• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      玉米莖稈抗倒伏遺傳的研究進展

      2021-06-16 01:13:12王夏青宋偉張如養(yǎng)陳怡凝孫軒趙久然
      中國農(nóng)業(yè)科學 2021年11期
      關鍵詞:細胞壁莖稈突變體

      王夏青,宋偉,張如養(yǎng),陳怡凝,孫軒,趙久然

      玉米莖稈抗倒伏遺傳的研究進展

      王夏青,宋偉,張如養(yǎng),陳怡凝,孫軒,趙久然

      北京市農(nóng)林科學院玉米研究中心/玉米DNA指紋及分子育種北京市重點實驗室,北京 100097

      莖稈倒伏嚴重影響玉米產(chǎn)量、品質(zhì)和機械化收獲,是當前玉米生產(chǎn)和育種亟待解決的主要問題之一。加強對玉米莖稈抗倒伏性的研究,對提高品種抗倒伏能力具有重要意義。本文綜述了玉米莖稈倒伏的主要影響因素及其遺傳特征。莖稈倒伏與莖稈自身的強度密切相關。莖稈強度越高,抗倒伏性越強。莖稈強度受莖稈所處的發(fā)育階段、莖稈內(nèi)部結(jié)構和外部形態(tài),及其細胞壁成分等影響。處于分生組織的莖稈細胞分裂旺盛,較易折斷,而進入生殖生長后,莖稈表皮、厚壁組織增厚,維管束發(fā)育成熟,對莖稈的支撐作用增強。莖稈細胞壁的主要成分——纖維素、半纖維素、木質(zhì)素、可溶性糖、無機物等均可提升莖稈強度。目前,研究者借助高通量表型平臺,利用玉米連鎖群體和自交系群體,采用各種定位方法,鑒定到一系列影響莖稈形態(tài)、強度、細胞壁成分的相關QTL和候選基因。研究表明,基于單倍型的QTL定位方法比基于單個SNP的定位效果好。一致性QTL分析將不同遺傳群體的研究整合到一起,能夠提高QTL結(jié)果的通用性。莖稈強度的遺傳基礎復雜,受微效多基因控制,位點間具有加性效應。莖稈成分QTL中的候選基因涉及細胞壁代謝、轉(zhuǎn)錄因子、蛋白激酶等。MAIZEWALL是玉米細胞壁相關基因的重要數(shù)據(jù)庫。目前該數(shù)據(jù)庫包含1 156個玉米細胞壁生物學相關的候選基因,為該領域的深入研究提供強大的資源。已鑒定到一系列影響玉米莖稈細胞壁成分、莖稈形態(tài)和強度的基因,其功能涉及纖維素合成路徑,如纖維素合成酶類、Cobra類、糖基轉(zhuǎn)移酶和核糖轉(zhuǎn)運蛋白類;苯丙烷路徑基因,如控制—的相關基因;植物激素類,如赤霉素、生長素、油菜素甾醇相關基因;轉(zhuǎn)錄因子如NAC、MYB;miRNA()以及F-box基因()等。今后應積極探索不同發(fā)育時期玉米莖稈倒伏的力學機制;廣泛發(fā)展自然群體或育種群體進行遺傳分析;采取多種定位策略,提高抗倒伏相關基因鑒定的功效;針對優(yōu)良等位基因,開發(fā)各類分子標記,加強抗倒伏分子標記輔助選擇。本文將為玉米莖稈抗倒伏遺傳機制解析及抗倒伏玉米品種的分子育種提供參考。

      玉米;倒伏;莖稈;細胞壁;遺傳研究

      近年來,中國玉米育種水平發(fā)展迅速,籽粒機械化直收進程加快,但不利氣候因素持續(xù)增多,由此帶來的倒伏問題對玉米生產(chǎn)的影響日益突出,成為限制玉米高產(chǎn)穩(wěn)產(chǎn)和節(jié)本增效的主要問題之一[1]。當前中國正處于從傳統(tǒng)農(nóng)業(yè)向現(xiàn)代化農(nóng)業(yè)轉(zhuǎn)型的關鍵時期,提高玉米品種莖稈抗倒伏性將會有效促進收獲方式的變革,提高資源利用率和勞動生產(chǎn)力,降低生產(chǎn)成本和大面積減產(chǎn)的風險,增強中國玉米市場競爭力。

      隨著玉米遺傳研究手段的快速發(fā)展,國內(nèi)外學者致力于利用基因組學、表型組學等多組學與傳統(tǒng)遺傳學相結(jié)合的手段,對莖稈發(fā)育、莖稈強度、形態(tài)及成分等影響玉米莖稈抗倒伏相關性狀的生理、生化和遺傳特性進行較為深入的研究,促進了莖稈抗倒相關基因的克隆及其功能解析。

      1 莖稈倒伏的發(fā)生與危害

      倒伏是植株莖稈從自然直立狀態(tài)到永久錯位的現(xiàn)象。倒伏破壞植物原有的空間分布,影響植株的光合葉面積及水分和養(yǎng)分運輸;同時還會造成葉片、莖稈的損傷,促使病原菌和昆蟲入侵,加劇病蟲害發(fā)生,影響機械化作業(yè),最終導致作物產(chǎn)量、品質(zhì)和生產(chǎn)效率大幅降低[2]。據(jù)統(tǒng)計,中國每年因倒伏造成玉米產(chǎn)量損失近100萬t[3]。玉米倒伏率每增加1%,減產(chǎn)約108 kg·hm-2[4]。倒伏的發(fā)生主要受種植條件和品種特性影響。種植條件主要有風力和降雨等氣候環(huán)境、種植密度和時間等種植方式、施肥量和生長調(diào)節(jié)劑等管理措施[5];品種特性主要包括植株的根系結(jié)構、株型結(jié)構、莖稈特性等[6-7]。

      倒伏是一類較為復雜的性狀,可發(fā)生在玉米生長的全生育期,包括苗期、拔節(jié)期、抽雄期、灌漿期、成熟期等。根據(jù)倒伏的部位,可分為根倒伏和莖倒伏。根倒伏是指植株不折斷、不彎曲,從地表處連同根系一起傾斜歪倒(圖1-A)。根倒伏容易在排水不良的土壤條件下發(fā)生,并且植株自身不能恢復直立生長[8]。莖倒伏包括莖彎曲和莖折。莖彎曲是指莖稈彎曲和傾斜,一般發(fā)生在土壤緊實,且植株遭遇大風和降雨情況下(圖1-B)。莖折是指植株從地上部某個節(jié)或節(jié)間處發(fā)生折斷(圖1-C)。據(jù)統(tǒng)計,玉米倒伏中30%—60%為莖倒伏,且莖折對產(chǎn)量的影響最大[5,8]。抽雄前期發(fā)生莖折的部位大多在穗位節(jié)或穗上一節(jié)的基部[9](圖1-C)。在玉米進入灌漿階段,莖稈會把自身儲存的有機物不斷運往籽粒,可能會引起莖稈填充物減少,難以支撐果穗,促使穗下尤其是基部第3節(jié)莖折,造成產(chǎn)量損失,并影響玉米機械化收獲[1-2](圖1-D—圖1-F)。

