• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Keplerian Action,Convexity Optimization,and the 4-Body Problem

    2021-06-08 01:40:48KuoChangChen
    Analysis in Theory and Applications 2021年1期

    Kuo-Chang Chen

    Department of Mathematics,National Tsing Hua University,Hsinchu,Taiwan

    Abstract.In this paper we introduce a method to construct periodic solutions for the n-body problem with only boundary and topological constraints.Our approach is based on some novel features of the Keplerian action functional,constraint convex optimization techniques,and variational methods.We demonstrate the strength of this method by constructing relative periodic solutions for the planar four-body problem within a special topological class,and our results hold for an open set of masses.

    Key Words:n-body problem,variational methods,periodic solutions,convex optimization.

    1 Introduction

    The Newtonian n-body body problem concerns the motion of n masses m1,···,mn≥0 moving in Rd,d∈{1,2,3},in accordance with Newton’s law of universal gravitation:

    where xk∈Rdis the position of mk,x=(x1,···,xn),and

    is the(self-)potential energy.Let

    be the kinetic energy and L(x,˙x)=U(x)+K(˙x)be the Lagrangian.Eq.(1.1)are Euler-Lagrange equations for the action functional

    The case A0,Twill be denoted by AT.Unless specified otherwise,throughout this paper a“solution”of(1.1)is referred to a“classical solution”of(1.1).

    Analytic construction for periodic solutions of(1.1)is an old school,while variational approach has become a fashion since the discovery of the hip-hop orbit with four bodies[16]and the figure-8 orbit[15]with three bodies.Their idea of imposing symmetry constraints on solution curves was subsequently applied to many other examples,some notable successes been choreographic solutions[3,7,13,14,21,22,25,28,29],multiple choreographic solutions(such as the parallelogram four-body problem)[5–7],generalized hiphops[12,Section 4.2]and[30],and many other orbits with miscellaneous types of symmetries(such as symmetries with rotating circle property)[4,17–19].Most applications rely on manipulations of some equal masses.There are some examples without restriction on equal masses:the generalized hip-hops with the Italian symmetry[12,Section 4.2],some Hill type orbits[2],retrograde orbits for the three-body problem[9,10],and certain orbits with n-bodies extending Euler-Moulton relative equilibria[11].In some of these examples,simple order-two spatial symmetry were imposed without involving permutation of masses.Apart from them,to our knowledge there seems to be no substantial progress on variational constructions for periodic solutions of(1.1)with totally distinct masses.

    Numerical experiments suggest that,however,many highly symmetric orbits with identical masses persist as one perturb the masses,with the only expense being the lose of some symmetry.The persistence is in fact observed in many examples for a fairly large range of masses.Some curious experiments on perturbing masses for orbits in[5]and[7,Section 5]are major incentives of our present work.Fig.1 is a very small list of motivating examples.With totally distinct masses,manipulations with symmetries are not helpful.Direct applications of global estimates in[9,10]are also not quite useful for n-body problems with n≥4,as to be explained later in this paper(Section 4).These solutions fall in certain topological families,and it is in general a difficult task to rigorously prove the existence of a real solution within a given topological family of curves.There must be some insights and artifices missing.

    The purpose of this paper is to introduce a method to construct periodic solutions for the n-body problem with only boundary and topological constraints(Section 3).Our approach is based on some novel features of the Keplerian action functional(Section 2),some properties of the action functional(Section 4),and some constraint convex optimization techniques(Section 5).Our approach is a substantial improvement of methods in[9,10],and has no restriction on equal masses.We illustrate the strength of this method by constructing relative periodic solutions for the planar four-body problem within a special topological class(Section 6).

    Figure 1:From left to right:The orbit in[5]with masses(m1,m2,m3,m4)=(1,1,1,1),a small perturbation with masses(0.8,0.9,1.1,1),and two large perturbation with masses(1,2,3,4)and(1,3,4,2).

    2 The Kepler problem revisited

    The Newtonian two-body problem,also called the Kepler problem,is one of the most classic problem in mechanics.Quoting Albouy[1],

    “...the founding discoveries of Kepler and Newton remain strikingly beautiful,and indeed are so familiar to us that we sometimes forget that they contain surprising features.”

    We revisit this ancient problem to explore some simple features of the Keplerian action functional that were not found in literature,but we find fascinating and useful in our applications.

    Consider the problem with masses m1,m2>0 and positions x1,x2∈R2.Let r=x2?x1be the relative position,λ>0 be the total mass multiplied by the gravitational constant,then the equation of motion is

    A solution curve r(t)for the Kepler problem either traces out a conic with the origin as one of its foci,or composed of rectilinear motions with zero angular momentum.We shall identify the space containing the conic by R2or C and write r in polar form

    For elliptical orbits(i.e.,e∈[0,1))and hyperbolic orbits(i.e.,e∈(1,∞)),the semi-latus rectum p,eccentricity e,and semi-major axis a are related by p=a(1?e2).The constant θ0is the phase angle between the major axis and the real line.

    Eq.(2.1)is the Euler-Lagrange equation of the Keplerian action functional Iλ,Tdefined by This functional is well-known to be weakly lower semi-continuous[20],and is coercive(i.e.,Iλ,T(r)→∞as‖r‖H1→∞)on various subspaces.

    From the perspective of the classical theory of variational calculus,one of the most natural and typical questions is to answer the minimization problem for the Keplerian action functional confined to the space

    where boundary constraintsΩ0,Ω1are closed subsets of C.For various boundary constraints,coercivity of Iλ,Toften follows easily from simple variants of Poincar′e’s inequality.Typical examples are:one or both ofΩ0andΩ1are bounded,Ω0andΩ1are transversal lines,and so forth.Minimizers in such spaces are bound to exist.The question of our interest is therefore not about existence of minimizers,but about qualitative features of action minimizers and minimal action values.In particular,we would like to know whether or not minimizers fall inside the singular subspace;i.e.,the subset of curves with collisions.

