賈少敏 王子琦 陳華霆 趙雷
摘要: 減震橋梁結(jié)構(gòu)在地震激勵下的可靠度分析為一典型的局部非線性動力可靠度問題。隨機模擬法對于求解非線性動力可靠度問題具有普遍適用性,但對于實際工程問題,其應(yīng)用存在計算工作量巨大的問題。隨機模擬法計算時間主要取決于所需樣本數(shù)目及單次樣本計算效率。為提高減震橋梁結(jié)構(gòu)抗震可靠度計算效率,基于精細時程積分法、Newton迭代法建立了多點激勵下減震橋梁的運動方程及相應(yīng)的時域顯式降維迭代解格式,提高了單次樣本的計算效率;引入基于哈密頓蒙特卡洛算法的子集模擬法,減少了所需樣本個數(shù)。數(shù)值算例表明:與傳統(tǒng)隨機模擬法相比,所建立的方法可有效地提高減震橋梁結(jié)構(gòu)非線性動力可靠度計算效率。
關(guān)鍵詞: 減震橋梁結(jié)構(gòu); 非線性動力可靠度; 哈密頓蒙特卡洛法; 精細時程積分法; 時域顯式降維迭代
中圖分類號: U441+.3;TU352.1 ? ?文獻標志碼: A ? ?文章編號: 1004-4523(2021)02-0357-07
DOI:10.16385/j.cnki.issn.1004-4523.2021.02.016
引 言
減震橋梁結(jié)構(gòu)的抗震可靠度問題可表示為首次超越問題[1]。首次超越破壞問題經(jīng)過70余年的發(fā)展形成了基于過程跨越理論[2]、基于擴散過程理論的方法[3]。由于減震橋梁結(jié)構(gòu)的隨機響應(yīng)過程不再服從高斯分布,應(yīng)用經(jīng)典動力可靠度方法求解非線性結(jié)構(gòu)動力可靠度問題變得異常困難。Crandall等[4]較早地將隨機模擬法引入首次超越問題,為非線性結(jié)構(gòu)動力可靠度問題求解開辟了一個普遍適用的途徑。至今對于大型復(fù)雜非線性結(jié)構(gòu)動力可靠度問題求解,隨機模擬法仍是一種主要方法[5?9]。
隨機模擬法對于求解非線性動力可靠度問題具有普遍適用性,其計算時間主要取決于所需樣本數(shù)目和單次樣本的計算效率。對于抽樣效率的改善,研究人員基于方差縮減技術(shù)提出了重要性抽樣法[5]、正交平面重要性抽樣法[6]、子集模擬法(序列蒙特卡洛法)[7]、球面子集模擬法[8]、漸進抽樣法[9]等不同抽樣方法,以減少達到給定計算精度所需的樣本數(shù)目。其中子集模擬法需采用馬爾科夫蒙特卡洛模擬法在劃分的各條件域內(nèi)進行抽樣,常用的抽樣算法有基于隨機行走理論的Metropolis?Hastings法和Gibbs法[10?12]。近年來提出的基于哈密頓體系的一類非隨機行走抽樣算法,其相對隨機行走法更加高效[13?14]。另外,在提高單次樣本計算效率方面也取得了一些重要進展,其中針對具有局部非線性特征結(jié)構(gòu)的動力響應(yīng)分析問題,Wilson[15]提出了FNA法(Fast Nonlinear Analysis)、蘇成等[16]提出了時域顯式降維迭代法、李鋼等[17]提出了擬力法,這些方法通過不同手段改善了具有局部非線性結(jié)構(gòu)的動力分析效率。
本文針對地震激勵下,減震橋梁具有局部非線性的特點,將時域顯式降維迭代法、基于哈密頓蒙特卡洛的子集模擬法相結(jié)合,從減少所需樣本數(shù)目和提高單次樣本計算效率兩方面著手,建立多點激勵下減震橋梁隨機抗震可靠度求解的高效方法。
1 多點激勵下減震橋梁響應(yīng)的時域顯式降維迭代求解格式
1.1 多點地震激勵下減震橋梁運動方程
黏滯阻尼器在橋梁結(jié)構(gòu)減震設(shè)計中已被廣泛使用,常將其布置于塔?梁、墩?梁、橋臺?梁等連接部位,以達到耗散能量、實現(xiàn)減震的目的。黏滯阻尼器的恢復(fù)力可表示為[18]
對于圖1所示有n個自由節(jié)點、m個支承節(jié)點、m^'個黏滯阻尼器的減震橋梁結(jié)構(gòu)系統(tǒng),在多點地震激勵下,其運動方程可表示為[19]
從圖4中可以看出,Soil1對應(yīng)的位移時程與Soil2對應(yīng)的位移時程由于局部場地效應(yīng)、相干效應(yīng)的影響,無論是峰值還是隨時間的變化情況都有顯著不同。
3.3 計算結(jié)果
定義E2地震作用下圖2所示橋梁①號橋臺處梁端位移超越界限值b=0.18 m時該減震橋梁失效(本次計算時界限值b的選取依據(jù)位移失效準則、3σ原則確定為此值,實際計算時可根據(jù)相應(yīng)的失效準則選取相應(yīng)問題合適的界限值)。表4為采用傳統(tǒng)的直接迭代法與本文方法對同一組位移激勵樣本進行動力時程分析所需時間對比,圖5為相應(yīng)三種計算方法的結(jié)果對比;表5給出了采用本文方法與傳統(tǒng)隨機模擬法求得的失效概率及需要的計算時間。需注意的是,表5中兩種算法各自需要的樣本數(shù)是在保證兩種算法求解的結(jié)果的變異系數(shù)處于一致水平下確定的。具體樣本數(shù)的確定方法見文獻[14]。
由圖5可見,本文建立的時域顯式迭代算法的計算結(jié)果與基于直接迭代求解格式利用OPENSEES和ANSYS進行非線性時程積分法的計算結(jié)果基本一致。表4數(shù)據(jù)顯示本文方法耗時最短,雖然由于三種方法各自預(yù)處理及存儲結(jié)果耗時不同,使得這種比較不具有普遍意義,但仍從側(cè)面反映了本文方法在求解當前問題的高效性。