      A:拔節(jié)期玉米根倒;B:抽雄前期莖彎曲和莖折;C:抽雄前期莖折;D:灌漿期的根莖復合倒伏;E:籽粒成熟后根倒伏和莖彎曲;F:籽粒成熟后莖稈基部第3節(jié)莖折

      2 玉米莖稈抗倒伏的研究

      2.1 莖稈抗倒伏的形態(tài)、生理及生化特征

      莖稈在自然狀態(tài)下的倒伏率是植株抗倒伏性的最直接表型,但該性狀的影響因素較多,難以準確鑒定,因此,大部分研究用莖稈機械強度來評價植株的抗倒伏能力。莖稈機械強度反映莖稈的承受力,分為莖稈硬度和莖稈柔韌度。莖稈硬度可以通過莖皮穿刺強度、莖稈彎折強度、莖稈彎曲強度等指標來評價,這些指標數(shù)值越大表明莖稈硬度越高[10-13]。莖稈的柔韌度可以通過莖稈彎折角度來評價。在相同的環(huán)境下,莖稈彎折角度越大,柔韌性越好,抗風性越好。相反,柔韌性較差的莖稈通常較脆,易出現(xiàn)莖折[14]。莖稈強度受多方面因素影響,除了病蟲害以外,更重要的是莖稈自身特性,包括莖稈所處的發(fā)育階段、莖稈內(nèi)部結(jié)構特征、莖稈長度、粗度及其細胞壁成分等。

      莖稈的發(fā)育涉及諸多重要的生物學過程,如細胞分裂、細胞壁合成及維管束形成等。莖稈由節(jié)間和節(jié)點組成的多個重復單元構成,這些重復單元間存在較強的時空特異性[15]。玉米任意一節(jié)莖稈均可以分為4個區(qū)域,即居間分生組織區(qū)、細胞伸長區(qū)、過渡區(qū)和成熟區(qū)[9,16-17]。居間分生組織位于節(jié)間基部,具有較強的分裂能力,產(chǎn)生的大部分細胞最終發(fā)育成零散的維管束、內(nèi)皮層、厚壁組織等[18]。細胞伸長區(qū)靠近居間分生組織,該區(qū)域細胞不斷膨大,初生細胞壁開始合成。過渡區(qū)位于伸長區(qū)之上,其細胞膨脹減慢并且次生細胞壁開始形成。成熟區(qū)位于每節(jié)莖稈的頂部位置,其細胞擴張停止[15]。在不同生長時期,莖稈各發(fā)育區(qū)域的細胞壁成分存在較大差異。玉米抽雄前期,分生組織區(qū)的DNA和蛋白質(zhì)合成旺盛,而纖維素、半纖維素、木質(zhì)素和次生代謝物積累較少,導致該區(qū)域易折[9]。當玉米進入生殖生長后,分生組織區(qū)的次生細胞壁開始積累,莖稈硬度明顯提高,斷裂的情況減少[9]。

      發(fā)育成熟的玉米莖稈解剖結(jié)構包括表皮、厚壁組織、維管束、薄壁組織等,其中,維管束又包括木質(zhì)部和韌皮部。厚壁組織細胞均勻加厚且呈木質(zhì)化,也稱為機械組織,對莖稈的機械支撐尤為重要。研究表明莖稈厚壁組織比例、維管束鞘厚度、硬皮細胞腔隙厚度、維管束密度、維管束面積與莖稈強度顯著正相關[19-20]。此外,維管束的形狀也會影響莖稈硬度和抗倒伏性[21-22]。

      節(jié)間長度和粗度是影響莖稈強度的重要形態(tài)因素。穗下節(jié)間較長、株高和穗位高較高,或者穗位高與株高比值較大等特征都增加了倒伏的風險[23]。植株基部節(jié)間短且粗的品種通??沟狗暂^好,尤其是基部第3節(jié)間的粗度與抗倒伏性呈極顯著正相關[4]。

      莖稈化學組成指莖稈的細胞壁組分,主要包括纖維素、半纖維素、木質(zhì)素、可溶性糖、無機物,以及量少但功能重要的膨脹素、果膠等[24]。纖維素是植物細胞壁中最大的高分子聚合物,由β-1,4-葡萄糖殘基通過較強的氫鍵連接而成[25],是細胞壁中決定強度的主要物質(zhì)。半纖維素是一類廣泛的多糖,其主要功能是與纖維素和木質(zhì)素相互作用以穩(wěn)定細胞壁[26]。木質(zhì)素是植物細胞壁中僅次于纖維素的第二大高分子聚合物,主要在加厚的次生細胞壁中積累,是決定細胞壁強度和莖稈硬度的主要成分之一[27]。莖稈中纖維素、半纖維素、木質(zhì)素含量與莖稈強度正相關,某種或幾種物質(zhì)含量降低或此消彼長將引起莖稈變脆[21-22]。此外,莖稈中的氮素含量、莖稈含水量及單位長度莖稈的重量也會影響倒伏。隨施氮量增加,莖稈中淀粉、纖維素、木質(zhì)素含量降低,莖稈倒伏率升高[28]。莖稈的干物重與植株抗倒伏性呈顯著正相關[29]。

      2.2 莖稈抗倒伏的QTL研究

      目前,玉米莖稈強度的研究多集中于對莖稈硬度遺傳位點的挖掘,而關于莖稈柔韌性的研究較少(表1)。莖稈強度的遺傳力較低,需要在不同環(huán)境下檢測,以最優(yōu)線性無偏預測方法(best linear unbiased prediction,BLUP)來提高表型的準確性,基于BLUP數(shù)據(jù)得到的QTL結(jié)果優(yōu)于單環(huán)境下的定位結(jié)果[8-10]。莖皮穿刺強度比莖稈彎折強度的遺傳力高,且該性狀與莖稈強度和倒伏的相關性較高[12]。莖稈強度的遺傳基礎復雜,受大量微效位點控制,各位點間存在加性效應,對莖稈強度的改良可以通過多個優(yōu)良基因的聚合實現(xiàn)[11,13]。目前,已經(jīng)鑒定到控制玉米莖稈強度的基因[30]。針對玉米莖稈柔韌性,Wang等[14]鑒定到一個與莖稈彎折角度相關的QTL,并提出候選基因可能與RING/U box泛素蛋白和MADS轉(zhuǎn)錄因子相關。

      在莖稈成分的遺傳研究中,由于細胞壁成分檢測費用較高,因此,一些研究利用近紅外模型對這些性狀的預測值進行定位,或者利用范式纖維素測定法對莖稈中的酸性洗滌纖維、中性洗滌纖維進行檢測和定位[31-33](表1)。細胞壁成分相關QTL的候選基因涉及細胞壁代謝、轉(zhuǎn)錄因子、蛋白激酶等,并且一些QTL同時影響纖維素和木質(zhì)素[34]。BARRIèRE等[35]在全基因組上鑒定到7個與木質(zhì)素含量及其成分相關的QTL熱點區(qū)域,分別位于chr.1、chr.3、chr.8和chr.10。TRUNTZLER等[36]采用meta-QTL方法,對11個作圖群體的QTL進行整合,鑒定到大量與細胞壁組成、秸稈消化率相關的QTL。對莖稈中可溶性糖(白利度)研究表明,QTL之間具有較強的上位性,但QTL與環(huán)境的互作效應不強[37]。