    The major purpose of this section is to analyze the minimization problem

    for cases whereΩ0andΩ1are either singletons or rays emanating from the origin.The most critical property for our purpose is the Theorem 2.1 in Subsection 2.3 concerning convexity and monotonicity of infimum action values.

    2.1 Minimization with two variable endpoints

    The ray and line generated byξ/=0 are denoted respectively by

    R+ξ={rξ:r∈[0,∞)}, Rξ={rξ:r∈R}.

    For the special caseξ∈R,ξ>0,the ray it generates is simply the positive real axis R+.

    Givenξ0,ξ1/= 0. The Keplerian action functional Iλ,Tattains its infimum on ΓT(R+ξ0,R+ξ1)if and only if the angleφ=∠ξ0ξ1between R+ξ0and R+ξ1is in(0,π](see[8,Proposition 1]for a more general statement and its proof).Union of such spaces and their singular subspaces can be characterized by

    The symbol〈·,·〉stands for the standard scalar product in R2~=C.Clearly,minimization overΓT,φis the same as minimization overΓT(R+,R+eiφ).

    The following proposition summarizes some discussions in[9,Section 5.1].

    Proposition 2.1.Letφ∈(0,π],T>0,λ>0 be constants.Let

    Then

    OnΓT,φ,minimizers are congruent to

    2.2 Minimization with two fixed endpoints

    This term multiplied by the reduced mass m1m2/(m1+m2)is the more standard definition of total energy.

    (i)A Lambert parameter is not constant on a family of arcs with the same configuration.

    (ii)If f and g are two Lambert parameters,then|ξ0|+|ξ1|,|ξ0?ξ1|,f,and g are functionally dependent.

    (iii)The energy h is a Lambert parameter.

    There are several Lambert parameters identified in[1,Proposition 31].Apart from the transfer time,as identified by the classical Lambert theorem,what we need is just one:

    Proposition 2.2(Albouy[1]).The action integral is a Lambert parameter.

    In light of this,let us focus on rectilinear paths which begin and/or end with collision.For convenience we focus on paths ejecting from the origin at t=0 and moving along the positive real axis R+.Let Tλ(x0,x1,h)be the transfer time from x0to x1,0≤x0≤x1,without passing through collision,and with prescribed energy h.Let v1be the velocity of the path at time Tλ(x0,x1,h).Then by direct integration we have

    where

    When h<0,the second formula of Tλ(0,x,h)in(2.7b)represents the transfer time with non-monotonic rectilinear motion.In this case,in the first equation(2.7a)showing formula for Tλ(x0,x1,h),we shall use the first formula in(2.7b)for Tλ(0,x0,h).See the first graph in Fig.2 for a typical case–the graph of T1(0,2,h)as a function of h.

    The energy h of the Keplerian action minimizer onΓT(0,ξ)with a prescribed transfer time T is implicitly given by formulae above.The minimum action value can be calculated accordingly via direct integration.For a monotonic rectilinear motion r ejecting from the origin at t=0,ending with position x>0,its action value is given by

    Other cases can be easily derived from these formulae.

    When a boundary constraint is a singleton,sayΩ0={ξ},we shall denote the space ΓT({ξ},Ω1)byΓT(ξ,Ω1)for simplicity,and likewise for other cases.Some special cases were summarized in the following proposition.

    Proposition 2.3.Let T>0,λ>0 be constants,and let

    Then

    Proof.The second identity is achieved at the ejection orbit with zero velocity at the ending point,a case included in Proposition 2.1.It also minimizes Iλ,TonΓT(0,R+)since it is the unique monotonic ejection orbit along R+with zero velocity when t=T.The first identity is a simple corollary of the second.The third identity is the action value of the unique parabolic ejection orbit along the real line given by x(t)=ωt2/3.Details are simple calculations left to the reader.

    Figure 2:Left:Transfer time T1(0,2,h)versus energy h.Right:Half of action value of ejection Keplerian orbit with final position 2x and prescribed transfer time T=2.

    2.3 Minimization with one fixed and one variable endpoint

    Here we assume one fixed endpoint isξ/=0 and the other endpoint varies along a ray emanating from the origin.It is sufficient to consider minimization overΓT(ξ,R+)or,equivalently,ΓT(R+,ξ).Define the infimum Keplerian action Iλ,T:R+×[0,π]→R+by

    Iλ,T(ρ,φ)=inf{Iλ,T(r):r∈ΓT(ρeiφ,R+)}.

    Or equivalently,

    Iλ,T(ρ,φ)=inf{Iλ,T(r):r∈ΓT(ρ,R+eiφ)}

    =inf{Iλ,T(r):r∈ΓT(R+,ρeiφ)}.

    Proposition 2.4.Givenξ/=0,letφ=Ar g(ξ).Consider the Keplerian action functional Iλ,Trestricted toΓT(R+,ξ).

    (a)Ifφ∈[0,π/2],then for any action minimizer r of Iλ,T,r is free from collisions on[0,T]and˙r(0)⊥R+.

    (b)Ifφ∈(π/2,π],then

    Proof.The first part follows from a standard blow-up and deformation arguments(see for instances[8,Section 5],[18,Sections 7,9]and[31,Section 4.1]),outlined as follows.

    Supposeφ∈[0,π/2).Let the deformation?y be given by

    Then clearly?y∈Γ1(R+,y(1))has lower action value on[0,1]than y.Supposeφ=π/2.Given an arbitraryτ>1.Let?y be given by

    whereas

    As a preparation for the main theorem in this subsection,we recall that in classical theory of variational calculus,the first and second variations for a functional of the form

    are,assuming smoothness of the Lagrangian L,obtained by evaluating

    Second derivatives of the Lagrangian in above are bilinear forms on the space of admissible variations.One may replace the variation x+s h from x by a one-parameter family of curves{xs}?ε

    Putting the second derivative in a more familiar form,via integration by parts,one has

    Terms inside braces{·}vanish if the curve xshappens to be an extremal of the functional I.

    In the second identity,the second term on the right-side equals zero because

    due to the natural boundary condition,and

    g(s)eiφ=rs(T)?r0(T)=s.

