• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Singular Functions and Characterizations of Field Concentrations:a Survey

    2021-06-08 01:40:10HyeonbaeKangandSanghyeonYu
    Analysis in Theory and Applications 2021年1期

    Hyeonbae Kangand Sanghyeon Yu

    1 Department of Mathematics,Inha University,Incheon 22212,South Korea

    2 Department of Mathematics,Korea University,Seoul 02841,South Korea

    Abstract.In the presence of closely located inclusions of the extreme material property,the physical fields,such as the electric field and the stress tensor,may be concentrated and arbitrarily large in the narrow region between two inclusions.Recently there has been significant progress on the quantitative characterization of the field concentration in the contexts of electrostatics(Laplace equation),linear elasticity(Lam′e system),and viscous flow(Stokes system).This paper is to review such progress in a coherent way.

    Key Words:Field concentration,gradient blow-up,closely spaced inclusions,extreme inclusions,Laplace equation,Lam′e system,Stokes system.

    1 Introduction

    When two inclusions of the extreme material property are located closely to each other,the physical field may be concentrated and arbitrarily large in the narrow region between the inclusions.An inclusion of the extreme material property means a perfectly conducting or insulating inclusion(the conductivity being∞or 0)in the electrostatic case and a hard inclusion and a hole in the elastostatic case,and the corresponding physical fields are the electric field and the stress tensor.Such field concentration may occur in fiberreinforced composites causing failure of the composites[6],and the electric field can be greatly enhanced and utilized to achieve subwavelength imaging and sensitive spectroscopy[35].In this respect it is quite important to understand the field concentration in a quantitatively precise manner.It is also quite important to come up with an efficient numerical scheme to compute the fields in such cases since numerical computation of the field is known to be very hard in the presence of closely located inclusions.

    In response to such importance and mathematical challenges involved in this problem,there has been much progress in understanding the field concentration in the last 20 years or more.In the context of electrostatics(or anti-plane elasticity in two dimensions),the field is the gradient of a solution to the Laplace equation and the precise estimates of the gradient were obtained when the conductivity of the inclusions is∞:the blow-up rate of the gradient is?in two dimensions[5,37],where?is the distance between two inclusions,and it is|?ln?|in three dimensions[7].There is a long list of literature in this direction of research among which we mention[3,4,9,13,21,27,28,33,34,38].We also mention for related works[10,12,14,22–24].If the conductivity of the inclusions is 0(the insulating case),the two-dimensional problem is dual to the perfectly conducting case(by means of the harmonic conjugation),and hence the blow-up rate of the insulating case is also?.But the three-dimensional case requires further investigation.In this respect,we mention the paper of Yun[39]where a rather unexpected blow-up rate of the gradient has been found when the inclusions are balls.If the conductivity is away from∞and 0,then the gradient stays bounded no matter how closely located the inclusions are[11,30,31].

    While most of the work mentioned above focus on the estimates from above and below of the blow-up rate of the gradient,there is another important direction of research which is to characterize the singular behavior of the gradient.The characterization of the singular behavior means,roughly speaking,the decomposition of the solution u into the form u=s+b where s carries the information of singularity of the gradient?u and b is a regular function in the sense that?b is bounded(or less singular)regardless of the distance between two inclusions.One important feature of such decompositions is that the singular part s is explicitly given and satisfies the governing equation,e.g.,the conductivity equation,the elasticity equation,and so on.It has a significant implication on the numerical computation of the solution in presence of closely located inclusions.Such a computation is known to be a difficult problem because very fine meshes are required since the gradient becomes arbitrarily large in the narrow region.The decomposition enables us to compute the solution u numerically using standard meshes,not refined ones since s is explicit and b is regular.Such a characterization is reminiscent of that related to the corner singularity of elliptic equations which are utilized for computation of the solution to the(interior or exterior)boundary value problem when the domain has a corner[15,25,26].

