞培養(yǎng)箱內(nèi)繼續(xù)孵育3 h,用EnVision? multimode plate reader酶標(biāo)儀檢測Ex/Em分別為560 nm/590 nm波長下的讀值。
4 mL羊成纖維細胞按2×105個細胞/mL的密度接種于60 mm細胞培養(yǎng)皿中,測試時分成2個處理組:對照組(不添加羊GCSF的基礎(chǔ)培養(yǎng)基)和含有30 ng·mL-1GCSF蛋白的試驗組,每組設(shè)3個重復(fù)。待羊成纖維細胞孵育24和48 h后,分別用胰酶充分消化處理收集單細胞。100×離心3 min,PBS洗滌2次。細胞用1 mL PBS重懸后,加入4 mL -20℃預(yù)冷的無水乙醇對細胞進行固定,邊加邊混勻,避免細胞結(jié)團。固定細胞過夜后,離心去除固定液收集細胞,用含有2% FBS的PBS重懸細胞。加入終濃度為1 μg·mL-1的PI對細胞進行染色,避光室溫孵育15 min。用流式細胞儀進行檢測,每次計數(shù)最少2×104個細胞,NovoExpress軟件分析擬合細胞周期。
按照之前方法和分組,在對照組和試驗組收集細胞后,用含2% FBS的PBS洗滌細胞2次,100×離心5 min,棄上清,加入500 μL Binding Buffer使細胞懸浮,分別同時或單獨加入5 μL Annexin-V FITC和/或PI染液,輕輕吹打混勻,室溫(25℃)避光孵育15 min后采用流式細胞儀的FITC通道和PerCP通道調(diào)節(jié)補償后進行檢測。
采用GraphPad Prism 6.0軟件統(tǒng)計分析。細胞試驗數(shù)據(jù)以平均值±SEM表示,檢驗分析使用Multiple t tests-one per row程序,<0.01表示差異極顯著,<0.05表示差異顯著,≥0.05表示差異不顯著。定量結(jié)果根據(jù)2-ΔΔCt法[15]進行處理,用內(nèi)參基因?qū)ρ虻牟煌M織中的表達水平進行均一化處理。
pRTL1-GCSF真核表達質(zhì)粒轉(zhuǎn)染羊成纖維細胞,48 h后分別收集細胞提取總RNA,并反轉(zhuǎn)錄為cDNA。通過qRT-PCR,以為內(nèi)參,檢測其中的表達量變化。定量結(jié)果根據(jù)2-ΔΔCt法進行處理,如圖1所示。在轉(zhuǎn)染了pRTL1-GCSF的羊成纖維細胞中,的表達量是轉(zhuǎn)染了空載對照組的(50 615.92± 4 738.83)倍,表達量差異極顯著(<0.01),羊基因可以在羊成纖維細胞中得到瞬時高表達。
**代表差異極顯著(P<0.01)
將轉(zhuǎn)染了羊成纖維細胞的GCSF培養(yǎng)上清,加入到GCSF依賴型細胞系NFS-60中,測試是否能促進細胞的增殖,結(jié)果如圖2所示,試驗組、hCMSF陽性對照組中的NFS-60的熒光強度與陰性對照組和空白對照組相比顯著升高(<0.01)。試驗組中的NFS-60的熒光強度與陽性對照組相比均差異不顯著(>0.05),結(jié)果顯示羊GCSF能顯著刺激NFS-60細胞的增殖,表明在羊成纖維細胞中表達的羊GCSF具有生物學(xué)活性。
**代表差異極顯著(P<0.01),ns代表差異不顯著(P>0.05)
pRTL1-GCSF真核表達質(zhì)粒轉(zhuǎn)染HEK 293F懸浮細胞后的第7天收集細胞培養(yǎng)上清,利用6×His標(biāo)簽按照Ni-NTA標(biāo)準方法純化,進行SDS-PAGE檢測,如圖3所示,純化的蛋白符合目的條帶的大小,純度較高。
羊成纖維細胞培養(yǎng)基中添加GCSF蛋白后繼續(xù)培養(yǎng),分別在24和48 h加入10 μL alamarBlue試劑繼續(xù)孵育3 h后,酶標(biāo)儀讀值檢測。結(jié)果如圖4所示,不管是24 h還是48 h測定細胞活力,未添加GCSF的空白對照組與添加了30 ng·mL-1GCSF的試驗組相比,熒光強度差異不顯著(>0.05),表明GCSF的添加不影響羊成纖維細胞的增殖。
泳道M:PageRuler? Prestained Protein Ladder;泳道1:GCSF,箭頭指示處為純化的羊GCSF蛋白