      莖稈形態(tài)和解剖結(jié)構相關研究表明,基于單倍型的定位比基于單個SNP的定位效果更加理想,體現(xiàn)在QTL數(shù)目和QTL的表型變異解釋率方面[38](表1)。劉福鵬等[39]利用Meta-QTL分析方法,將17個不同作圖群體的95個玉米莖粗QTL整合到IBM neighbors 2008高密度分子標記連鎖圖譜上,通過一致性分析方法得到20個一致性高的玉米莖粗QTL(Meta-QTL)。莖稈解剖結(jié)構特征的獲取依賴于高精度的莖稈解剖結(jié)構圖形,以及基于圖形獲得的各性狀的量化值。HUANG等[40]利用光學顯微鏡和圖像處理軟件獲得866份大芻草和玉米BC2S3家系最上節(jié)莖稈維管束數(shù)目,定位結(jié)果表明該性狀受大量微效QTL控制。Mazaheri等[41]利用掃描儀獲得莖稈橫切面照片,基于代碼版的圖像處理軟件,獲得942份玉米自交系的莖皮厚度、維管束密度、面積等表型,并檢測到3個控制維管束密度的位點。近年來,X光-計算機斷層掃描技術(X-ray microcomputed tomography,CT)的應用,極大地推進了對莖稈解剖特征的遺傳研究。Zhang等[42]利用CT掃描獲得玉米莖稈維管束的微觀表型,并開發(fā)了一套基于莖稈橫截面圖像提取莖稈微觀特征的流程,實現(xiàn)了對維管束數(shù)目、面積、大小等特征的統(tǒng)計。利用該技術對480份玉米自交系提取了30個莖稈解剖結(jié)構特征,并結(jié)合關聯(lián)分析鑒定到大量涉及細胞壁代謝、轉(zhuǎn)錄因子、蛋白激酶相關的候選基因。

      2.3 莖稈抗倒伏的候選基因研究

      MAIZEWALL數(shù)據(jù)庫是玉米細胞壁相關基因的重要數(shù)據(jù)庫(http://www.polebio.scsv.ups-tlse.fr/ MAIZEWALL/index.html),存儲了玉米與水稻和擬南芥細胞壁發(fā)育相關基因同源的EST序列[43]。Penning等[44]在這些EST序列基礎上,預測和注釋了750個玉米細胞壁生物學相關基因(https://cellwall. genomics.purdue.edu/)。迄今為止,該數(shù)據(jù)庫包含1 156個候選基因,為玉米細胞壁生物學的研究提供了強大的資源[44]。其中,注釋的纖維素相關基因包括33個CesA/Csl(cellulose synthase-like)超家族基因、9個Cobra類基因、38個核糖轉(zhuǎn)化基因。半纖維素相關的基因有213個,包括49個GT8(glycosyl transferase8,糖基轉(zhuǎn)移酶8)、54個GT47、19個GT37、18個GT34、41個GT31和32個木葡聚糖β-內(nèi)轉(zhuǎn)葡糖基酶/水解酶基因(xyloglucan endo-β-transglucosylase/hydrolase genes,XTH)。苯丙烷相關的基因共有102個。

      表1 玉米莖稈抗倒伏相關性狀遺傳定位統(tǒng)計

      CIM:復合區(qū)間作圖;GWAS:關聯(lián)分析;混合群體分離分析;BSA:混合群體分離分析;ICIM:完備區(qū)間作圖

      CIM: Composite interval mapping; GWAS: Genome wide association study; BSA: Bulked segregant analysis; ICIM: Inclusive composite interval mapping

      目前,已鑒定到一些影響玉米莖稈細胞壁成分、莖稈形態(tài)和莖稈強度的基因,其功能涉及纖維素合成、苯丙烷路徑、植物激素、轉(zhuǎn)錄因子、miRNA、F-box等(圖2)。

      2.3.1 纖維素合成相關基因?qū)ηo稈抗倒伏的影響 纖維素是由幾種不同的纖維素合酶(cellulose synthase,CesAs)復合物催化UDP-葡萄糖合成葡聚糖鏈,最終形成[45]。影響纖維素含量的基因主要涉及:纖維素合成酶類基因、Cobra類基因、糖基轉(zhuǎn)移酶和核糖轉(zhuǎn)運蛋白基因等[46-48]。研究發(fā)現(xiàn),玉米脆稈突變體為隱性突變體,其地上部分易折,且該表型只在第5片葉以后出現(xiàn)[21]。編碼COBRA蛋白,與水稻BC1和擬南芥COBRA- LIKE4同源。該基因的啟動子及第二個外顯子區(qū)域的轉(zhuǎn)座子插入均可導致基因活性改變,纖維素總量下降40%,而非結(jié)構性碳水化合物含量則補償性增加[21]。

      玉米中另一個莖稈突變體在突變體與自交系雜交的F2群體中發(fā)現(xiàn),莖稈較脆,易被強風折斷,且株高降低,葉尖衰老以及花粉半不育[22]。幾丁質(zhì)酶樣蛋白(ZmCtl1)屬于糖基水解酶,導致莖稈變脆,該蛋白在延伸的節(jié)間中含量最高,并且與纖維素合成酶基因互作。該基因突變導致莖稈中對香豆酸、葡萄糖、甘露糖和纖維素含量顯著降低,葉片和莖稈中細胞木質(zhì)素染色減少、維管束變形、木質(zhì)部和韌皮部受損。CTL1蛋白在植物中有較高的保守性,為不同作物抗倒伏品種培育提供了新的途徑。

      2.3.2 苯丙烷類基因?qū)ηo稈抗倒伏的影響 木質(zhì)素的生物合成起始于苯丙烷途徑,該途徑產(chǎn)生多種木質(zhì)素前體,包括香豆醇、松柏醇和芥子醇[49]。目前,已鑒定到5個影響玉米木質(zhì)素組分含量及莖稈強度的棕色葉脈突變體—及其相關基因。

      編碼肉桂醇脫氫酶(cinnamyl alcohol dehydrogenase,CAD)[50]。突變體的特征比較單一,在木質(zhì)化組織中,其CAD活性嚴重降低,導致木質(zhì)素的總量和木質(zhì)素單體的結(jié)構均發(fā)生改變[50]。

      編碼亞甲基4氫葉酸還原酶(methylenetetrahydrofolate reductase,MTHFR)[51]。MTHFR生成5-甲基四氫葉酸,用于半胱氨酸的甲基化以生成甲硫氨酸。隨后,通過S-腺苷甲硫氨酸合成酶的作用從甲硫氨酸產(chǎn)生S-腺苷-L-甲硫氨酸(S-adenosyl-L- methionine,SAM),而SAM是咖啡酰輔酶A 3-O-甲基轉(zhuǎn)移酶(caffeoyl CoA 3-O-methyltransferase,CCoAOMT)和咖啡酸-O-甲基轉(zhuǎn)移酶(caffeic acid 3-O-methyltransferase,COMT)的甲基供體。因此,MTHFR功能的改變會影響SAM的積累,進而減少S型和G型木質(zhì)素的積累以及總木質(zhì)素水平[51]。