    Characterizations of the field concentration are obtained for the conductivity equation in[1,16–18,32]and for the Lam′e system of the linear elasticity in two dimensions in[19]when inclusions are locally strictly convex.These result has been further extended to the two-dimensional Stokes system for circular inclusions[2].The singular parts of the decomposition are represented by explicit building blocks,which we call singular functions.It is the purpose of this paper to summarize these results on the singularity characterization in a coherent way.

    2 Geometry of two inclusions

    Suppose that there are unique points z∈?Dand z∈?Dsuch that

    We assume that Dis strictly convex near z,namely,there is a common neighborhood U of zand zsuch that D∩U is strictly convex for j=1,2.Moreover,we assume that

    dist(D,DU)≥C and dist(D,DU)≥C

    for some positive constant C independent of?.This assumption says that points in Dand Dother than neighborhoods of zand zare at some distance to each other.Note that strictly convex domains satisfy all the assumptions.

    Letκbe the curvature of?Dat z.Let Bbe the disk osculating to Dat z(j=1,2).Then the radius rof Bis given by r=1/κ.Let Rbe the inversion with respect to?Band let pand pbe the unique fixed points of the combined reflections R°Rand R°R,respectively.We emphasize that?Band?Bare circles of Apollonius of pand p2.

    After rotation and translation,we assume that p=(p+p)/2 is at the origin and the x-axis is parallel to the vector p?p.Then one can see(cf.[5])that pand pare written as

    where the constant a satisfies

    The geometry of Dand Dis depicted in Fig.1 which is taken from[19].

    3 Conductivity equation

    The conductivity problem with two conducting inclusions is modelled as follows:

    Figure 1:Geometry of the two inclusions and osculating circles[19].

    where h is a given function harmonic in R.The fact that the solution u takes a constant value on?Dindicates that Dis a perfect conductor meaning that its conductivity is∞.The constantsλare not prescribed and the problem(3.1)is not an exterior Dirichlet problem.The constants are rather determined by the conditions

    Here and throughout this paper,n denotes the outward normal on?D(j=1,2).It is worth emphasizing that the constantsλandλmay or may not be the same depending on the given h;When they are different,there occurs a sharp gradient if the distance between Dand Dis short.

    The singular function for the conductivity problem is given by

    where p(j=1,2)are the fixed points of the combined reflections as defined in section 2.The function q has important properties including the following:

    (i)It is harmonic in Rexcept at pand p.

    (ii)It takes constant values on osculating circles?B.It is because?Band?Bare circles of Apollonius of pand p.

    (ii)It holds that

    This function appears in the bipolar coordinate system for?Band?Bas will be seen in section 5.It was used for analysis of the field concentration for the first time in[37].

    The singular behaviour of the solution u to(3.1)can be characterized in terms of the function q.In fact,the following decomposition formula is obtained in[16],which is an improvement upon the corresponding decomposition in[1]:

    A way to compute Cnumerically is proposed in[16].

    The decomposition formula(3.5)has some important consequences.Since?q is bounded from below and above by?(up to constant multiples),the blow-up estimates for?u can be obtained from(3.5).As mentioned before,it can be used to compute u numerically.Since(3.5)extracts the major singular term in an explicit way,it suffices to compute the residual term b for which only regular meshes are required.This idea appeared and was exploited in[17]in the special case when D’s are disks.There the decomposition formula was derived when D’s are disks(of the radius r)with the constant Creplace with

    The decomposition formula of the kind(3.5)when Dand Dare three-dimensional balls of the same radii has been derived in[18](see[29]for the case of different radii).In this case the singular function is given as an infinite sum of point charges.

    4 Lam′e system

    To describe the elasticity problem with two hard inclusions,let(λ,μ)be the pair of Lam′e constants of Dwhich satisfies the strong ellipticity conditions:μ>0 andλ+μ>0(we only consider the two-dimensional case).Then the problem is given as follows in terms of the Lam′e system of equations

    Lu:=μ?u+(λ+μ)??·u,

    here,u=(u,u)is a vector-valued function:

    where H=(h,h)is a given function satisfying LH=0 in R.Here,Ψare the displacement fields of the rigid motions defined by

    The boundary conditions to be satisfied by the displacement u on?D(the second line in(4.1))indicate that Dand Dare hard inclusions,and the constants care not given but determined by the conditions

    Hereσ[u]denotes the stress tensor corresponding to the displacement vector u defined by

    The singular functions for the problem(4.1)are obtained in[19]as linear combinations of point source functions in linear elasticity called nuclei of strain.The following nuclei of strain are used

    where

    e=(1,0), e=(0,1)and (x,y)=(?y,x).