外源添加GCSF蛋白培養(yǎng)羊成纖維細胞24 h后,細胞周期擬合結(jié)果如圖5所示,與對照組(Ctr)相比,試驗組(GCSF)G1期細胞比例由(55.29±1.68)%增加到(69.37±0.24)%,差異極顯著(<0.01);S期細胞比例由(15.99±0.38)%變?yōu)椋?5.39±0.60)%,差異不顯著(>0.05);G2/M期細胞比例顯著增多(<0.05),由(22.88±1.00)%變?yōu)椋?6.76±0.82)%。表明加入GCSF的24 h后,羊成纖維細胞處于分裂狀態(tài)和間期的細胞顯著增多。添加GCSF 48 h后,細胞周期擬合結(jié)果如圖5所示,與對照組相比試驗組G1期細胞比例由(65.96±0.37)%減少到(45.69±0.26)%,差異極顯著(<0.01);S期細胞比例由(13.45±1.33)%增加到(37.87±2.43)%,差異極顯著(<0.01);G2/M期細胞比例由(16.42±1.29)%變?yōu)椋?1.80±1.86)%,差異不顯著(>0.05)。表明48 h后加入GCSF的羊成纖維細胞處于間期的細胞顯著減少,同時DNA復(fù)制狀態(tài)的細胞顯著增多。
ns代表差異不顯著(P>0.05)
**代表差異極顯著(P<0.01),*代表差異顯著(P<0.05),ns代表差異不顯著(P>0.05)
羊成纖維細胞經(jīng)GCSF處理后,AnnexinV-FITC/PI染色,并將凋亡細胞(早期凋亡和晚期凋亡)、正?;罴毎蛪乃兰毎麉^(qū)分,如圖6所示。培養(yǎng)24 h時對照組(Ctr)和試驗組(GCSF)的凋亡率分別是(7.51±0.38)%和(9.16±0.46)%。48 h時對照組和試驗組的凋亡率分別是(5.73±0.29)%和(5.39±0.27)%。72 h時對照組和試驗組的凋亡率分別是(8.88±0.45)%和(5.41±0.27)%。試驗組凋亡率和對照組相比,24 和72 h檢測時凋亡率差異極顯著(<0.01),48 h檢測時凋亡率差異不顯著(>0.05),表明在GCSF添加的24 h內(nèi)促進了細胞凋亡,隨著時間的延長,細胞的凋亡受到抑制。
Q2-4:早期凋亡細胞;Q2-2:晚期凋亡細胞;Q2-3:正?;罴毎?;Q2-1:壞死細胞
GCSF是造血細胞生長因子中的一個重要組成部分,在血細胞生成調(diào)節(jié)機制中具有重要意義。GCSF刺激特定骨髓前體細胞增殖以及分化成粒細胞[27],并激活中性粒細胞的成熟[15, 28],支持造血祖細胞的增殖[1-3]。此外,中性粒細胞是宿主針對細菌和真菌感染防御機制的關(guān)鍵組分,增強中性粒細胞的功能,促進損傷愈合[29]。在細菌感染后,其宿主動物機體受到刺激產(chǎn)生GCSF并促進白細胞的分化與增殖的機制可以用于避免抗生素使用的治療,有報道顯示暴露于鏈球菌的豬在注射給藥GCSF后的存活時間更長[30]。另外,有報道顯示感染了犬皰疹病毒的狗在常規(guī)治療之外聯(lián)合注射了重組犬GCSF后的治療費用與不聯(lián)合用藥相比更少[31]。1991年美國FDA最早批準重組人GCSF上市,我國已批準18家制藥企業(yè)生產(chǎn)重組人粒細胞集落刺激因子(rhG-CSF),批準文號有69個[32-34]。由大腸桿菌產(chǎn)生的非糖基化重組人粒細胞集落刺激因子在骨髓移植后的康復(fù)中被廣泛應(yīng)用于治療多種嚴重的人類疾病,目前已經(jīng)廣泛用于預(yù)防和治療癌癥、出血熱等疾病引起的白細胞缺少癥,并用于維持外周血干細胞(PBSC)的細胞數(shù)量[35-37]。有研究報道機體中GCSF的表達量差異可能與某些動物的抗病能力密切相關(guān),有研究報道機體中GCSF的表達量差異可能與某些動物的抗病能力密切相關(guān),在體外細胞試驗中可以刺激包括人、牛、小鼠和狗等多物種來源的粒細胞增殖,通過體外注射重組人或牛的GCSF蛋白可以提高人和牛等生物的免疫力,提高輔助生殖率及治療乳房炎等[15-19, 38],到目前為止,僅有兩種綿羊GCSF的預(yù)測基因序列可以在GenBank的網(wǎng)站中搜索到。但尚無真核表達羊GCSF和該蛋白用于羊的遺傳育種方面的研究。本研究將為利用羊GCSF為靶點構(gòu)建基因編輯穩(wěn)定細胞系并誘導(dǎo)全能干細胞,培育相應(yīng)的基因編輯動物,進行分子遺傳育種提供理論基礎(chǔ)。