由表5可見,在計算精度方面兩種計算方法相近,驗證了本文方法的正確性。在抽樣次數(shù)方面,由于本文采用了基于哈密頓蒙特卡洛法的子集模擬法,樣本數(shù)明顯降低;在計算耗時方面,由于本文方法所需樣本數(shù)較少,且單次樣本計算時間短,計算效率得到了極大提高。特別是,對于失效概率較低的情況,傳統(tǒng)隨機模擬法所需樣本數(shù)目將急劇上升,而子集模擬法所需樣本數(shù)目增加相對緩慢。例如,當失效概率為0.002左右時,傳統(tǒng)隨機模擬法所需抽樣次數(shù)約為40000次,而子集模擬法只需3000次左右,此時本文方法的計算效率將高出25倍以上。
4 結(jié) 論
為了提高多點激勵下減震橋梁結(jié)構(gòu)非線性隨機抗震可靠度的計算效率,本文建立了基于哈密頓蒙特卡洛法的時域顯式降維隨機模擬法,主要研究結(jié)論如下:
(1) 針對減震橋梁結(jié)構(gòu)具有局部非線性特征,建立了多點激勵下減震橋梁運動方程的時域顯式降維迭代求解格式,可極大地提高單次地震響應(yīng)計算效率;
(2) 引入基于哈密頓蒙特卡洛法的子集模擬法,改善了在失效域中抽取樣本點的效率,使需要的樣本數(shù)大大降低,特別是對于低失效概率時改進效果更為顯著;
(3) 與傳統(tǒng)蒙特卡洛法模擬法相比,所建立的方法對于多點激勵下減震橋梁結(jié)構(gòu)非線性動力可靠度問題求解具有更高的效率。
參考文獻:
[1] 歐進萍,王光遠. 結(jié)構(gòu)隨機振動理論[M]. 北京:高等教育出版社,1998.
JinpingOu, Wang Guangyuan. Structural Random Vibration Theory [M]. Beijing: Higher Education Press, 1998.
[2] Rice S O. Mathematical analysis of random noise [J]. Bell System Technical Journal, 1944, 23(3): 282-332
[3] 陳建兵, 李 杰. 結(jié)構(gòu)隨機地震反應(yīng)與可靠度的概率密度演化分析研究進展[J]. 工程力學(xué), 2014, 31 (4) :1-10.
Chen Jianbing, Li Jie. Probability density evolution method for stochastic seismic response and reliability of structure[J]. Engineering Mechanics, 2014, 31 (4):1-10.
[4] Crandall S H, Chandiramani K L, Cook R G. Some first passage problems in random vibration[J]. Journal of Applied Mechanics, 1966, 33(3):532-538.
[5] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo Method [M].John Wiley & Sons, 2017.
[6] Hohenbichler R, Rackwirtz R. Improvement of second-order reliability estimates by importance sampling[J]. ASCE Journal of Engineering Mechanics, 1988, 114: 2195-2199.
[7] Au S K, Beck J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277.
[8] Katafygiotis L S, Cheung S H. Application of the spherical subset simulation method and auxiliary domain method on a benchmark reliability study[J]. Structural Safety, 2007, 29: 194-207.
[9] Bucher C. Asymptotic sampling for high-dimensional reliability analysis[J]. Probabilistic Engineering Mechanics, 2009, 24: 504-510.
[10] Ching J, Au S K, Beck J L. Reliability estimation for dynamical systems subject to stochastic excitation using subset simulation with splitting[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(3): 1557- 1579.
[11] Au S K, Ching J, Beck J L. Application of subset simulation methods to reliability benchmark problems[J]. Structural Safety, 2007, 29(3): 183-193.