    Figure 3:Graphs ofas a function ofρ.

    By suitable scaling as did(2.3)we find

    As a simple corollary of Theorem 2.1 and Proposition 2.4,we have

    3 Algebraic and topological classifications of planar motions

    Given n mass points moving on the complex plane.Consider the boundary constraints that all mass points are confined to move from one line L0to another line L1in a given time T.Without loss of generality we let L0be the real axis and let L1=R eφi,φ∈[0,π).The class of such paths is denoted by

    Pφ,T,n:={x∈C([0,T],Cn):xk(0)∈R,e?iφxk(T)∈R,?k}.

    Let?:={x∈Cn:xi=xjfor some i/=j}be the variety of collision configurations.The subset

    3.1 Classification by the symmetric group Sn

    By relabeling indices if necessary,we may confine our path space to only those which begin with a prescribed ordering.Givenσ∈Sn.Let

    Example 3.3.The Figure-8 orbit[15]of the three-body problem passes across every collinear configuration but it is not action minimizing in our function space since it is never perpendicular to the line when its configuration turns collinear.

    3.2 Classification by the braid group Bn

    The braid group Bnon n strands generalizes the symmetric group Snon n symbols in the sense that Snis isomorphic to the quotient group Bn/Pn,where Pnis the normal subgroup of Bnconsisting of pure braids(i.e.,braids with the same starting and ending positions).Elements in Bnhave simple geometric interpretations that are ideal for descriptions of periodic planar n-body motions without collision,as the trajectory of mass points over one period in the three-dimensional space-time looks like a pure braid on n strands.In contrast,elements in Sn“forget”how these braids twist and wind,only keeping track of the final ordering.

    Within any two braid classesγ0,γ1we may pick representatives c0inγ0,c1inγ1such that c0(T)=c1(0).The standard definition of braids multiplication

    induces a well-defined multiplicationγ0·γ1and group structure for braid classes.The multiplicative identity is called the trivial braid class belonging to,which there is a Euler-Moulton’s relative equilibrium.The group of braid classes is exactly the braid group Bnon n strands.Due to its geometric nature,we refer the classification by Bna topological classification for planar motions.

    Elementary braid types for the case of three bodies include trivial(Euler),retrograde,and prograde(direct)braids,for which we refer readers to[9,10]and references therein.Several elementary braids for the case of four bodies were listed in Fig.4.We exclude braids which are identical to some braids on the list after 180°rotation about the time axis.

    4 The action functional for the n-body problem

    In this section we provide some lower bound estimates for the action functional ATand show how they can be associated with certain constraint convex optimization problems.

    Definition 4.1.Given x=(x1,···,xn)∈Pφ,T,n.Denote the relative position xi?xjby xij.We classify subscript pairs{(i,j):1≤i/=j≤n},(i,j)and(j,i)been considered equivalent,according to the behavior of xij=xi?xj:

    For simplicity we use▲kto denote▲k(x)when the path x is fixed.We call elements in▲0colliding pairs,elements in▲1∪▲0,1order-preserving pairs,and elements in▲2∪▲0,2orderreversing pairs.The intersection▲0,1∩▲0,2is not necessarily empty since xijmay begin or end at 0.

    Figure 4:Some elements of S n and Bn.

    Here is the main theorem of this section.

    where Aτand Bτ,τ∈{0,T},are given by

    Therefore,given x∈Pφ,T,n,

    Summing up,we find

    By the homogeneity property(2.12)of EM,T(ρ,φ),we conclude that

    The proof for

    The rest of the proof for this case is the same as the caseτ=0.

    With this estimate instead,one easily obtains

    Now we briefly explain how Theorem 4.1 is associated with convex optimization problems and how it works for n-body problems.Details are to be carried out in later sections.

    The main difficulty is to provide good lower bound estimates for the right-hand side;i.e.,action value of paths with collisions.

    Then summations in Aτand Bτcan be expressed in termsσ.

    Taking the standard ordered partition for subscript pairs and dropping terms involving E,the inequality(4.2)clearly implies

    This is the lower bound estimate for the action functional one would obtained by following ideas in[9,10].However,this lower bound estimate is not sufficient to extend results in[9,10]to n-body problems with n≥4 and with general masses.

    Theorem 4.1 is a very substantial improvement,especially when n≥4,since the contribution of summations involving E can be quite considerable.While estimating either Aτor Bτ,we wish to find a definite lower bound for summations involving E that is valid for all possible values of mutual distances|xij(τ)|,which are therefore treated as variables over which the summation is minimized.Apparently,mutual distances are not independent variables.Minimizing summations involving E with respect to mutual distances is a problem of convex optimization subject to constraints on the initial and final configurations.Simple techniques of convex analysis can be used to provide good lower bound estimates for this summation,as to be illustrated in the next section.

    5 Some constraint convex optimization problems

    Throughout this section we let f:R+→R+be a nonnegative convex function with a global minimum at u0>0.Consider the convex optimization problem of the form:

    Here u=(u1,···,um)T.

    A variant of this convex optimization problem considers an additional nonnegative convex function g:R+→R+with a global minimum at v0≤u0.The second type of optimization problem is of the form:

    Here A u≤0 means each of its components is non-positive.

    The optimization problem of the form(5.1)will be applied to estimation of Bτ,and(5.2)will be applied to estimation of Aτin Theorem 4.1.

    5.1 The constraint convex optimization problem(5.1)

    The propositions below provide examples of lower bound estimates for such constraint convex optimization problems.

    Proposition 5.1.Consider the convex optimization problem(5.1)with m=3,A=(1,1,?1).Then

    where

    Proposition 5.2.Consider the convex optimization problem(5.1)with m=5.Supposeα1α4=α2α3.

    (a)If

    then

    where

    (b)If

    then

    where

    Proof.By convexity,

    Sinceα1α4=α2α3,the choice of A implies

    Now we apply Propositions 5.1,5.2 to estimate B0in(4.2)for the four-body problem.