本研究將真核分泌表達質(zhì)粒pRTL1-GCSF轉(zhuǎn)染到羊成纖維細胞中發(fā)現(xiàn)轉(zhuǎn)染效率及熒光強度并不高。而利用相同載體骨架的報告基因替換GCSF基因轉(zhuǎn)染細胞,鏡檢結(jié)果顯示有大約一半的細胞可以在GFP通道的熒光顯微鏡下產(chǎn)生熒光。在mRNA水平上,通過qRT-PCR檢測pRTL1-GCSF的轉(zhuǎn)染,發(fā)現(xiàn)羊的表達量卻顯著升高。因此推測羊在成纖維細胞中的表達量低,與轉(zhuǎn)染效率無關(guān),可能是由于其半衰期較短的原因所致。轉(zhuǎn)染的細胞培養(yǎng)上清(48 h)通過GCSF生物學(xué)活力檢測發(fā)現(xiàn),10倍比稀釋上清中GCSF的生物學(xué)活力與添加的陽性對照hMCSF(62 ng·mL-1)蛋白活力相當(dāng),證明功能性羊GCSF蛋白可以分泌表達到羊成纖維細胞培養(yǎng)基上清中,雖然分泌表達的GCSF蛋白量相對較低,但是較低劑量的GCSF足以發(fā)揮其生物學(xué)功能,盡管如此,在后期對以GCSF為靶標(biāo)的分子遺傳育種或蛋白商業(yè)化應(yīng)用可以嘗試使用其他的信號肽或表達形式來提高分泌蛋白的表達量及穩(wěn)定性。
有研究表明GCSF作為一種生物大分子,與其受體GCSF-R結(jié)合,相互作用后將信號傳導(dǎo)進入細胞[39]。GCSF作為集落刺激因子的糖蛋白生長因子家族中的重要組成成員,可能和生長激素發(fā)揮作用的機制相似,但這需要進一步驗證。羊GCSF可以促進粒細胞增殖[24],而本研究結(jié)果顯示其難以改變羊成纖維細胞的增殖。由于羊成纖維細胞較為穩(wěn)定,有望通過成纖維細胞作為載體工具,將GCSF作為靶標(biāo)用于羊的分子育種。細胞增殖和凋亡與細胞周期息息相關(guān),前期研究顯示,GCSF的添加促進顆粒細胞的增殖,抑制了顆粒細胞的凋亡,S期細胞顯著減少,G2/M期細胞顯著增加,處于分裂狀態(tài)的細胞顯著增加,在GCSF的動員下,顆粒細胞分裂速度加快,細胞周期的分布顯著改變[24]。而本研究結(jié)果顯示,羊成纖維細胞經(jīng)GCSF處理后,細胞增殖情況差異不顯著,但流式細胞術(shù)驗證的細胞周期和凋亡結(jié)果顯示不同時間段檢測的羊成纖維細胞的細胞周期都有顯著差異。GCSF處理前期處于分裂狀態(tài)的細胞顯著增加,隨著處理時間的延長,到后期處于間期的細胞顯著減少,同時DNA復(fù)制狀態(tài)的細胞顯著增加。而在細胞凋亡試驗中,前期24 h內(nèi)促進了細胞凋亡,隨著時間的延長,細胞的凋亡受到抑制。這可能是與GCSF的半衰期較短,刺激各種抗凋亡因子的時效性差所導(dǎo)致的,同時,也可能解釋了GCSF加入到羊成纖維細胞后,由于羊成纖維細胞細胞周期和細胞凋亡在前期和后期的平衡調(diào)節(jié),從而不影響細胞的增殖。追蹤其機制,有研究顯示,GCSF可以在大鼠腦溢血模型中通過PI3K/AKT通路顯著調(diào)高抗凋亡因子B細胞淋巴瘤-2(B cell lymphoma-2,Bcl-2)和血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)的表達,抑制促凋亡因子caspase-3的表達,從而影響細胞生長和凋亡[23, 40-41]。本研究在外源添加GCSF到羊成纖維細胞的培養(yǎng)基中后,細胞周期和細胞凋亡狀態(tài)都有一定的變化,也很可能是通過相同或相似的分子機制產(chǎn)生的調(diào)節(jié)作用,具體情況還有待于進一步研究驗證。
羊粒細胞集落刺激因子可以在羊成纖維細胞中瞬時過量表達并具有生物學(xué)活性;它不影響羊成纖維細胞的增殖,但可調(diào)控羊成纖維細胞的周期,影響細胞凋亡。
[1] BEGLEY C G, LOPEZ A F, NICOLA N A, WARREN D J, VADAS M A, SANDERSON C J, METCALF D. Purified colony-stimulating factors enhance the survival of human neutrophils and eosinophils in vitro: a rapid and sensitive microassay for colony-stimulating factors. Blood, 1986, 68(1): 162-166.