[12] Au S K. On MCMC algorithm for subset simulation [J]. Probabilistic Engineering Mechanics, 2016, 130(2):180-191.
[13] Neal R M. MCMC using Hamiltonian dynamics[Z]. E-print ArXiv.
[14] Wang Z, Broccardo M, Song J. Hamiltonian Monte Carlo Methods for subset simulation in reliability analysis [J]. Structure Safety, 2019, 76: 51-67.
[15] Wilson E L. Three-Dimensional Static and Dynamics Analysis of Structures[M]. Berkeley: Computers and Structures, Inc., 2010.
[16] 蘇 成, 李保木, 陳太聰, 等. 黏滯阻尼器減震結(jié)構(gòu)非線性隨機振動的時域顯式降維迭代隨機模擬法[J]. 計算力學(xué)學(xué)報, 2016, 33(4): 556-563.
Su Cheng, Li Baomu, Chen Taicong, et al. Nonlinear random vibration analysis of energy-dissipation structures with viscous dampers by random simulation method based on explicit time-domain dimension-reduced iteration scheme[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 556-563.
[17] 李 鋼, 李宏男, 李 瀛. 基于擬力法的消能減震結(jié)構(gòu)地震反應(yīng)分析[J]. 土木工程學(xué)報, 2009, 42(4): 55-63.
Li Gang, Li Hongnan, Li Ying, et al. Analysis of seismic response of structures with dissipation devices by using fictitious force method [J]. China Civil Engineering Journal, 2009, 42(4): 55-63.
[18] 沈聚敏, 周錫元, 高小旺, 等. 抗震工程學(xué)[M]. 北京: 中國建筑工業(yè)出版社, 2000.
Shen Jumin, Zhou Xiyuan, Gao Xiaowang, et al. Aseismic Engineering [M]. Beijing: China Architecture and Building Press, 2000.
[19] Chopra A K. Dynamics of structures: Theory and applications to earthquake engineering [M]. New Jersey: Prentice-Hall, 2001.
[20] Hu Z, Su C, Chen T, et al. An explicit time-domain approach for sensitivity analysis of non-stationary random vibration problems[J]. Journal of Sound and Vibration, 2016, 382: 122-139.
[21] Avriel M. Nonlinear Programming: Analysis and Methods [M]. New York: Dover Publishing Inc., 2003.
[22] 李慶揚, 王能超, 易大義. 數(shù)值分析[M]. 北京: 清華大學(xué)出版社, 2001.
Li Qingyang, Wang Nengchao, Yi Dayi. Numerical Analysis[M]. Beijing: Tsinghua University Press, 2001.
[23] Koo H, Der Kiureghian A. FORM, SORM and simulation techniques for nonlinear random vibrations[R]. Report No. UCB/SEMM-2003/1,Department of Civil and Environmental Engineering, University of California, Berkeley. 2003.
[24] Wang Z, Der Kiureghian A. Tail-equivalent linearization of inelastic multi-support structures subjected to spatially varying stochastic ground motion[J]. Journal of Engineering Mechanics, 2016, 142(8):04016053.
Hamiltonian Monte Carlo based subset simulation for reliability analysis of energy-dissipation bridge structures with viscous dampers under multi-support seismic excitations
JIA Shao-min1, WANG Zi-qi2, CHEN Hua-ting2, ZHAO Lei3
(1. College of Civil Engineering, Sichuan Agricultural University, Chengdu 611830, China;
2. Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510405, China;
3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China)
Abstract: The reliability analysis of energy-dissipation bridge structures with viscous dampers under multi-support seismic excitations is a typical local nonlinear dynamic problem. The Monte Carlo simulation method has the general applicability to solve the nonlinear dynamic reliability problem, but with the problem of huge computational cost for engineering practice. The computational cost is determined by the number of samples and the efficiency of a single run of deterministic structural dynamic analysis. In order to improve the efficiency of the seismic reliability analysis of the energy-dissipation bridge structures with viscous dampers, an explicit time-domain dimension-reduced iteration scheme is established using precise time-integration method and Newton-Raphson method, so that the efficiency of dynamic analysis is improved. A subset simulation method using Hamiltonian Monte Carlo is introduced to improve the sampling efficiency of random ground motion in failure domain. Numerical results show that the high efficiency of the present approach for solving nonlinear dynamic reliability problems of energy-dissipation bridge structures with viscous dampers.
Key words: energy-dissipation bridge structures with viscous dampers;nonlinear dynamic reliability; Hamiltonian Monte Carlo;precise time-integration method; explicit time-domain dimension-reduced iteration
作者簡介: 賈少敏(1985-),男,博士,講師,碩士生導(dǎo)師。電話:13688416160;E-mail: jiashaomin1@163.com
通訊作者: 王子琦(1989-),男,博士,講師,碩士生導(dǎo)師。電話:13826496018;E-mail: ziqidwang@yahoo.com