      編碼咖啡酸-O-甲基轉(zhuǎn)移酶(COMT)[52]。的等位基因突變體都是由于反轉(zhuǎn)錄轉(zhuǎn)座子插入造成mRNA水平下降引起。

      編碼葉酰聚谷氨酸合酶(folylpolyglutamate synthase,F(xiàn)PGS),該酶在單碳代謝中成為葉酸依賴性酶的聚谷氨酸底物[53]。相對于野生型,突變體的木質(zhì)素濃度適度降低,而S﹕G木質(zhì)素比例總體增加。

      編碼4-香豆酸-輔酶A連接酶1(4-coumarate: CoA ligase 1,4CL1),該酶可將對香豆酸酯、咖啡酸酯和阿魏酸酯轉(zhuǎn)化為其相應的CoA酯[54]。突變體成熟莖中Klason木質(zhì)素、G型木質(zhì)素和對香豆酸鹽的水平降低,但H型木質(zhì)素和阿魏酸鹽的水平增加,導致其莖稈和葉片中脈呈棕褐色。存在2個獨立的突變,其中第一個外顯子插入了658 bp的Ac轉(zhuǎn)座子,導致氨基酸編碼提前終止,4CL1酶活力喪失;而第二個內(nèi)含子中插入的283 bp轉(zhuǎn)座子,導致該內(nèi)含子被剪切,使基因表達量降低。這兩種變異均使G型木質(zhì)素生物合成減少,而可溶性阿魏酸衍生物含量增加,但總木質(zhì)素含量沒有發(fā)生變化[54]。

      2.3.3 植物激素對莖稈抗倒伏的影響 玉米中鑒定到較多影響節(jié)間長度的突變體,這些突變體同時還影響了株高和抗倒伏性。相關基因主要涉及植物激素類,包括赤霉素(Gibberellin,GA)、生長素(Auxin,IAA)、油菜素甾醇(Brassinosteroid,BR)等。

      赤霉素是異戊二烯植物激素,是高等植物莖伸長必需的激素。赤霉素相關突變體中影響節(jié)間長度的有、、等[55-57]。催化貝殼杉烯合成,是赤霉素生物合成途徑的早期基因,該基因的突變體整體節(jié)間縮短、株高降低、發(fā)育遲緩[55]。()是編碼細胞色素P450家族的基因[56]。突變體是顯性突變,由GA抑制劑DELLA蛋白的VHYNP結(jié)構域中單個氨基酸插入造成基因功能改變,使得節(jié)間縮短、株高降低[57]。

      影響節(jié)間長度的油菜素甾醇突變體包括、、和等[58-59]。()由于油菜素甾醇合成路徑中DET2蛋白功能缺失造成穗下節(jié)間極度縮短、植株矮小[58]。編碼油菜素甾醇C-6氧化酶,該基因的突變體在播種10 d以后節(jié)間幾乎不伸長,植株極端矮化[59]。

      涉及生長素合成和轉(zhuǎn)運相關路徑的基因突變也影響節(jié)間長度,包括吲哚3-乙酰胺(Indole 3-acetamide,IAM)、吲哚3-丙酮酸(Indole 3-pyruvate,IPA)、色胺(Tryptamine,TAM)途徑,以及輸入載體AUX/LAX和輸出載體PIN、PGP等。典型的生長素相關節(jié)間突變體為、[60-61]。參與生長素極性運輸,可顯著降低穗位下方的節(jié)間長度,造成株高降低50%以上[60]。小株突變體()基因編碼多磷酸肌醇-5-磷酸酶,突變后節(jié)間細胞長度變短,致使節(jié)間縮短,株高降低[61]。此外,植物激素還對莖粗有影響,例如,在降低節(jié)間長度的同時使莖粗增加[60,62]。

      2.3.4 轉(zhuǎn)錄因子對莖稈抗倒伏的影響 在模式植物擬南芥和其他作物中,已經(jīng)鑒定出NAC、MYB等一系列影響次級細胞壁發(fā)育的重要轉(zhuǎn)錄因子[63]。典型的轉(zhuǎn)錄因子包括NAC次生壁加厚促進因子1(NAC secondary wall thickening promoting factor 1,NST1)、NST2、NST3、維管束相關的NAC結(jié)構域(vascular- related NAC-domain,VND1-7)[64],R2R3-MYB家族等[65]。此外,NAC轉(zhuǎn)錄因子能夠調(diào)控較多影響細胞壁成分相關的轉(zhuǎn)錄因子,如調(diào)控SND2、SND3、MYB20、MYB42、MYB43、MYB52、MYB54、MYB69、MYB85、MYB103、KNYT7等[63,66]。在玉米中鑒定到NAC轉(zhuǎn)錄因子基因和參與次級細胞壁的發(fā)育,超表達后次級細胞壁積累較多,并且這兩個基因可以調(diào)控纖維素相關基因、、149的表達,暗示和是玉米次級細胞壁生物合成過程的主要開關[67]。

      2.3.5 miRNA對莖稈抗倒伏的影響 植物體內(nèi)的miRNA表達水平會隨著氮素含量的變化而改變。是單子葉特異的miRNA,在莖稈維管束中表達。玉米在高氮條件下,體內(nèi)的表達量升高,而編碼木質(zhì)素合成相關的漆酶基因和是的靶標,因此導致木質(zhì)素3個單體及總量的合成減少、莖皮穿刺強度降低、莖稈抗倒伏性下降。相反,敲除后,木質(zhì)素總量升高,莖稈抗倒伏性提高[68]。

      圖2 莖稈抗倒伏遺傳機制

      2.3.6 F-box蛋白對莖稈抗倒伏的影響 F-box是植物界中最大的蛋白質(zhì)家族之一,在植物脅迫、激素信號傳導、生長發(fā)育和miRNA生物過程中均起作用[69]。Zhang等[30]調(diào)查了B73×Ki11的RIL群體莖稈彎折強度和莖皮穿刺強度,結(jié)合莖稈中的表達量差異,定位到編碼F-box結(jié)構域的(Zm00001d036653)。該基因的功能位點是啟動子區(qū)域27.2 kb的Ty1/Copia類轉(zhuǎn)座子插入,抑制的表達,促進了GA和IAA的上調(diào),進而激活與次級細胞壁發(fā)育相關的NAC、MYB轉(zhuǎn)錄因子,促進細胞壁中纖維素和木質(zhì)素含量增加、莖稈厚壁細胞增厚,莖稈強度提高。利用CRISPR/Cas9基因編輯技術敲除后,玉米莖稈強度及抗倒伏性增強。進化分析發(fā)現(xiàn),以B73為代表的大部分玉米堅稈材料都含的優(yōu)良等位基因,這些材料在啟動子區(qū)域受到較強的選擇,表明該基因在堅稈材料的改良和育種中起到重要作用[30]。

      3 展望

      莖稈抗倒伏是較為復雜的性狀,不同時期倒伏的類型和發(fā)生機制存在差異,應積極探索不同發(fā)育時期玉米的自然受風情況,對其力學機制進行深入研究,并分析莖稈的遺傳、生理、生化等特征,明確影響階段性倒伏差異的主要性狀,并對其開展遺傳研究。