    It turns out that those singular functions can be expressed in the simple forms using the functionζ:

    where q is the singular function for the conductivity problem given in(3.3).One can easily see that qare solutions to the Lam′e system,namely,

    It is shown in[19]that qtakes‘a(chǎn)lmost’constant values on the osculating circles?B(i=1,2).In fact,there are constantαandβ(which depends on?)such that

    Another function related with the boundary valueΨon?Band?Bis constructed in the same paper.But this function has nothing to do with the singular behavior of the field,so we omit it here.It is worth mentioning that the singular functions qand qare effectively utilized to prove the Flaherty-Keller formula on the effective property of densely packed elastic composites[20].

    Using the singular functions qand q,it is proved that the solution u to(4.1)admits the following decomposition:

    where Cand Care constants depending on?,but bounded independently of?,and b is a function whose gradient is bounded on any bounded subset of D.This decomposition formula enables us to prove that?is an upper bound of?u,and it is also a lower bound in some cases.The fact that?is an upper bound of?u was proved in[8].

    We mention that the constants Cand Cappearing in the formula(4.10)are not explicit.Thus further investigation on how to determine them(or compute them numerically)is desired.

    5 Stokes system

    We also consider the Stokes system in the exterior domain D.Let(U,P)is a given background solution to the homogeneous Stokes system in R,namely,

    We consider the following problem of the Stokes system:

    with the conditions

    (u?U)(x)=O(|x|), ?(u?U)(x)=O(|x|), (p?P)(x)=O(|x|),

    as|x|→∞.Hereμrepresents the constant viscosity of the fluid,Ψare the functions given in(4.2),and dare constants to be determined from the equilibrium conditions

    Here,σ[u,p]is the stress field induced by the velocity-pressure pair(u,p),namely,

    where I is the identity matrix.

    The singular functions(h,p),j=1,2,for the problem(5.2)is the solution to the following problem:

    with the conditions

    h(x)=C+O(|x|), ?h(x)=O(|x|), p(x)=O(|x|),

    for some constant Cas|x|→∞.

    In[2]singular functions(h,p)are constructed using the stream function formulation for which the bipolar coordinate system is used.The bipolar coordinates(ζ,θ)are defined by

    where a is the number appeared in(2.3).It is worth mentioning that the singular function q in(3.3)is nothing but q=ζ/2π.

    Suppose that?Band?Bhave the same radius R for convenience.Let

    and

    Define two constants Aand Bby

    Then,the velocity his given by h=he+hewhere

    and the pressure pis given by

    The formulas for(h,p)are quite involved.But it is proved in[2]that

    where(h,p)is a solution whose gradient is bounded regardless of?,and Ais the constant defined by

    It is proved in the same paper that if the background velocity field U is given by

    for some constantsα,βandγand the background pressure P=0,and if Dand Dare disks of the same radius R(so that D=Bfor j=1,2),then the solution(u,p)admits a decomposition of the following form:

    where(u,p)is a solution to the Stokes problem whose stress tensor is bounded.Thus we have

    Since

    as proved in[2],we have

    which says that the stress always blows up at the rate of?provided that U is linear as given in(5.13)and inclusions are circular.It is quite interesting and challenging to extend this result to the non-circular case.

    Acknowledgements

    This work is supported by NRF 2019R1A2B5B01069967 and 2020R1C1C1A01010882.