[2] CLARK S C, KAMEN R. The human hematopoietic colony- stimulating factors. Science, 1987, 236(4806): 1229-1237.
[3] AVALOS B R, GASSON J C, HEDVAT C, QUAN S G, BALDWIN G C, WEISBART R H, WILLIAMS R E, GOLDE D W, DIPERSIO J F. Human granulocyte colony-stimulating factor: biologic activities and receptor characterization on hematopoietic cells and small cell lung cancer cell lines. Blood, 1990, 75(4): 851-857.
[4] 柯敏霞, 紀猛, 王皓, 洪丹萍, 吳月紅, 齊念民. 干細胞模型研究進展及商業(yè)化應(yīng)用的現(xiàn)狀. 中國組織工程研究, 2018, 22(5): 766-773.
KE M X, JI M, WANG H, HONG D P, WU Y H, QI N M. Stem cell models for commercialization. Chinese Journal of Tissue Engineering Research, 2018, 22(5): 766-773. (in Chinese)
[5] 王聰慧, 趙帥, 張譯元, 王立民, 李煒杰, 趙興旺, 丁新平, 張銀國, 周平. 電穿孔轉(zhuǎn)染制備綿羊誘導(dǎo)多潛能干細胞條件的優(yōu)化. 西北農(nóng)業(yè)學(xué)報, 2015, 24(9): 9-15.
WANG C H, ZHAO S, ZHANG Y Y, WANG L M, LI W J, ZHAO X W, DING X P, ZHANG Y G, ZHOU P. Optimization of inducting pluripotent stem cells by electroporation in sheep. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(9): 9-15. (in Chinese)
[6] 王峰, 劉燦, 潘傳英. 大家畜誘導(dǎo)多潛能干細胞(iPSCs)研究進展. 農(nóng)業(yè)生物技術(shù)學(xué)報, 2014, 22(10): 1286-1297.
WANG F, LIU C, PAN C Y. Progress of induced pluripotent stem cells (iPSCs) of big domestic animals. Journal of Agricultural Biotechnology, 2014, 22(10): 1286-1297. (in Chinese)
[7] 邰大鵬. 阿爾巴斯白絨山羊誘導(dǎo)性多潛能干細胞生成的研究[D]. 呼和浩特: 內(nèi)蒙古大學(xué), 2016.
TAI D P. Research on generation of arbas cashmere goat induced pluripotent stem cells [D]. Huhehaote: Inner Mongolia University, 2016. (in Chinese)
[8] 王聰慧. 綿羊誘導(dǎo)多能性干細胞的制作與鑒定研究 [D]. 石河子:石河子大學(xué), 2015.
WANG C H. Production and identification of sheep induced pluripotent stem cells [D]. Shihezi: Shihezi University, 2015. (in Chinese)
[9] 李海紅, 周崗, 付小兵, 屈振亮, 孫同柱, 顧紹峰. 人皮膚成纖維細胞的培養(yǎng)和鑒定. 中國危重病急救醫(yī)學(xué), 2005(2): 89-91+63.