      莖稈抗倒伏相關表型獲取的準確性是影響遺傳定位的關鍵因素。高通量表型鑒定技術為大規(guī)模精準地調(diào)查群體的表型提供了可能[41-42]。對不同時期莖稈抗倒伏的表型應不斷細化,從宏觀和微觀角度加強對莖稈相關表型的獲取。

      莖稈倒伏相關性狀呈現(xiàn)數(shù)量性狀特征,隨著不同遺傳定位群體的興起和統(tǒng)計模型的發(fā)展,對其遺傳定位、優(yōu)良等位基因挖掘成為可能。研究群體可充分利用變異廣泛、定位功效高的群體,例如包含不同種質(zhì)類型的關聯(lián)群體、多親本群體如巢式關聯(lián)群體(nested association mapping,NAM)、多親本高世代互交群體(multi-parent advanced generation intercross,MAGIC)、雙列雜交與育種偏好性選擇相結(jié)合的互交群體(complete-diallel design plus unbalanced breeding-like inter-cross,CUBIC),以及精細定位群體如近等基因系(near isogenic line,NIL)、剩余雜合群體(heterogeneous inbred family,HIF)等[70-71]。QTL檢測模型多種多樣,例如當前在關聯(lián)分析中廣泛應用的混合線性模型、多位點關聯(lián)分析模型,雙親群體中的BSA、CIM、ICIM、GCIM等模型,基于單個SNP和單倍型的模型等[72-73]。不同方法各具優(yōu)勢,可根據(jù)群體類型針對性地采取多方法互補定位策略,提高QTL的檢測率和準確性。除了傳統(tǒng)的基因克隆策略,還可以充分借鑒各物種中鑒定到的同源基因。候選基因結(jié)合使用高效的CRISPR/Cas9技術或者Mu和EMS突變體庫,將加快對玉米莖稈抗倒伏相關基因的鑒定[74-75]。

      目前,玉米中鑒定到一些與莖稈抗倒伏相關的基因,但很少被廣泛應用到分子標記輔助選擇,其中一個重要因素是這些基因大多基于突變體克隆,因此,有必要利用自交系群體或育種材料,加強對抗倒伏相關基因的鑒定,篩選優(yōu)良的等位基因。另一方面,玉米基因組中存在廣泛的遺傳連鎖累贅和一因多效現(xiàn)象,操作一個基因的同時可能產(chǎn)生一些不利的表型;反之,也有可能對多個性狀都有利。例如轉(zhuǎn)錄因子基因在增加莖稈維管束數(shù)目的同時,也可提高莖稈中纖維素、木質(zhì)素的含量,同時還能增加植株的抗旱性能[45,76]。對于這樣的基因可以進一步深入研究和利用。最近鑒定到的莖稈強度相關基因是玉米中自然存在的有利變異,可以加強對該基因分子標記的應用,以提升玉米種質(zhì)資源的莖稈強度[30]。莖稈強度的改良還可通過聚合多個優(yōu)良等位基因獲得[13]。因此,可以將影響莖稈強度不同性狀或同一性狀不同位點的優(yōu)良等位基因聚合,開展莖稈強度的分子聚合育種,提高玉米抗倒伏分子育種效率。

      [1] 薛軍, 王克如, 謝瑞芝, 勾玲, 張旺鋒, 明博, 侯鵬, 李少昆. 玉米生長后期倒伏研究進展. 中國農(nóng)業(yè)科學, 2018, 51(10): 1845-1854.

      XUE J, WANG K R, XIE R Z, GOU L, ZHANG W F, MING B, HOU P, LI S K. Research progress of maize lodging during late stage. Scientia Agricultura Sinica, 2018, 51(10): 1845-1854. (in Chinese)

      [2] 馬延華, 王慶祥. 玉米莖稈性狀與抗倒伏關系研究進展. 作物雜志, 2012, 2: 10-15.

      MA Y H, WANG Q X. Research progress on the relationship between corn stalk traits and lodging resistance. Crops, 2012, 2: 10-15. (in Chinese)

      [3] 豐光, 黃長玲, 邢錦豐. 玉米抗倒伏的研究進展. 作物雜志, 2008, 4: 12-14.

      FENG G, HUANG C L, XING J F. The research advances on maize lodging resistance. Crops, 2008, 4: 12-14. (in Chinese)

      [4] 孫世賢, 顧慰連, 戴俊英. 密度對玉米倒伏及其產(chǎn)量的影響. 沈陽農(nóng)業(yè)大學學報, 1989, 20: 413-416.

      SUN S X, GU W L, DAI J Y. Effect of density on corn lodging and yield. Journal of Shenyang Agricultural University, 1989, 20: 413-416. (in Chinese)

      [5] 王恒亮, 吳仁海, 朱昆, 張永超, 張玉聚, 孫建偉. 玉米倒伏成因與控制措施研究進展. 河南農(nóng)業(yè)科學, 2011, 40(10): 1-5.

      WANG H L, WU R H, ZHU K, ZHANG Y C, ZHANG Y J, SUN J W. Reviews of causes and control of maize lodging. Journal of Henan Agricultural Sciences, 2011, 40(10): 1-5. (in Chinese)

      [6] 汪黎明, 姚國旗, 穆春華, 李建生, 戴景瑞. 玉米抗倒性的遺傳研究進展. 玉米科學, 2011, 19(4): 1-4.

      WANG L M, YAO G Q, MU C H, LI J S, DAI J R. Advances in genetic research of maize lodging resistance. Journal of Maize Sciences, 2011, 19(4): 1-4. (in Chinese)

      [7] 靳英杰, 李鴻萍, 安盼盼, 程思賢, 趙向陽, 余天雨, 李潮海. 玉米抗倒性研究進展. 玉米科學, 2019, 27(2): 94-98.

      JIN Y J, LI H P, AN P P, CHENG S X, ZHAO X Y, YU T Y, LI C H. Research progress on the lodging resistance of maize.Journal of Maize Sciences, 2019, 27(2): 94-98. (in Chinese)

      [8] 勾玲, 趙明, 黃建軍, 張賓, 李濤, 孫銳. 玉米莖稈彎曲性能與抗倒能力的研究. 作物學報, 2008, 34(4): 653-661.

      GOU L, ZHAO M, HUANG J J, ZHANG B, LI T, SUN R. Bending mechanical properties of stalk and lodging-resistance of maize (L.). Acta Agronomica Sinica, 2008, 34(4): 653-661. (in Chinese)

      [9] WANG X, ZHANG R, SHI Z, ZHANG Y, SUN X, JI Y L, ZHAO Y, WANG J, ZHANG Y, XING J, WANG Y, WANG R, SONG W, ZHAO J. Multi-omics analysis of the development and fracture resistance for maize internode. Scientific Reports, 2019, 9(1): 8183.

      [10] HU H X, LIU W X, FU Z Y, HOMANN L, TECHNOW F, WANG H W, SONG C L, LI S T, MELCHINGER A E, CHEN S J. QTL mapping of stalk bending strength in a recombinant inbred line maize population. Theoretical and Applied Genetics, 2013, 126(9): 2257-2266.