    Proposition 5.3.Givenφ∈(0,π/2]and x∈Pφ,T,4.Suppose

    x4(0)≤x3(0)≤x2(0)≤x1(0).

    Then E0has lower bounds given as follows.

    Proof.Fixφ∈(0,π/2]and let

    Then

    which has global minimum value 0 at u0=(M T2/φ2)1/3,by Corollary 2.1.

    (u1,u2,u3,u4,u5)=(x13(0),x23(0),x14(0),x24(0),x34(0)),

    (α1,α2,α3,α4,α5)=(m1m3,m2m3,m1m4,m2m4,m3m4).

    (u1,u2,u3,u4,u5)=(x23(0),x24(0),x13(0),x14(0),x12(0)),

    (α1,α2,α3,α4,α5)=(m2m3,m2m4,m1m3,m1m4,m1m2).

    (u1,u2,u3,u4,u5)=(x12(0),x13(0),x24(0),x34(0),x14(0)),

    (α1,α2,α3,α4,α5)=(m1m2,m1m3,m2m4,m3m4,m1m4).

    We complete the proof.

    The other two cases can be estimated by imitating the proof for Proposition 5.1.We skip details here because they are not used in our applications.

    Similarly,one can obtain lower bound estimates for BTin(4.2):

    Proposition 5.4.Givenφ∈(0,π/2],x∈Pφ,T,4,andσ∈S4.Suppose

    Then EThas lower bounds given as follows.

    For brevity,we introduce some notations to shorten expressions in Propositions 5.3 and 5.4.Given four positive masses(m1,m2,m3,m4)and a fixed angleφ∈(0,π/2].Let M be the total mass and let{i,j,k,?}={1,2,3,4}.Define

    Note that Eijk?=Ejik?,Fijk?=Fjik?=Fij?k=Fji?k.Under assumptions of Propositions 5.3 and 5.4,these two propositions state that

    We end this subsection with further improvements of Proposition 5.1,with which Propositions 5.2,5.3,5.4 can be improved accordingly.

    Proposition 5.5.Consider the convex optimization problem(5.1)with m=3,A=(1,1,?1).Fix N≥3.Let

    Proof.Given u1,u2>0,there exists some j,k∈{0,1,2,···}such that

    By convexity of f and the assumption that f has minimum at u0>0,we always have

    f(u1)≥f(wj), f(u2)≥f(wk).

    If j+k

    In either case,the right side can be written f(wj+k+1).Thus

    α1f(u1)+α2f(u2)+α3f(u1+u2)≥α1f(wj)+α2f(wk)+α3f(wj+k+1).

    If j+k≥N,then the convexity assumption on f ensures that

    This implies the asserted inequality for the case j+k≥N.

    5.2 The constraint convex optimization problem(5.2)with two convex functions

    We only consider a few cases related to our applications.Arguments in here are similar to those in the previous subsection.We begin with some analogues of Proposition 5.1.

    Proposition 5.6.Consider the convex optimization problem(5.2)with m=3,A=(1,1,?1).

    (a)If?=2,then

    where(

    b)If?=1,then

    where

    Proposition 5.7.Consider the convex optimization problem(5.2)with m=3,?=2,A=(?1,1,1).Then

    where

    Now we apply Propositions 5.6,5.7 to estimate A0in(4.2)for the four-body problem.

    Proposition 5.8.Givenφ∈(0,π/2]and x∈Pφ,T,4.Suppose

    x4(0)≤x3(0)≤x2(0)≤x1(0).

    Suppose 1≤i

    Then by Corollary 2.1,

    and f has global minimum value 0 at u0=(M T2)1/3φ?2/3,g has global minimum value 0 at v0=(M T2)1/3(π?φ)?2/3,which is less than or equal to u0.Note that xij(0)+xjk(0)=xik(0).

    The lower bound in(a)is obtained by Proposition 5.6(b)with

    The lower bound in(b)is obtained by Proposition 5.6(b)with

    The lower bound in(c)is obtained by Proposition 5.7 with

    The lower bound in(d)is obtained by Proposition 5.7 with

    The lower bound in(e)is obtained by Proposition 5.1 with

    Thus,we complete the proof.

    Following the proof for Proposition 5.8,one immediately obtains the following estimate for BTin(4.2)by replacing xiby xσi.

    Proposition 5.9.Givenφ∈(0,π/2],x∈Pφ,T,4,andσ∈S4.Suppose

    Suppose 1≤i

    6 Application to the four-body problem

    Although we only focus on the four-body problem here,our estimates,which are based on Theorem 4.1 and properties of the Keplerian action functional,can be easily applied to general n-body problems.We wish that the application shown in this section will motivate many further applications.

    If we are able to find a suitable collision-free test path in bσthat has even lower action value,then the inequality holds for an open set of masses and turning angles.

    For the four-body problem,there are 6 pairs of(i,j)with i

    In order to shorten our expressions,we fix positive masses(m1,m2,m3,m4),the turning angleφ,and use notations Eijk?,Fijk?,Gijk,Hijkdefined in(5.3),(5.4).Givenσ∈S4,1≤k

    Here is our application to the four-body problem:

    Theorem 6.1.Given T>0.Considerσ=(1243)and the triple retrograde braid bσas shown in Fig.4.There exist an open set M of positive masses(m1,m2,m3,m4)containing(1,1,1,1)and an open setΦof turning anglesφ∈(0,π/2]containingπ/2 such that there exist classical solutions for the four-body problem which minimizes the action functional on the component bσof bσ?Pφ,T,4.

    where

    {(1,3),(2,3),(2,4)}?▲1∪▲0,1, {(1,2),(1,4),(3,4)}?▲2∪▲0,2.

    The table below lists the six possibilities and our selected ordered partitions for subscript pairs.