LI H H, ZHOU G, FU X B, QU Z L, SUN T Z, GU S F. Culture and identification of human skin fibroblasts. Chinese Critical Care Medicine, 2005(2): 89-91+63. (in Chinese)
[10] CIBELLI J B, STICE S L, GOLUEKE P J, KANE J J, JERRY J, BLACKWELL C, PONCE DE LEON F A, ROBL J M. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 1998, 280(5367): 1256-1258.
[11] 黃蘭蘭, 石國慶, 白潔. 綿羊胚胎成纖維細胞的體外培養(yǎng). 黑龍江動物繁殖, 2006, 14(2): 4-5.
HUANG L L, SHI G Q, BAI J.culture of sheep embryonic fibroblasts. Heilongjiang Journal of Animal Reproduction, 2006, 14(2): 4-5. (in Chinese)
[12] DO B H, KANG H J, SONG J A, NGUYEN M T, PARK S, YOO J, NGUYEN A N, KWON G G, JANG J, JANG M, LEE S, SO S, SIM S, LEE K J, OSBORN M J, CHOE H. Granulocyte colony-stimulating factor (GCSF) fused with Fc Domain produced fromis less effective than Polyethylene Glycol-conjugated GCSF. Scientific Reports, 2017, 7(1): 1-9.
[13] HATFIELD K J, MELVE G K, BRUSERUD O. Granulocyte colony-stimulating factor alters the systemic metabolomic profile in healthy donors. Metabolomics, 2017, 13(1): 2.
[14] ICHINOSE Y, HARA N, OHTA M, ASO H, CHIKAMA H, KAWASAKI M, KUBOTA I, SHIMIZU T, YAGAWA K. Recombinantgranulocyte colony-stimulating factor and lipopolysaccharide maintain the phenotype of and superoxide anion generation by neutrophils. Infection and Immunity, 1990, 58(6): 1647-1652.
[15] CULLOR J S, SMITH W, FAIRLEY N, WOOD S L, DELLINGER J D, SOUZA L. Effects of human recombinant granulocyte colony stimulating factor (HR-GCSF) on the hemogram of lactating dairy cattle. Veterinary Clinical Pathology, 1990, 19(1): 9-12.
[16] NIKOLAY N, EVELIINA P, ANTTI K, RAISA G, ANASTASIA S, ANASTASIA S, JOHANNA M, JARI K, JARI K, RASHID G. Gender specific mechanism of synaptic impairment and its prevention by GCSF in a mouse model of ALS. Frontiers in Cellular Neuroscience, 2011, 5: 26.
[17] MISHRA V V, CHOUDHARY S, SHARMA U, AGGARWAL R, AGARWAL R, GANDHI K, GORANIYA N. Effects of Granulocyte Colony-Stimulating Factor (GCSF) on persistent thin endometrium in Frozen Embryo Transfer (FET) cycles. Journal of Obstetrics and Gynaecology of India, 2016, 66(Suppl 1): 407-411.
[18] 安娜-瑪莉亞·A. ·海斯·蒲楠, 尼克·克努森, 席雅·諾曼, 愛倫·柯欽, 瓦迪姆·克賴諾夫, 莉蓮·何, 彼德·C. ·康寧. 經(jīng)修飾的牛G-CSF多肽和其用途. CN102159230A, 2011-08-17.
HAYS P A M A, KNUDSEN N, NORMAN T, KODER A, KRAYNOV V, HO L, CANNING P C. Modified bovine g-csf polypeptides and their uses. China. CN102159230A, 2011-08-17. (in Chinese)
[19] ZHANG Y, AXIAK-BECHTEL S, FRIEDMAN COWAN C, AMORIM J, TSURUTA K, DECLUE A E. Evaluation of immunomodulatory effect of recombinant human granulocyte-macrophage colony-stimulating factor on polymorphonuclear cell from dogs with cancer. Veterinary and Comparative Oncology, 2017, 15(3): 968-979.
[20] 張薇, 許嵩, 張治芬. M-CSF對卵泡顆粒細胞功能調(diào)節(jié)及其分子機制. 醫(yī)學(xué)研究雜志, 2016, 45(1): 100-105.
ZHANG W, XU S, ZHANG Z F. Involvement of macrophage colony-stimulating factor (M-CSF) in the function of follicular granulosa cells and its molecular mechanism. Journal of Medical Research, 2016, 45(1): 100-105. (in Chinese)
[21] 王欣悅, 石田培, 趙志達, 胡文萍, 尚明玉, 張莉. 基于綿羊胚胎骨骼肌蛋白質(zhì)組學(xué)的PI3K-AKT信號通路分析. 中國農(nóng)業(yè)科學(xué), 2020, 53(14): 2956-2963.
