曹英華
【關(guān)鍵詞】初中數(shù)學(xué); 數(shù)學(xué)思想與方法; 滲透策略
在現(xiàn)代素質(zhì)教育事業(yè)的深入發(fā)展下,教師在初中數(shù)學(xué)教學(xué)課堂中要積極采用多樣化創(chuàng)新的教學(xué)方式進(jìn)行高效課堂教學(xué)工作,其中,對于數(shù)學(xué)思想與方法的有效教學(xué)能夠幫助學(xué)生開拓學(xué)習(xí)思維模式和解題思路,從而達(dá)到高效率的課堂學(xué)習(xí)成效,本文將對初中數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想與方法提出幾點策略。
一、在數(shù)學(xué)史的介紹中滲透
任何一條數(shù)學(xué)理論知識都有它的來源地發(fā)現(xiàn)過程,任何一道數(shù)學(xué)題都有它的解題思路和方法,所以,教師在數(shù)學(xué)課堂教學(xué)中講解重點數(shù)學(xué)知識內(nèi)容的時候要導(dǎo)入相關(guān)的數(shù)學(xué)歷史資料讓學(xué)生去了解,讓學(xué)生知道每位偉大的數(shù)學(xué)家是怎樣發(fā)現(xiàn)這種數(shù)學(xué)問題和現(xiàn)象,又是怎樣通過自己不懈的努力和堅持最終計算出合理的運(yùn)算方式和方法,從而產(chǎn)生了真實性的理論實際內(nèi)容。教師在為學(xué)生介紹數(shù)學(xué)史的過程中,要詳細(xì)地介紹數(shù)學(xué)家的歷史背景,發(fā)現(xiàn)問題的過程和原因,怎樣去思考解決各種問題的思路和方法,讓學(xué)生從他們身上學(xué)習(xí)到對于數(shù)學(xué)追求的精神品質(zhì)和良好思維模式,最后變?yōu)樽约旱乃季S體系去解決課文中遇到的各種難題,達(dá)到理想的課堂教學(xué)目標(biāo)。例如,在講解正數(shù)和負(fù)數(shù)時,學(xué)生對于課堂中教師所講述的關(guān)于正數(shù)和負(fù)數(shù)的概念以及它們之間的關(guān)系不是很理解,教師首先為學(xué)生介紹了關(guān)于正數(shù)和負(fù)數(shù)的歷史背景,教師介紹道:正數(shù)和負(fù)數(shù)最早出現(xiàn)在我國古代西漢時期所編寫的《九章算術(shù)》的方程章中,在古代人民生活中,以收入錢為正,支出為負(fù)。在學(xué)生進(jìn)行正數(shù)與負(fù)數(shù)的運(yùn)算過程中,教師講述了古代人計算的方式和方法讓學(xué)生進(jìn)行對比,通過了解數(shù)學(xué)史的知識內(nèi)容,學(xué)生對這節(jié)課所學(xué)習(xí)的內(nèi)容更加深刻理解,在實際解題方面,也明白基本的原理和方法,從而鞏固提升了自身的數(shù)學(xué)學(xué)習(xí)技巧。
二、在復(fù)雜問題中滲透
有句話說得好,做得多不如不如做得精,做得深不如做的準(zhǔn),所以教師在數(shù)學(xué)課堂教學(xué)為學(xué)生滲透高效的數(shù)學(xué)思想與方法的時候,要以學(xué)生能夠精準(zhǔn)找到解題思路和方法為目的對學(xué)生進(jìn)行復(fù)雜性的問題創(chuàng)設(shè),教師要摒棄運(yùn)用大量習(xí)題讓學(xué)們進(jìn)行題海訓(xùn)練的培訓(xùn)方式,采用復(fù)雜而不難懂的題型對學(xué)生進(jìn)行思維拓展,在學(xué)生思考的過程中能夠總結(jié)歸納出多種基本的知識內(nèi)容體系,尋找不同的解題思路和方式,從而將復(fù)雜的問題變?yōu)楹唵位?,很好地鍛煉了學(xué)生理性邏輯思維的思考能力。