    ▲0▲′0▲′2(1,2)∈▲0{(1,2)}▲′1{(1,3),(2,3),(2,4)}{(1,4),(3,4)}(3,4)∈▲0{(3,4)}{(1,3),(2,3),(2,4)}{(1,2),(1,4)}(2,3)∈▲0{(2,3)}{(1,3),(2,4)}{(1,2),(1,4),(3,4)}(1,3)∈▲0{(1,3)}{(2,3),(2,4)}{(1,2),(1,4),(3,4)}={(σ3,σ4)}={(σ1,σ4),(σ1,σ2)}={(σ1,σ3),(σ2,σ3),(σ2,σ4)}(2,4)∈▲0{(2,4)}{(1,3),(2,3)}{(1,2),(1,4),(3,4)}={(σ1,σ2)}={(σ3,σ4),(σ1,σ4)}={(σ1,σ3),(σ2,σ3),(σ2,σ4)}(1,4)∈▲0{(1,4)}{(1,3),(2,3),(2,4)}{(1,2),(3,4)}={(σ2,σ3)}={(σ3,σ4),(σ1,σ4),(σ1,σ2)}={(σ1,σ3),(σ2,σ4)}

    To estimate A0or ATin Theorem 4.1,we apply Proposition 5.8 for the first 3 cases,apply Proposition 5.9 for the last 3 cases.To estimate B0or BTin Theorem 4.1,we apply Proposition 5.3 for the first 3 cases,apply Proposition 5.4 for the last 3 cases.

    In the first case,(1,2)∈▲0,A0is bounded from below by A12and B0is bounded from below by B12,where

    Now,to complete the proof of the theorem,by continuity it is sufficient to prove that the inequality(6.2)holds for the special choice(m1,m2,m3,m4,φ)=(1,1,1,1,π/2)of masses and turning angle.We may just pick a suitable test path in bσfor this case and calculate its action value.For this case we have the following formula for E(ρ,φ):

    The first line is simply the definition of E in(2.11).The second line holds because,for fixedρ,the minimizing Keplerian arc for I1,1(ρ,π/2)connects one end of the latus rectum to the pericentre,and by reflecting the arc with respect to the major axis we obtain a Keplerian arc connecting two ends of the latus rectum,which has length 2ρ.Since the action integral is a Lambert parameter(Proposition 2.2),the action value of this extended Keplerian arc is exactly the same as the rectilinear Keplerian arc ejecting from the origin and reaches 2ρa(bǔ)t time 2,as they already have three Lambert parameters in common(using notations in Subsection 2.2,they are|ξ0|+|ξ1|,|ξ0?ξ1|,and transfer time).The action value of this extended Keplerian arc is therefore 2I1,1(ρ,π/2)=infΓ2(0,2ρ)I1,2,and the original minimizing Keplerian arc has half of this action.

    Bearing this in mind,for our particular choice of masses and turning angle,we find the values of Aij’s and Bij’s are:

    A12=A34=A23=A13=A24=A14≈13.4047,

    B12=B34=B13=B24≈13.4122,

    B23=B14≈13.4201.

    Fix T=1/2.The test path selected is xtest=(x1,x2,x3,x4),where:

    x1(t)=(0.6464 cos(πt)?0.0117 cos(3πt),?0.1824 sin(πt)?0.0035 sin(3πt)),

    x2(t)=(0.1824 cos(πt)?0.0035 cos(3πt),0.6464 sin(πt)+0.0117 sin(3πt)),

    x3(t)=?x2(t),

    x4(t)=?x1(t).

    Its action value,accurate to the fourth decimal place,is 6.7001,which is less than

    This completes our proof.

    Remark 6.1.We remark that the open sets M andΦdepends on the choice of braids,and the values of Aij’s and Bij’s are independent of the transfer time T.

    It is often possible to find multiple ways of choosing lower bounds Aij,Bijfor Aτ,Bτby using Propositions 5.3,5.4,5.8,and 5.9.For example,in Theorem 6.1 we may choose

    One may find all applicable combinations and choose the largest one.In fact,such lower bound estimates can be further improved using Proposition 5.5.In order to make it simple and clear,we do not pursuit for optimal bounds here.

    Remark 6.2.In the proof we have used the fact that the action integral is a Lambert parameter to deduce

    where x0=ρ(1?sinφ),x1=ρ(1+sinφ).The last equation can be calculated easily by using(2.8).

    ?

    Acknowledgements

    It is my great honor and pleasure to contribute in this special volume dedicated to Professor Paul Rabinowitz on his 80th birthday.Paul’s research work were great inspiration for my research interests,and his generous support and recognition have greatly influenced my research career.I also thank Jaeyoung Byeon,Yiming Long,and Zhi-Qiang Wang for their kind invitation to the Jeju meeting and this special issue.This work is supported in parts by the Ministry of Science and Technology in Taiwan.