WANG X Y, SHI T P, ZHAO Z D, HU W P, SHANG M Y, ZHANG L. The analysis of PI3K-AKT signal pathway based on the proteomic results of sheep embryonic skeletal muscle. Scientia Agricultura Sinica, 2020, 53(14): 2956-2963. (in Chinese)
[22] 李婷, 馬愛團, 張英杰, 劉月琴, 段春輝. RNA干擾INHα基因?qū)d羊顆粒細胞周期及凋亡相關(guān)基因表達的影響. 畜牧獸醫(yī)學(xué)報, 2017, 48(8): 1551-1556.
LI T, MA A T, ZHANG Y J, LIU Y Q, DUAN C H. Effects of silencing INHα gene by RNAi on cycle, apoptosis-related genes in sheep granulosa cells. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(8): 1551-1556. (in Chinese)
[23] LIANG S D, MA L Q, GAO Z Y, ZHUANG Y Y, ZHAO Y Z. Granulocyte colony-stimulating factor improves neurological function and angiogenesis in intracerebral hemorrhage rats. European Review for Medical and Pharmacological Sciences, 2018, 22(7): 2005-2014.
[24] 李閏婷, 陳龍欣, 張麗萌, 何海迎, 王泳, 楊若晨, 段春輝, 劉月琴, 王玉琴, 張英杰. 綿羊粒細胞集落刺激因子原核表達與提純及用于顆粒細胞培養(yǎng)的效果. 生物工程學(xué)報, 2020, 36(9): 1817-1827. doi. org/ 10. 13345/j. cjb. 190584.
LI R T, CHEN L X, ZHANG L M, HE H Y, WANG Y, YANG R C, DUAN C H, LIU Y Q, WANG Y Q, ZHANG Y J. Prokaryotic expression and purification of sheep granulocyte colony stimulating factor and its effect on granulosa cell. Chinese Journal of Biotechnology, 2020, 36(9): 1817-1827. doi. org/10. 13345/j. cjb. 190584. (in Chinese)
[25] BAI Y, ANN D K, SHEN W C. Recombinant granulocyte colony- stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(20): 7292-7296.
[26] CUPP J S, MILLER M A, MONTGOMERY K D, NIELSEN T O, O'Connell J X, HUNTSMAN D, van de R M, GILKS C B, West R B. Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and other reactive synovitides. The American Journal of Surgical Pathology, 2007, 31(6): 970-976.
[27] ZHAI S Z, GUO H D, LI S Q, ZHAO X S, WANG Y, XU L P, LIU K Y, HUANG X J, CHANG Y J. Effects of granulocyte colony- stimulating factor on proliferation and apoptosis of B cells in bone marrow of healthy donors. Transplantation Proceedings, 2020, 52(1): 345-352.
[28] MICKIENE G, DALGEDIENE I, DAPKUNAS Z, ZVIRBLIS G, PESLIAKAS H, KAUPINIS A, VALIUS M, MISTINIENE E, PLECKAITYTE M. Construction, purification, and characterization of a Homodimeric Granulocyte colony-stimulating factor. Molecular Biotechnology, 2017, 59(9/10): 374-384.
[29] YAN J J, RYU J H, PIAO H, HWANG J H, HAN D, LEE S K, JANG J Y, LEE J, KOO T Y, YANG J. Granulocyte colony-stimulating factor attenuates renal ischemia-reperfusion injury by inducing myeloid- derived suppressor cells. Journal of the American Society of Nephrology, 2020, 31(4): 731-746.
[30] BROCKMEIER S L, LOVING C L, EBERLE K C, HAU S J, MOU K T, KEHRLI M E JR. Administration of granulocyte-colony stimulating factor (G-CSF) to pigs results in a longer mean survival time after exposure to. Veterinary Microbiology, 231: 116-119.
[31] ARMENISE A, TREROTOLI P, CIRONE F, DE NITTO A, DE SARIO C, BERTAZZOLO W, PRATELLI A, DECARO N. Use of recombinant canine granulocyte-colony stimulating factor to increase leukocyte count in dogs naturally infected by canine parvovirus. Veterinary Microbiology, 2019, 231: 177-182.