    久久99蜜桃精品久久| 精品视频人人做人人爽| 老汉色∧v一级毛片| 精品少妇一区二区三区视频日本电影 | 啦啦啦视频在线资源免费观看| 天堂8中文在线网| 中文字幕最新亚洲高清| 久久热在线av| 精品第一国产精品| 久久人人爽av亚洲精品天堂| 伦理电影免费视频| 亚洲欧洲精品一区二区精品久久久 | 一区福利在线观看| 午夜免费男女啪啪视频观看| 国产毛片在线视频| 亚洲成色77777| 久久99一区二区三区| 久久久亚洲精品成人影院| 伊人亚洲综合成人网| 天堂中文最新版在线下载| 精品少妇黑人巨大在线播放| 在线精品无人区一区二区三| 国产免费现黄频在线看| 欧美激情极品国产一区二区三区| 大香蕉久久网| 国产在线免费精品| 精品国产乱码久久久久久男人| 国产成人精品在线电影| 国产探花极品一区二区| 日本黄色日本黄色录像| 久久精品人人爽人人爽视色| 夫妻性生交免费视频一级片| 捣出白浆h1v1| 成人亚洲精品一区在线观看| 午夜福利在线观看免费完整高清在| 交换朋友夫妻互换小说| 久久久久久久久久久久大奶| 只有这里有精品99| 午夜av观看不卡| 一区二区av电影网| 成人手机av| 国产极品粉嫩免费观看在线| 久久久久精品久久久久真实原创| 七月丁香在线播放| 成年女人毛片免费观看观看9 | 又粗又硬又长又爽又黄的视频| 国产成人精品婷婷| 日本wwww免费看| av网站在线播放免费| 国产亚洲最大av| 亚洲av日韩在线播放| 久久亚洲国产成人精品v| 人人妻人人爽人人添夜夜欢视频| 亚洲精品一二三| 热99久久久久精品小说推荐| 精品人妻熟女毛片av久久网站| 国产不卡av网站在线观看| 免费在线观看完整版高清| www.av在线官网国产| 国产白丝娇喘喷水9色精品| 日韩熟女老妇一区二区性免费视频| 人体艺术视频欧美日本| 成人毛片a级毛片在线播放| 母亲3免费完整高清在线观看 | 亚洲精品国产色婷婷电影| 欧美少妇被猛烈插入视频| 9色porny在线观看| 国精品久久久久久国模美| 国产精品久久久久久av不卡| 丰满少妇做爰视频| 精品久久久精品久久久| 9191精品国产免费久久| 热re99久久国产66热| 亚洲婷婷狠狠爱综合网| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久成人av| 2021少妇久久久久久久久久久| 成年人午夜在线观看视频| 亚洲欧美一区二区三区国产| 少妇人妻精品综合一区二区| 黄网站色视频无遮挡免费观看| 婷婷成人精品国产| 国产精品久久久久久精品古装| 婷婷成人精品国产| 男人舔女人的私密视频| 十八禁高潮呻吟视频| 国产亚洲精品第一综合不卡| tube8黄色片| 少妇的逼水好多| 亚洲中文av在线| 国产成人精品久久久久久| a级毛片在线看网站| 国产极品天堂在线| 91aial.com中文字幕在线观看| 日韩伦理黄色片| 精品国产一区二区久久| 国产精品亚洲av一区麻豆 | 一边亲一边摸免费视频| 亚洲av电影在线观看一区二区三区| 看免费av毛片| 国产成人a∨麻豆精品| a级毛片黄视频| 一级a爱视频在线免费观看| 丰满饥渴人妻一区二区三| 婷婷色av中文字幕| 丝瓜视频免费看黄片| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利一区二区在线看| 深夜精品福利| 大陆偷拍与自拍| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 久久久久久久久久久久大奶| 一区在线观看完整版| 久久这里只有精品19| 国产欧美日韩综合在线一区二区| 99热网站在线观看| 成人国产av品久久久| 超碰97精品在线观看| 天天躁夜夜躁狠狠躁躁| 天天躁狠狠躁夜夜躁狠狠躁| 精品一品国产午夜福利视频| 免费少妇av软件| 日韩视频在线欧美| 国产在线视频一区二区| 国产福利在线免费观看视频| 