    女生性感内裤真人,穿戴方法视频| 亚洲中文字幕日韩| 亚洲第一电影网av| 黄色片一级片一级黄色片| 成人手机av| 日本a在线网址| 精品免费久久久久久久清纯| 日韩欧美免费精品| 亚洲九九香蕉| 亚洲精品美女久久av网站| АⅤ资源中文在线天堂| 国产一区二区在线av高清观看| 国产黄色小视频在线观看| 精品人妻1区二区| 岛国在线观看网站| 超碰成人久久| 欧美日本视频| 搡老熟女国产l中国老女人| 一级毛片高清免费大全| 久久精品国产综合久久久| 国产亚洲精品av在线| 亚洲午夜理论影院| 中文资源天堂在线| 超碰成人久久| 777久久人妻少妇嫩草av网站| 欧美精品亚洲一区二区| 亚洲专区国产一区二区| 一本大道久久a久久精品| 一级毛片高清免费大全| 亚洲国产欧美网| 男男h啪啪无遮挡| 91老司机精品| 久久 成人 亚洲| 一区二区三区国产精品乱码| 9191精品国产免费久久| 亚洲成av人片在线播放无| 真人做人爱边吃奶动态| 亚洲国产欧美网| 久久精品亚洲精品国产色婷小说| 亚洲av片天天在线观看| 国产亚洲精品一区二区www| 亚洲专区字幕在线| 国产亚洲精品一区二区www| 久久精品亚洲精品国产色婷小说| 国产熟女xx| 亚洲欧美精品综合一区二区三区| 国产亚洲精品一区二区www| www.精华液| 久久伊人香网站| aaaaa片日本免费| 两个人的视频大全免费| 日日夜夜操网爽| 亚洲黑人精品在线| 国产一区二区激情短视频| 精品人妻1区二区| 黄色 视频免费看| 黑人巨大精品欧美一区二区mp4| 黄色a级毛片大全视频| 1024手机看黄色片| 性色av乱码一区二区三区2| 日韩 欧美 亚洲 中文字幕| 麻豆成人av在线观看| 国产成+人综合+亚洲专区| 色av中文字幕| cao死你这个sao货| 舔av片在线| 亚洲男人天堂网一区| 国产精品九九99| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| 天天一区二区日本电影三级| 日韩国内少妇激情av| 免费在线观看视频国产中文字幕亚洲| 一本综合久久免费| 一级黄色大片毛片| 亚洲一区二区三区不卡视频| 国产精品一区二区精品视频观看| 又黄又爽又免费观看的视频| 精品国产超薄肉色丝袜足j| 日本免费一区二区三区高清不卡| 日本黄色视频三级网站网址| 日本免费一区二区三区高清不卡| 亚洲美女黄片视频| 久久99热这里只有精品18| 久久精品国产清高在天天线| 琪琪午夜伦伦电影理论片6080| 国产精品爽爽va在线观看网站| 中文字幕熟女人妻在线| 欧美色视频一区免费| 少妇裸体淫交视频免费看高清 | 国产精品久久久人人做人人爽| 香蕉av资源在线| 男女床上黄色一级片免费看| 舔av片在线| 免费人成视频x8x8入口观看| 国产精品久久视频播放| 禁无遮挡网站| 欧美人与性动交α欧美精品济南到| 欧美成狂野欧美在线观看| 制服诱惑二区| 欧美一区二区精品小视频在线| 久久久久久九九精品二区国产 | 久久香蕉激情| 国产精品美女特级片免费视频播放器 | 怎么达到女性高潮| 国产成人精品久久二区二区免费| 757午夜福利合集在线观看| 国产一级毛片七仙女欲春2| 2021天堂中文幕一二区在线观| 久久亚洲精品不卡| 亚洲精品色激情综合| 亚洲九九香蕉| 久久性视频一级片| 国内精品久久久久久久电影| 欧美丝袜亚洲另类 | videosex国产| 亚洲七黄色美女视频| 欧美黑人巨大hd| 麻豆国产av国片精品| 午夜老司机福利片| 亚洲人成伊人成综合网2020| 色综合欧美亚洲国产小说| 91大片在线观看| 久久久精品大字幕| 熟妇人妻久久中文字幕3abv| 搡老熟女国产l中国老女人| 精品国产亚洲在线| 午夜影院日韩av| 1024香蕉在线观看| 黄色视频,在线免费观看| 制服丝袜大香蕉在线| 亚洲精品久久国产高清桃花| 最近在线观看免费完整版| 亚洲精品久久国产高清桃花| 亚洲人成电影免费在线| 国产69精品久久久久777片 | 少妇的丰满在线观看| 99久久综合精品五月天人人| 精品久久久久久久久久免费视频| 亚洲国产欧美网| 国产精品1区2区在线观看.| 亚洲人成网站在线播放欧美日韩| 嫩草影视91久久| av国产免费在线观看| 中文字幕人妻丝袜一区二区| 久久中文字幕人妻熟女| 欧美在线一区亚洲| tocl精华| 老司机福利观看| 午夜精品一区二区三区免费看| 国产激情欧美一区二区| 欧美性长视频在线观看| 亚洲精品在线美女| 国产av在哪里看| 国产精品免费一区二区三区在线| 久久精品综合一区二区三区| 最近最新免费中文字幕在线| 热99re8久久精品国产| 色综合欧美亚洲国产小说| 人妻丰满熟妇av一区二区三区| 无限看片的www在线观看| 国产精品免费视频内射| av天堂在线播放| 久久亚洲精品不卡| www.999成人在线观看| 天天添夜夜摸| 在线观看免费日韩欧美大片| 色综合欧美亚洲国产小说| 99久久99久久久精品蜜桃| 变态另类成人亚洲欧美熟女| 久久国产乱子伦精品免费另类| 两个人免费观看高清视频| 亚洲无线在线观看| 午夜免费激情av| 欧美极品一区二区三区四区| 免费在线观看成人毛片| √禁漫天堂资源中文www| 午夜日韩欧美国产| 熟女电影av网| 久久人人精品亚洲av| 宅男免费午夜| 90打野战视频偷拍视频| 青草久久国产| 国产成人啪精品午夜网站| 色综合婷婷激情| 一区二区三区激情视频| 日韩免费av在线播放| 亚洲,欧美精品.| av视频在线观看入口| 热99re8久久精品国产| 啦啦啦韩国在线观看视频| 无限看片的www在线观看| 夜夜看夜夜爽夜夜摸| 色噜噜av男人的天堂激情| 淫秽高清视频在线观看| 叶爱在线成人免费视频播放| 别揉我奶头~嗯~啊~动态视频| 久久人妻av系列| 国产精品一区二区三区四区免费观看 | 色av中文字幕| 欧美乱码精品一区二区三区| 日本黄大片高清| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美国产一区二区入口| 久久精品影院6| 在线观看免费日韩欧美大片| 黄色丝袜av网址大全| 搡老熟女国产l中国老女人| 人人妻,人人澡人人爽秒播| 99在线人妻在线中文字幕| 久久亚洲真实| 精品欧美一区二区三区在线| 精品国内亚洲2022精品成人| 国语自产精品视频在线第100页| 巨乳人妻的诱惑在线观看| 亚洲av电影在线进入| 国产av又大| 怎么达到女性高潮| 一边摸一边做爽爽视频免费| 