[32] FRASER J K, GUERRA J J, NGUYEN C Y, INDES J E, GASSON J C, NIMER S D. Characterization of a cell-type-restricted negative regulatory activity of the human granulocyte-macrophage colony- stimulating factor gene. Molecular and Cellular Biology, 1994, 14(3): 2213-2221.
[33] PYKHTINA M B, ROMANOV V P, MIROSHNICHENKO S M, BEKLEMISHEV A B. Construction of astrain efficiently producing recombinant human granulocyte-colony stimulating factor (rhG-CSF) and study of its biological activity on bone marrow cells. Molecular Biology Reports, 2020, 47(1): 607-620.
[34] 付瑤. 人粒細胞集落刺激因子的基因合成、原核表達與活性研究 [D]. 長春: 吉林大學(xué), 2011.
FU Y. Gene synthesis, prokaryotic expression and activity of human granulocyte colony stimulating factor [D]. Changchun: Jilin University, 2011. (in Chinese)
[35] WU Y F, GU M H, YANG S H, WANG T F. Lower platelet count with increased density of platelet antigens in granulocyte colony- stimulating factor mobilized peripheral blood stem cell donors. Journal of the Formosan Medical Association, 2020, 119(1 Pt 2): 204-210.
[36] STEPHENS J M, BENSINK M, BOWERS C, HOLLENBEAK C S. Risks and consequences of travel burden on prophylactic granulocyte colony-stimulating factor administration and incidence of febrile neutropenia in an aged medicare population. Current Medical Research and Opinion, 2019, 35(2): 229-240.
[37] MODI J, MENZIE-SUDERAM J, XU H, TRUJILLO P, MEDLEY K, MARSHALL M L, TAO R, PRENTICE H, WU J Y. Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. Journal of Biomedical Science, 2020, 27(1): 19.
[38] PUTZ E J, EDER J M, REINHARDT T A, SACCO R E, CASAS E, LIPPOLIS J D. Differential phenotype of immune cells in blood and milk following pegylated granulocyte colony-stimulating factor therapy during a chronicinfection in lactating Holsteins. Journal of Dairy Science, 2019, 102(10): 9268-9284.
[39] DENIZ Y K, BURCU A, AKKIZ ? Y, ?zdemir H H, SIVI? ? Z, HüSEYIN O, FERDA ?. Congenital neutropenia patient with hypomorphic biallelic CSF3R mutation responding to GCSF. Journal of Pediatric Hematology/Oncology, 2019, 41(3): 190-192.
[40] 關(guān)雪蓮, 侯麗淳, 楊慧, 胡婧, 王辰, 王秀萍, 畢勝, 許曉燕, 王昆祥, 和梅. G-CSF對大鼠腦出血周邊組織bcl-2、caspase-3表達的影響. 中風(fēng)與神經(jīng)疾病雜志, 2015, 32(6): 511-513.
GUAN X L, HOU L C, YANG H, HU J, WANG C, WANG X P, BI S, XU X Y, WANG K X, HE M. Effects of G-CSF on expression of bcl-2 and caspase-3 around hematoma on acute intracerebral hemorrhage (ICH) in rats. Journal of Apoplexy and Nervous Diseases, 2015, 32(6): 511-513. (in Chinese)
[41] 姚一龍, 李隱俠, 安外爾·熱合曼, 張俊, 孟春花, 王慧利, 錢勇, 曹少先. 湖羊Sp1基因CDS區(qū)克隆及其對顆粒細胞增殖和凋亡的影響. 畜牧獸醫(yī)學(xué)報, 2017, 48(11): 2098-2106.