      [11] PEIFFER J A, FLINT-GARCIA S A, DE LEON N, MCMULLEN M D, KAEPPLER S M, BUCKLER E S. The genetic architecture of maize stalk strength. PLoS One, 2013, 8(6): e67066.

      [12] LI K, YAN J, LI J, YANG X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biology, 2014, 14(1): 152.

      [13] ZHANG Y, LIU P, ZHANG X, ZHENG Q, CHEN M, GE F, LI Z, SUN W, GUAN Z, LIANG T. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance- related traits in maize. Frontiers in Plant Science, 2018, 9: 611.

      [14] WANG X, SHI Z, ZHANG R, SUN X, WANG J, WANG S, ZHANG Y, ZHAO Y, SU A, LI C, WANG R, ZHANG Y, WANG S, WANG Y, SONG W, ZHAO J. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biology, 2020, 20(1): 515.

      [15] KENDE H, VAN DER KNAAP E, CHO H T. Deepwater rice: A model plant to study stem elongation. Plant Physiology, 1998, 118(4): 1105-1110.

      [16] SCOBBIE L, RUSSELL W, PROVAN G J, CHESSON A. The newly extended maize internode: A model for the study of secondary cell wall formation and consequences for digestibility. Journal of the Science of Food & Agriculture, 1993, 61(2): 217-225.

      [17] ZHANG Q, CHEETAMUN R, DHUGGA K S, RAFALSKI J A, TINGEY S V, SHIRLEY N J, TAYLOR J, HAYES K R, BEATTY M, BACIC A. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology, 2014, 14(1): 27.

      [18] MCKIM S M. How plants grow up. Journal of Integrative Plant Biology, 2019, 61(3): 257-277.

      [19] KONG E, LIU D, GUO X, YANG W, SUN J, LIN X, ZHAN K, CUI D, LIN J, ZHANG A. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 2013, 1(1): 43-49.

      [20] 王庭杰, 張亮, 韓瓊, 鄭鳳霞, 王天琪, 馮娜娜, 王太霞. 玉米莖稈細胞壁和組織構建對抗壓強度的影響. 植物科學學報, 2015, 33(1): 109-115.

      WANG T J, ZHANG L, HAN Q, ZHENG F X, WANG T Q, FENG N N, WANG T X. Effects of stalk cell wall and tissue on the compressive strength of maize. Plant Science Journal, 2015, 33(1): 109-115. (in Chinese)

      [21] SINDHU A, LANGEWISCH T, OLEK A, MULTANI D S, MCCANN M C, VERMERRIS W, CARPITA N C, JOHAL G. Maize brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiology, 2007, 145(4): 1444-1459.

      [22] JIAO S, HAZEBROEK J P, CHAMBERLIN M A, PERKINS M, SANDHU A S, GUPTA R, SIMCOX K D, YINGHONG L, PRALL A, HEETLAND L, MEELEY R B, MULTANI D S. Chitinase-like1 plays a role in stalk tensile strength in maize. Plant Physiology, 2019, 181(3): 1127-1147.

      [23] 曹慶軍, 崔金虎, 王洪預, 溫海嬌, 高亞男, 羅利紅, 韓海飛. 玉米拔節(jié)后不同水分處理對植株性狀和水分利用效率的影響. 玉米科學, 2011, 19(3): 105-109.

      CAO Q J, CUI J H, WANG H Y, WEN H J, GAO Y N, LUO L H, HAN H F. Effect of water treatments after jointing stage on plant characters and water use efficiency of maize. Maize Science, 2011, 19(3): 105-109. (in Chinese)

      [24] LE GALL H, PHILIPPE F, DOMON J, GILLET F, PELLOUX J, RAYON C. Cell wall metabolism in response to abiotic stress. Plants (Basel, Switzerland), 2015, 4(1): 112-166.

      [25] QIU X Y, HU S W. “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials, 2013, 6(3): 738-781.

      [26] PAULY M, GILLE S, LIU L, MANSOORI N, DE SOUZA A, SCHULTINK A, XIONG G. Hemicellulose biosynthesis. Planta, 2013, 238(4): 627-642.

      [27] ZHONG R, RIPPERGER A, YE Z H. Ectopic deposition of lignin in the pith of stems of twomutants. Plant Physiology, 2000, 123(1): 59-70.

      [28] 楊世民, 謝力, 鄭順林, 李靜, 袁繼超. 氮肥水平和栽插密度對雜交稻莖稈理化特性與抗倒伏性的影響. 作物學報, 2009, 35(1): 93-103.

      YANG S M, XIE L, ZHENG S L, LI J, YUAN J C. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agronomica Sinica, 2009, 35(1): 93-103. (in Chinese)

      [29] 李寧, 李建民, 翟志席, 李召虎, 段留生. 化控技術對玉米植株抗倒伏性狀、農(nóng)藝性狀及產(chǎn)量的影響. 玉米科學, 2010, 18(6): 38-42.

      LI N, LI J M, ZHAI Z X, LI Z H, DUAN L S. Effects of chemical regulator on the lodging resistance traits, agricultural character and yield of maize. Maize Science, 2010, 18(6): 38-42. (in Chinese)

      [30] ZHANG Z, ZHANG X, LIN Z, WANG J, LIU H, ZHOU L, ZHONG S, LI Y, ZHU C, LAI J, LI X, YU J, LIN Z. A large transposon insertion in thepromoter increases stalk strength in maize. The Plant Cell, 2020, 32(1): 152-165.

      [31] LI K, WANG H, HU X, LIU Z, WU Y, HUANG C. Genome-wide association study reveals the genetic basis of stalk cell wall components in maize. PLoS One, 2016, 11(8): e0158906.

      [32] WANG H, LI K, HU X, LIU Z, WU Y, HUANG C. Genome-wide association analysis of forage quality in maize mature stalk. BMC Plant Biology, 2016, 16(1): 227.

      [33] WANG Q, LI K, HU X, SHI H, LIU Z, WU Y, WANG H, HUANG C. Genetic analysis and QTL mapping of stalk cell wall components and digestibility in maize recombinant inbred lines from B73×By804. The Crop Journal, 2020, 8(1): 132-139.

      [34] PENNING B W, SYKES R W, BABCOCK N C, DUGARD C K, HELD M A, KLIMEK J F, SHREVE J T, FOWLER M, ZIEBELL A, DAVIS M F, DECKER S R, TURNER G B, MOSIER N S, SPRINGER N M, THIMMAPURAM J, WEIL C F, MCCANN M C, CARPITA N C. Genetic determinants for enzymatic digestion of lignocellulosic biomass are independent of those for lignin abundance in a maize recombinant inbred population. Plant Physiology, 2014, 165(4): 1475-1487.

      [35] BARRIèRE Y, THOMAS J, DENOUE D. QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838×F286. Plant Science, 2008, 175(4): 585-595.

      [36] TRUNTZLER M, BARRIèRE Y, SAWKINS MC, LESPINASSE D, BETRAN J, CHARCOSSET A, MOREAU L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theoretical and Applied Genetics, 2010, 121(8): 1465-1482.

      [37] BIAN Y L, SUN D L, GU X, WANG Y G, YIN Z T, DENG D X, WANG Y Q, WU F F, LI G S. Identification of QTL for stalk sugar-related traits in a population of recombinant inbred lines of maize. Euphytica, 2014, 198(1): 79-89.