針對復(fù)雜性的習(xí)題設(shè)置,教師可組織學(xué)生進(jìn)行分組合作討論學(xué)習(xí),加強(qiáng)學(xué)生之間的互動交流,采取各自的不同想法和意見,從而找到最優(yōu)的解題方案和技巧,培養(yǎng)了學(xué)生自主思考問題和解決問題的學(xué)習(xí)意識,全面有效地滲透了數(shù)學(xué)思想與方法的教學(xué)任務(wù)。例如,在講解特殊的平行四邊形時,教師讓學(xué)生能夠理解關(guān)于正方形、長方形、菱形的特征和特點,并且能夠知道與平行四邊形的關(guān)系,教師為學(xué)生設(shè)計了這樣一道習(xí)題,教師在黑板上畫出了復(fù)雜的圖形體系,并標(biāo)記ABCDEFGH幾個點,根據(jù)每個點的運(yùn)動和重合,讓學(xué)生求證或判斷其中是否是平行四邊形。通過這種復(fù)雜的問題設(shè)置,其包含了各種圖形的基本知識內(nèi)容和運(yùn)算定理,如平行四邊形推導(dǎo)矩形的條件為有一個直角且對角線相等,教師可以組織學(xué)生進(jìn)行課堂討論研究,在討論的過程中便總結(jié)了等多種關(guān)于圖形的基礎(chǔ)知識,再從中找到各種求證方法,讓這道數(shù)學(xué)題做得又精又準(zhǔn)。
三、在基礎(chǔ)概念和定理學(xué)習(xí)中滲透
學(xué)生在初中數(shù)學(xué)學(xué)習(xí)課堂中進(jìn)行大量的習(xí)題運(yùn)算過程中,往往會遇到卡殼的情況發(fā)生,不知道問題出在哪里,或者不知道該用什么樣的方法去解答,這就是由于數(shù)學(xué)基礎(chǔ)知識不扎實不牢固的原因所造成的,所以,教師一定要從學(xué)生的基礎(chǔ)概念和定理入手,強(qiáng)化學(xué)生對基礎(chǔ)知識的訓(xùn)練和鞏固,教師要為學(xué)生設(shè)計各種不同的題型,讓學(xué)生去參透,結(jié)合基本知識概率和定理設(shè)計具有引導(dǎo)性的習(xí)題進(jìn)行訓(xùn)練,可進(jìn)行分層次設(shè)計習(xí)題,由易到難,每個層次的習(xí)題都要包含所學(xué)習(xí)的基本概念和定理,還可進(jìn)行多種解題方法的習(xí)題設(shè)計,讓學(xué)生從不同思維方向去思考問題,要讓學(xué)生能夠明白不管多少種方法都離不開基礎(chǔ)的概念和定理作為解題思路的支撐,達(dá)到良好的課堂學(xué)習(xí)效果。例如,在講解幾何圖形時,教師在課堂教學(xué)中重點要學(xué)生鞏固和記憶關(guān)于各種幾何圖形的基本定理和公式,像正方形地計算周長,S代表面積,C代表周長,a代表邊長,那么C=4a,S=2*a,教師要經(jīng)常性地組織學(xué)生對基本概念公式和定理進(jìn)行默寫測試,讓學(xué)生能夠牢記基礎(chǔ)知識,教師還可設(shè)置一些數(shù)學(xué)習(xí)題讓學(xué)生從中發(fā)現(xiàn)這些所學(xué)習(xí)的基本公式和定理,可飲用生活實際來設(shè)計,像自己家中的臥室可用幾種方法能夠測量出它的面積呢?通過學(xué)生思考,結(jié)合自己所掌握的基礎(chǔ)知識找到不同的解答方案,大大的提高了學(xué)生做題的質(zhì)量和效率。
綜上所述,教師要在初中數(shù)學(xué)課堂中運(yùn)用合理的教學(xué)手段來滲透學(xué)生的數(shù)學(xué)思想與方法,要結(jié)合數(shù)學(xué)史的教學(xué)內(nèi)容,讓學(xué)生了解數(shù)學(xué)的基本解題思路和背景,加強(qiáng)鞏固學(xué)生的基礎(chǔ)性知識內(nèi)容,創(chuàng)設(shè)復(fù)雜性的課堂習(xí)題開發(fā)學(xué)生的思維,進(jìn)一步挖掘解題的思路和方法。
參考文獻(xiàn):
[1]張海濤. 借助函數(shù)思想 ?指導(dǎo)初中數(shù)學(xué)解題研究[J]. 數(shù)理化解題研究,2022,(08):56-58.
[2]田琦宇. 淺談分類討論思想在初中數(shù)學(xué)解題中的應(yīng)用[J]. 理科考試研究,2022,29(06):20-22.