国产一区在线观看成人免费| 国内毛片毛片毛片毛片毛片| 女警被强在线播放| 啦啦啦观看免费观看视频高清| 午夜激情av网站| 国产又色又爽无遮挡免费看| 黄色视频,在线免费观看| 中文字幕精品亚洲无线码一区| 观看免费一级毛片| 久久国产精品影院| 日韩精品免费视频一区二区三区| 亚洲av第一区精品v没综合| 中出人妻视频一区二区| 国产亚洲精品av在线| 国产爱豆传媒在线观看 | 国产精品 欧美亚洲| 在线观看舔阴道视频| 亚洲一区二区三区色噜噜| 色综合亚洲欧美另类图片| 夜夜爽天天搞| 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区免费观看 | 波多野结衣巨乳人妻| 日本成人三级电影网站| 亚洲国产看品久久| 男女之事视频高清在线观看| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| 午夜视频精品福利| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 特大巨黑吊av在线直播| 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 九九热线精品视视频播放| 99在线视频只有这里精品首页| 午夜精品一区二区三区免费看| 国产99白浆流出| 美女高潮喷水抽搐中文字幕| 一边摸一边抽搐一进一小说| 熟女少妇亚洲综合色aaa.| 欧美日韩国产亚洲二区| 老熟妇仑乱视频hdxx| 一二三四社区在线视频社区8| 日本一二三区视频观看| 制服人妻中文乱码| 国产亚洲精品久久久久久毛片| av欧美777| 一个人观看的视频www高清免费观看 | 一a级毛片在线观看| 成人午夜高清在线视频| 精品一区二区三区四区五区乱码| 日本一本二区三区精品| 成人特级黄色片久久久久久久| 黄色女人牲交| 欧美日韩乱码在线| 欧美丝袜亚洲另类 | av国产免费在线观看| 国产精品一区二区三区四区久久| 亚洲av第一区精品v没综合| 黄频高清免费视频| 国产成人欧美在线观看| 欧美性长视频在线观看| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站 | 日本免费a在线| 最新在线观看一区二区三区| 国产精品一及| 麻豆av在线久日| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 18禁国产床啪视频网站| 色精品久久人妻99蜜桃| 最新美女视频免费是黄的| 亚洲成人久久性| 国产一区二区激情短视频| 日本一区二区免费在线视频| 日日爽夜夜爽网站| 黄色 视频免费看| 久久久久久久午夜电影| 99久久国产精品久久久| 亚洲自偷自拍图片 自拍| 在线视频色国产色| 少妇裸体淫交视频免费看高清 | 国产精品亚洲美女久久久| 最好的美女福利视频网| 一个人免费在线观看的高清视频| 欧美日韩福利视频一区二区| 亚洲午夜理论影院| 999久久久国产精品视频| 最近视频中文字幕2019在线8| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 日韩欧美三级三区| 午夜亚洲福利在线播放| 嫁个100分男人电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 全区人妻精品视频| 久久久久久久午夜电影| 国产69精品久久久久777片 | 国产黄片美女视频| 美女黄网站色视频| 久久这里只有精品19| 好看av亚洲va欧美ⅴa在| av在线播放免费不卡| 黄片大片在线免费观看| 免费观看精品视频网站| 欧美又色又爽又黄视频| 成在线人永久免费视频| 在线看三级毛片| 熟妇人妻久久中文字幕3abv| 草草在线视频免费看| 精品欧美国产一区二区三| 中文字幕av在线有码专区| 欧美一区二区精品小视频在线| 久久久水蜜桃国产精品网| 日本撒尿小便嘘嘘汇集6| 白带黄色成豆腐渣| 99热只有精品国产| 一进一出抽搐动态| netflix在线观看网站| 亚洲欧美日韩无卡精品| 99久久无色码亚洲精品果冻| 久久久久久久久免费视频了| 身体一侧抽搐| 欧美性猛交╳xxx乱大交人| 日本在线视频免费播放| 成人av一区二区三区在线看| 国产精品爽爽va在线观看网站| 亚洲av电影不卡..在线观看| 国产亚洲精品久久久久久毛片| 国产精品九九99| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 天堂动漫精品| 国产亚洲欧美98| 黄色成人免费大全| 长腿黑丝高跟| 久久香蕉激情| 少妇熟女aⅴ在线视频| 欧美黄色片欧美黄色片| 99久久国产精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 男女做爰动态图高潮gif福利片| 午夜精品久久久久久毛片777| 91在线观看av| 国产不卡一卡二| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 国产三级在线视频| av超薄肉色丝袜交足视频| 亚洲人成网站高清观看| 精品电影一区二区在线| 日韩av在线大香蕉| 精品国产乱子伦一区二区三区| 欧美+亚洲+日韩+国产| 免费搜索国产男女视频| 国产激情欧美一区二区| 亚洲国产看品久久| 别揉我奶头~嗯~啊~动态视频| 日本熟妇午夜| 精品国产美女av久久久久小说| 99久久国产精品久久久| 老熟妇乱子伦视频在线观看| 亚洲18禁久久av| 欧美一级毛片孕妇| 夜夜看夜夜爽夜夜摸| 国产精品av久久久久免费| 国产aⅴ精品一区二区三区波| 亚洲av成人不卡在线观看播放网| 国模一区二区三区四区视频 | 久久国产精品人妻蜜桃| 国产精品99久久99久久久不卡| 久久婷婷成人综合色麻豆| 日韩国内少妇激情av| 国产伦人伦偷精品视频| 亚洲真实伦在线观看| 麻豆一二三区av精品| 一二三四社区在线视频社区8| 一个人观看的视频www高清免费观看 | 人人妻人人澡欧美一区二区| 国产精品久久视频播放| 久久久久久久久中文| 国产精品久久久人人做人人爽| 国产成人av教育| 国产精品98久久久久久宅男小说| 麻豆国产97在线/欧美 | 欧美性长视频在线观看| 深夜精品福利| 一级作爱视频免费观看| 成人国产综合亚洲| 99在线人妻在线中文字幕| 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 免费看十八禁软件| 搡老熟女国产l中国老女人| 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 日本黄大片高清| 亚洲黑人精品在线| 99国产精品99久久久久| 国产欧美日韩一区二区三| 久久久久性生活片| 日韩中文字幕欧美一区二区| 午夜亚洲福利在线播放| 国产1区2区3区精品| 欧美午夜高清在线| e午夜精品久久久久久久| 999久久久精品免费观看国产| 99在线人妻在线中文字幕| √禁漫天堂资源中文www| 欧美av亚洲av综合av国产av| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看.