      [38] MALDONADO C, MORA F, SCAPIM C A, COAN M. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS One, 2019, 14(3): e0212925.

      [39] 劉福鵬, 曲文利, 房海悅, 李莉莉, 金峰學, 吳委林. 玉米莖粗Meta-QTL及候選基因分析. 東北農(nóng)業(yè)科學, 2019, 44(5): 30-33.

      LIU F P, QU W L, FANG H Y, LI L L, JIN F X, WU W L. Analysis of Meta- QTL and candidate genes related to stem diameter in maize. Journal of Northeast Agricultural Sciences, 2019, 44(5): 30-33. (in Chinese)

      [40] HUANG C, CHEN Q, XU G, XU D, TIAN J, TIAN F. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 2016, 58(1): 81-90.

      [41] MAZAHERI M, HECKWOLF M, VAILLANCOURT B, GAGE J L, BURDO B, HECKWOLF S, BARRY K, LIPZEN A, RIBEIRO C B, KONO T J Y. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology, 2019, 19(1): 45.

      [42] ZHANG Y, WANG J, DU J, ZHAO Y, LU X, WEN W, GU S, FAN J, WANG C, WU S, WANG Y, LIAO S, ZHAO C, GUO X. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnology Journal, 2021, 19(1):35-50 .

      [43] GUILLAUMIE S, SANCLEMENTE H, DESWARTE C, MARTINEZ Y, LAPIERRE C, MURIGNEUX A, BARRIERE Y, PICHON M, MAIZEWALL G D. database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiology, 2006, 143(1): 339-363.

      [44] PENNING B W, HUNTER CT 3RD, TAYENGWA R, EVELAND A L, DUGARD C K, OLEK A T, VERMERRIS W, KOCH K E, MCCARTY D R, DAVIS M F, THOMAS S R, MCCANN M C, CARPITA N C. Genetic resources for maize cell wall biology. Plant Physiology, 2009, 151(4): 1703-1728.

      [45] MALEKI S S, MOHAMMADI K, JI K S. Characterization of cellulose synthesis in plant cells. Scientific World Journal, 2016, 2016: 8641373.

      [46] KOTAKE T, AOHARA T, HIRANO K, SATO A, KANEKO Y, TSUMURAYA Y, TAKATSUJI H, KAWASAKI S. Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. Journal of Experimental Botany, 2011, 62(6): 2053-2062.

      [47] ZHOU Y, LI S, QIAN Q, ZENG D, ZHANG M, GUO L, LIU X, ZHANG B, DENG L, LIU X, LUO G, WANG X, LI J. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (L.).The Plant Journal, 2009, 57(3): 446-462.

      [48] ZHANG B, LIU X, QIAN Q, LIU L, DONG G, XIONG G, ZENG D, ZHOU Y. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(12): 5110-5115.

      [49] YOON J, CHOI H, AN G. Roles of lignin biosynthesis and regulatory genes in plant development. Journal of Integrative Plant Biology, 2015, 57: 902-912.

      [50] HALPIN C, HOLT K, CHOJECKI J, OLIVER D, CHABBERT B, MONTIES B, EDWARDS K, BARAKATE A, FOXON G A.-maize ()-a mutation affecting the cinnamyl alcohol dehydrogenase gene. The Plant Journal, 1998, 14(5): 545-553.

      [51] TANG H M, LIU S, HILLSKINNER S, WU W, REED D, YEH C T, NETTLETON D, SCHNABLE P S. The maizemidrib2 () gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. The Plant Journal, 2014,77(3): 380-392.

      [52] VIGNOLS F, RIGAU J, TORRES M A, CAPELLADES M, PUIGDOMèNECH P. The() mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. The Plant Cell, 1995, 7(4): 407-416.

      [53] LI L, HILL-SKINNER S, LIU S, BEUCHLE D, TANG H M, YEH C T, NETTLETON D, SCHNABLE P S. The maize() gene encodes a functional folylpolyglutamate synthase. The Plant Journal, 2015, 81(3): 493-504.

      [54] XIONG W, WU Z, LIU Y, LI Y, SU K, BAI Z, GUO S, HU Z, ZHANG Z, BAO Y, SUN J, YANG G, FU C. Mutation of 4-coumarate: coenzyme A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maizemutants. Biotechnology for Biofuels, 2019, 12: 82.

      [55] BENSEN R J, JOHAL G S, CRANE V C, TOSSBERG J T, SCHNABLE P S, MEELEY R B, BRIGGS S P. Cloning and characterization of the maizegene. The Plant Cell, 1995, 7(1): 75-84.

      [56] WINKLER R G, HELENTJARIS T. The maizegene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. The Plant Cell, 1995, 7(8): 1307-1317.

      [57] CASSANI E, BERTOLINI E, BADONE F C, LANDONI M, GAVINA D, SIRIZZOTTI A, PILU R. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of thegene. Molecular Breeding, 2009, 24(4): 375-385.

      [58] HARTWIG T, CHUCK G, FUJIOKA S, KLEMPIEN A, WEIZBAUER R, POTLURI D P V, CHOE S, JOHAL G S, SCHULZ B. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19814-19819.

      [59] MAKAREVITCH I, THOMPSON A, MUEHLBAUER G J, SPRINGER N M.gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7(1): e30798.

      [60] XING A, GAO Y, YE L, ZHANG W, CAI L, CHING A, LLACA V, JOHNSON B E, LIU L, YANG X. A rare SNP mutation inmoderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015, 66(13): 3791-3802.

      [61] AVILA L M, CERRUDO D, SWANTON C J, LUKENS L., a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016, 67(5): 1577-1588.

      [62] MULTANI D S, BRIGGS S P, CHAMBERLIN M A, BLAKESLEE J J, MURPHY A S, JOHAL G S. Loss of an MDR transporter in compact stalks of maizeand sorghummutants. Science, 2003, 302(5642): 81-84.

      [63] ZHONG R, LEE C, ZHOU J, MCCARTHY R L, YE Z H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in. The Plant Cell, 2008, 20(10): 2763-2782.

      [64] KUBO M, UDAGAWA M, NISHIKUBO N, HORIGUCHI G, YAMAGUCHI M, ITO J, MIMURA T, FUKUDA H, DEMURA T. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development, 2005, 19(16): 1855-1860.

      [65] MITSUDA N, SEKI M, SHINOZAKI K, OHMETAKAGI M. The NAC transcription factors NST1 and NST2 ofregulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 2005, 17(11): 2993-3006.

      [66] OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. NAC transcription factors: Structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10(2): 79-87.

      [67] XIAO W, YANG Y, YU J.andare master switches for secondary wall deposition in maize (L.). Plant Science, 2018; 266: 83-94.

      [68] SUN Q, LIU X, YANG J, LIU W, DU Q, WANG H, FU C, LI W X. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions. Molecular Plant, 2018, 11(6): 806-814.

      [69] ABD-HAMID N A, AHMAD-FAUZI M I, ZAINAL Z, ISMAIL I. Diverse and dynamic roles of F-box proteins in plant biology. Planta, 2020, 251(3): 68.