YAO Y L, LI Y X, REHEMAN·A, ZHANG J, MENG C H, WANG H L, QIAN Y, CAO S X. Cloning of Sp1 Gene CDS region of Hu sheep and its effect on proliferation and apoptosis of granulosa cell. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(11): 2098-2106. (in Chinese)
Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts
LI RunTing1,2, CHEN LongXin2, ZHANG LiMeng1,2, HE HaiYing1, WANG Yong1, YANG RuoChen1, DUAN ChunHui1, LIU YueQin1, WANG YuQin3, ZHANG YingJie1
1College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei;2Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044;3College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, Henan
【】 The purpose of this paper is to study the transient expression of granule cell stimulating factor (GCSF) in ovarian fibroblast cells, and the influence of GCSF on proliferation, cell cycle, and apoptosis, to provide theoretical basis for molecular genetic breeding of sheep pluripotent stem cells induced by GCSF in the future. 【】 The sheep GCSF eukaryotic expression plasmid pRTL1-GCSF and the control vector plasmid pRTL1 were transfected into 1×105cells·mL-1sheep fibroblasts respectively. After 48 h of culture, the total RNA was extracted by Trizol method and reverse transcribed into cDNA. The transient expression level of sheep GCSF in fibroblasts was detected by real-time quantitative PCR. GCSF dependent cell line NFS-60 was used for the biological activity of GCSF secreted and expressed in the supernatant of sheep fibroblasts 48 hours after transfection, which was determined by cell viability detection reagent alamarBlue. The HEK 293F suspension culture was used to express the secreted GCSF protein. The GCSF protein expressed in the cell culture medium was purified by Ni-NTA resin and detected by SDS-PAGE. After adding the 30 ng·mL-1purified GCSF protein, the proliferation of sheep fibroblasts was detected by alamarBlue at 24 h and 48 h, and the cell cycle and apoptosis of sheep fibroblasts were detected by flow cytometry. 【】 The expression level of GCSF in sheep fibroblasts was significantly increased after transfection for 48 h. In sheep fibroblasts, the expression level of GCSF transfected with pRTL1-GCSF plasmid was 50 615.92 ± 4 738.83 of that of pRTL1 empty control group. The fluorescence intensity of NFS-60 in the experimental group and positive control group was significantly higher than that in the negative control group and blank control group (<0.01), but there was no significant difference between the experimental group and the positive control group (>0.05). The results showed that sheep GCSF could significantly stimulate the proliferation of NFS-60 cells, indicating that the GCSF expressed in sheep fibroblasts had biological activity. After eukaryotic expression of secretory GCSF protein in HEK 293f cell line, the sheep GCSF protein was purified. After 30 ng·mL-1sheep GCSF was added to sheep fibroblasts, the cell viability of GCSF test group was not significantly different from that of culture medium dilution control group for 24 h and 48 h, but the distribution of cell cycle was significantly changed. At 24 h, compared with the control group, the proportion of G1 phase cells increased from (55.29±1.68)% to (69.37±0.24)%, the difference was very significant (<0.01); the proportion of S phase cells changed from (15.99±0.38)% to (15.39±0.60)%, the difference was not significant (>0.05); G2/M phase cells increased significantly (<0.05), and the proportion increased from (22.88±1.00)% to (26.76±0.82)%. The results showed that 24 hours after the addition of sheep GCSF, the number of cells in division and interphase increased significantly. At 48 h, compared with the control group, the proportion of G1 phase cells decreased from (65.96±0.37)% to (45.69±0.26)%, the difference was very significant (<0.01); the proportion of S phase cells increased from (13.45±1.33)% to (37.87±2.43)%, the difference was very significant (<0.01); the proportion of G2/M phase cells changed from (16.42±1.29)% to (21.80±1.86)%, the difference was not significant (>0.05). The results showed that the number of cells in interphase was significantly decreased and the number of cells in DNA replication state increased significantly at 48 h after adding GCSF. Compared with the control group, the apoptosis rates of the control group (Ctr) and the experimental group (GCSF) were (7.51±0.38)% and (9.16±0.46)% respectively at 24 h culture. At 48 h, the apoptosis rates of the control group and the experimental group were (5.73±0.29)% and (5.39±0.27)%, respectively. At 72 h, the apoptosis rates of control group (Ctr) and experimental group (GCSF) were (8.88±0.45)% and (5.41±0.27)%, respectively. There was a significant difference between 24 h and 72 h (<0.01), but there was no significant difference at 48 h (>0.05).The results showed that GCSF promoted the apoptosis within 24 hours, and the apoptosis was inhibited with the prolongation of time. 【】 In conclusion, sheep fibroblasts can express GCSF instantaneously and have biological activity. GCSF did not affect the proliferation of sheep fibroblasts, but could regulate its cell cycle and affect cell apoptosis. The results laid a foundation for breeding sheep with high immunity and disease resistance by GCSF mediated by sheep fibroblasts.
GCSF; sheep; transformation; bio-activity; cell cycles; apoptosis
10.3864/j.issn.0578-1752.2021.11.015
2020-05-11;
2020-10-29
國家現(xiàn)代農(nóng)業(yè)(肉羊)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-38和CARS-39)、國家重點研發(fā)計劃項目(2018YFD0502100)
李閏婷,E-mail:rtli1672@126.com。通信作者張英杰,E-mail:zhangyingjie66@126.com
(責(zé)任編輯 林鑒非)