| 精品久久久久久久毛片微露脸| 国产在线精品亚洲第一网站| 色在线成人网| 亚洲色图 男人天堂 中文字幕| 日韩精品中文字幕看吧| 88av欧美| 人妻久久中文字幕网| 久久人人精品亚洲av| 国产av又大| 两性午夜刺激爽爽歪歪视频在线观看 | www日本在线高清视频| 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线| 免费在线观看黄色视频的| 黄色成人免费大全| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 少妇人妻一区二区三区视频| 国产真实乱freesex| av免费在线观看网站| 欧美日韩亚洲综合一区二区三区_| 91老司机精品| 一区福利在线观看| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽| 欧美成人性av电影在线观看| 99国产精品99久久久久| 黄片小视频在线播放| 国产v大片淫在线免费观看| 成人国产一区最新在线观看| 日韩大码丰满熟妇| 无限看片的www在线观看| 麻豆国产97在线/欧美 | 欧美成人午夜精品| 久久久久久久午夜电影| 久久人妻av系列| 国产一区二区在线观看日韩 | 欧美不卡视频在线免费观看 | 亚洲 欧美一区二区三区| 国产又色又爽无遮挡免费看| 夜夜夜夜夜久久久久| 91字幕亚洲| 午夜精品在线福利| 亚洲成人免费电影在线观看| 免费观看人在逋| 天堂av国产一区二区熟女人妻 | 丝袜人妻中文字幕| 亚洲欧美日韩东京热| 国产三级黄色录像| 在线播放国产精品三级| 国产av在哪里看| 欧美成狂野欧美在线观看| 国产黄片美女视频| 久久中文字幕人妻熟女| 精品高清国产在线一区| 长腿黑丝高跟| 级片在线观看| www日本黄色视频网| 欧美色欧美亚洲另类二区| 两个人的视频大全免费| 十八禁人妻一区二区| 国产精品国产高清国产av| 一夜夜www| 欧美日本视频| 黄色视频不卡| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 午夜福利成人在线免费观看| 亚洲真实伦在线观看| 免费在线观看黄色视频的| 久久婷婷成人综合色麻豆| 丝袜人妻中文字幕| 亚洲色图av天堂| 51午夜福利影视在线观看| 亚洲午夜理论影院| 黄色视频不卡| 亚洲在线自拍视频| 免费av毛片视频| 精品午夜福利视频在线观看一区| av中文乱码字幕在线| x7x7x7水蜜桃| 91字幕亚洲| 免费在线观看黄色视频的| 亚洲精品中文字幕在线视频| 日本一二三区视频观看| 黄色成人免费大全| 久久久久久久精品吃奶| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕熟女人妻在线| 看片在线看免费视频| 黄片小视频在线播放| 国产人伦9x9x在线观看| 国产又色又爽无遮挡免费看| 国产69精品久久久久777片 | 又粗又爽又猛毛片免费看| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 免费看十八禁软件| 亚洲精品一卡2卡三卡4卡5卡| 免费观看人在逋| 好看av亚洲va欧美ⅴa在| 成在线人永久免费视频| 久久久久久久久中文| 欧美一区二区国产精品久久精品 | 一二三四在线观看免费中文在| 叶爱在线成人免费视频播放| 国产亚洲精品综合一区在线观看 | 非洲黑人性xxxx精品又粗又长| 两个人的视频大全免费| 高清毛片免费观看视频网站| 三级男女做爰猛烈吃奶摸视频| 一个人观看的视频www高清免费观看 | 狠狠狠狠99中文字幕| 欧美激情久久久久久爽电影| 人成视频在线观看免费观看| 成年版毛片免费区| 一级片免费观看大全| 麻豆成人av在线观看| www.www免费av| 国产精品久久久久久久电影 | 亚洲国产高清在线一区二区三| 嫁个100分男人电影在线观看| 欧美成人午夜精品| 老鸭窝网址在线观看| 精品福利观看| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 国产成人影院久久av| 日本黄大片高清| 一进一出抽搐动态| 亚洲精品在线观看二区| 国产亚洲欧美98| 亚洲国产看品久久| 高清在线国产一区| 免费在线观看完整版高清| 观看免费一级毛片| 波多野结衣高清作品| 亚洲 欧美一区二区三区| 国产91精品成人一区二区三区| 精品日产1卡2卡| 婷婷六月久久综合丁香| 九色国产91popny在线| 免费高清视频大片| 亚洲精品av麻豆狂野| 最近视频中文字幕2019在线8| 久久精品亚洲精品国产色婷小说| 香蕉丝袜av| 中文资源天堂在线| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 这个男人来自地球电影免费观看| 日韩中文字幕欧美一区二区| 两性夫妻黄色片| 最好的美女福利视频网| 午夜亚洲福利在线播放| 欧美日韩瑟瑟在线播放| 亚洲黑人精品在线| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 亚洲成人久久性| x7x7x7水蜜桃| 日韩欧美精品v在线| 亚洲avbb在线观看| 国产精品一及| 欧美最黄视频在线播放免费| 国产一区二区三区在线臀色熟女| 无限看片的www在线观看| 男女视频在线观看网站免费 | 午夜亚洲福利在线播放| 精品福利观看| 午夜福利视频1000在线观看| 老熟妇仑乱视频hdxx| xxxwww97欧美| 国产在线观看jvid| 丰满人妻熟妇乱又伦精品不卡| 美女黄网站色视频| 日日夜夜操网爽| 久久中文字幕人妻熟女| 国产精品一区二区三区四区免费观看 | 男女视频在线观看网站免费 |