      [70] CAVANAGH C, MORELL M, MACKAY I, POWELL W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 2008, 11(2): 215-221.

      [71] LIU H, WANG X, XIAO Y, LUO J, QIAO F, YANG W, ZHANG R, MENG Y, SUN J, YAN S, PENG Y, NIU L, JIAN L, SONG W, YAN J, LI C, ZHAO Y, LIU Y, WARBURTON M, ZHAO J, YAN J. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020, 21(1): 20.

      [72] 蘇成付, 趙團結(jié), 蓋鈞鎰. 不同統(tǒng)計遺傳模型QTL定位方法應用效果的模擬比較. 作物學報, 2010, 36(7): 1100-1107.

      SU C F, ZHAO T J, GAI J Y. Simulation Comparisons of effectiveness among QTL mapping procedures of different statistical genetic models.Acta Agronomica Sinica, 2010, 36(7): 1100-1107. (in Chinese)

      [73] 馮建英, 溫陽俊, 張瑾, 章元明. 植物關聯(lián)分析方法的研究進展. 作物學報, 2016, 42(7): 945-956.

      FENG J Y WEN Y J, ZHANG J, ZHANG Y M. Advances on methodologies for genome-wide association studies in plants. Acta Agronomica Sinica, 2016, 42(7): 945-956. (in Chinese)

      [74] LIU H, JIAN L, XU J, ZHANG Q, ZHANG M, JIN M, PENG Y, YAN J, HAN B, LIU J, GAO F, LIU X, HUANG L, WEI W, DING Y, YANG X, LI Z, ZHANG M, SUN J, BAI M, SONG W, CHEN H, SUN X, LI W, LU Y, LIU Y, ZHAO J, QIAN Y, JACKSON D, FERNIE A R, YAN J. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell, 2020, 32(5): 1397-1413.

      [75] LIU X, LIU J, REN W, YANG Q, CHAI Z, CHEN R, WANG L, ZHAO J, LANG Z, WANG H, FAN Y, ZHAO J, ZHANG C. Gene-indexed mutations in maize. Molecular Plant, 2017, 11(3): 496-504.

      [76] Ren Z, Zhang D, Cao L, Zhang W, Zheng H, Liu Z, Han S, Dong Y, Zhu F, Liu H, Su H, Chen Y, Wu L, Zhu Y, Ku L. Functions and regulatory framework of

      Genetic Research Advances on Maize Stalk Lodging Resistance

      WANG XiaQing, SONG Wei, ZHANG RuYang, CHEN YiNing, SUN Xuan, ZHAO JiuRan

      Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences/Beijing KeyLaboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097

      Maize stalk lodging has a great adverse effect on yield, quality and mechanized harvesting, and is one of the main problems to be solved urgently in current maize production and breeding. Strengthening the research on the lodging resistance of maize stalk will have great significance for improving the lodging resistance of maize. In this paper, we summarize the main factors affecting maize stalk lodging resistance, and their genetic mechanisms. The stalk lodging resistance is closely related to the stalk strength. The greater the stalk strength, the stronger the lodging resistance. The stalk strength is affected by the developmental stage, the internal and external structures of the stalk, and the components of the stalk cell wall. The meristem zone has vigorously dividing cells and is easily broken. After entering the reproductive growth, the rind and sclerenchyma tissue of the stalk are thickened, the vascular bundles are mature, and thus the stalk strength is enhanced. The main components of the stalk cell wall, including cellulose, hemicellulose, lignin, soluble sugars, inorganic substances, can improve the strength of the stalk. To date, based on the high-throughput phenotyping platforms, various maize linkage and natural populations, and mapping methods, researchers have identified a series of QTLs and candidate genes that affect stalk morphology, strength, and cell wall components. The studies have shown that the haplotype-based mapping method is better than SNP-based mapping method. Meta-QTL analysis integrates the mapping results of different genetic populations and can improve the versatility of QTLs. The genetic basis of stalk strength is complex, which is determined by polygenes with minor effect and additive effect. Candidate genes in the QTLs involve cell wall metabolism, transcription factors, protein kinases, and so on. MAIZEWALL is an important database of genes related to maize cell wall. So far, the database contains 1 156 candidate genes related to maize cell wall biology, which provides a powerful resource for research in this field. A series of genes affecting cell wall components, stalk morphology and stalk strength in maize have been identified. Their functions of these genes are related to cellulose synthesis pathways, such as genes of cellulose synthase, Cobra, glycosyltransferase and ribose transport; phenylpropane pathway genes, such as genes regulating-; plant hormones genes, such as genes related to gibberellin, auxin and brassinosteroid; transcription factors such as NAC, MYB; miRNA () and F-box genes (). In the future research, it is needed to explore the mechanical mechanism of stalk lodging at different developmental stages. Develop diverse natural populations and breeding materials for genetic analysis. Employ a various of mapping strategies to improve the efficiency of identification of the QTL and genes related to lodging resistance. Design various molecular markers based on the favorable alleles to improve the molecular marker assisted selection for lodging resistance. These efforts will promote the research of the genetic mechanism of stalk lodging resistance, and provide a reference for the molecular breeding of new varieties with strong lodging resistance.

      maize; lodging; stalk; cell wall; genetic mechanism

      10.3864/j.issn.0578-1752.2021.11.002

      2020-07-23;

      2020-12-25

      北京學者計劃(BSP041)、北京市農(nóng)林科學院基因組學育種協(xié)同創(chuàng)新中心建設項目(KJCX201907-2)、北京市農(nóng)林科學院青年基金(QNJJ201931)

      王夏青,E-mail:xiaqingwang427@163.com。宋偉,E-mail:songwei1007@126.com。王夏青和宋偉為同等貢獻作者。通信作者趙久然,E-mail:maizezhao@126.com

      (責任編輯 李莉)

      猜你喜歡
      細胞壁莖稈突變體
      為什么巢鼠喜歡在植物莖稈上或雜草叢中筑巢生存?
      谷子莖稈切割力學特性試驗與分析
      施肥量與施肥頻率對紫花苜蓿莖稈直徑及長度的影響
      紅花醇提物特異性抑制釀酒酵母細胞壁合成研究
      茄科尖孢鐮刀菌3 個?;图毎诮到饷傅谋容^
      CLIC1及其點突變體與Sedlin蛋白的共定位研究
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應機制探究
      Survivin D53A突變體對宮頸癌細胞增殖和凋亡的影響
      酶法破碎乳酸菌細胞壁提取菌體蛋白的研究
      過量表達URO基因抑制擬南芥次生細胞壁開關基因表達
      商丘市| 达拉特旗| 长沙县| 报价| 牙克石市| 外汇| 霸州市| 齐河县| 渝中区| 祁阳县| 汉沽区| 辉南县| 闽侯县| 松滋市| 兰考县| 望城县| 汉川市| 德保县| 贡觉县| 大姚县| 乐至县| 宜章县| 济阳县| 柳江县| 宁国市| 鸡东县| 察哈| 漯河市| 松原市| 衡南县| 丰宁| 徐州市| 尼勒克县| 兴义市| 金溪县| 体育| 锦州市| 玛多县| 日照市| 琼结县| 夏河县|