日韩中字成人| 久久久久国产一级毛片高清牌| 亚洲综合色网址| 国产精品女同一区二区软件| 一二三四中文在线观看免费高清| 超碰成人久久| 999精品在线视频| 亚洲少妇的诱惑av| 日韩精品免费视频一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 深夜精品福利| 亚洲中文av在线| 母亲3免费完整高清在线观看 | √禁漫天堂资源中文www| 免费av中文字幕在线| 亚洲 欧美一区二区三区| 五月天丁香电影| 飞空精品影院首页| 秋霞伦理黄片| 亚洲,欧美,日韩| 久久人妻熟女aⅴ| 香蕉国产在线看| 三级国产精品片| 少妇熟女欧美另类| 国产在线一区二区三区精| 久久亚洲国产成人精品v| 人体艺术视频欧美日本| 超色免费av| 精品久久久久久电影网| 亚洲av福利一区| 一区二区三区四区激情视频| 天天躁日日躁夜夜躁夜夜| 最近中文字幕高清免费大全6| 性色avwww在线观看| 久久青草综合色| 水蜜桃什么品种好| 精品亚洲成a人片在线观看| 日韩在线高清观看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 男女下面插进去视频免费观看| 久久精品久久久久久噜噜老黄| 校园人妻丝袜中文字幕| av卡一久久| 妹子高潮喷水视频| 欧美在线黄色| 成人亚洲精品一区在线观看| 2022亚洲国产成人精品| 七月丁香在线播放| 最近中文字幕高清免费大全6| 久久精品国产综合久久久| 欧美日韩精品网址| 欧美成人午夜免费资源| 男女无遮挡免费网站观看| 国产欧美亚洲国产| 汤姆久久久久久久影院中文字幕| 亚洲一级一片aⅴ在线观看| 成人影院久久| 亚洲综合精品二区| 老汉色∧v一级毛片| 国产又爽黄色视频| 国产av精品麻豆| 日韩中字成人| 国产男女内射视频| 最近手机中文字幕大全| 999精品在线视频| 久久国产精品男人的天堂亚洲| 欧美日本中文国产一区发布| 欧美日韩成人在线一区二区| 一级毛片 在线播放| 青青草视频在线视频观看| 丝袜脚勾引网站| 91成人精品电影| 秋霞伦理黄片| 大话2 男鬼变身卡| 亚洲熟女精品中文字幕| 亚洲精品国产一区二区精华液| 免费一级毛片在线播放高清视频 | 欧美日韩国产mv在线观看视频| 午夜两性在线视频| 一级a爱片免费观看的视频| 黄色视频不卡| 高清毛片免费观看视频网站 | 国产1区2区3区精品| 99国产精品一区二区三区| 乱人伦中国视频| 欧美老熟妇乱子伦牲交| 51午夜福利影视在线观看| 日本wwww免费看| 国产1区2区3区精品| 天堂俺去俺来也www色官网| 男女下面进入的视频免费午夜 | 国产精品久久电影中文字幕| 麻豆一二三区av精品| 国产无遮挡羞羞视频在线观看| 亚洲视频免费观看视频| 亚洲欧美一区二区三区黑人| 少妇的丰满在线观看| 在线国产一区二区在线| 在线观看www视频免费| 国产蜜桃级精品一区二区三区| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 色综合婷婷激情| 自线自在国产av| 亚洲av电影在线进入| 超色免费av| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 午夜视频精品福利| 深夜精品福利| 欧美精品一区二区免费开放| 国产精品一区二区免费欧美| 久久久久久免费高清国产稀缺| 亚洲成人国产一区在线观看| 色精品久久人妻99蜜桃| 狂野欧美激情性xxxx| 又黄又粗又硬又大视频| 国产精品综合久久久久久久免费 | 久久久久久人人人人人| 亚洲精品一二三| 日日干狠狠操夜夜爽| 国产精品美女特级片免费视频播放器 | 动漫黄色视频在线观看| 国产av一区二区精品久久| 18禁美女被吸乳视频| 亚洲人成伊人成综合网2020| 50天的宝宝边吃奶边哭怎么回事| 激情视频va一区二区三区| 欧美午夜高清在线| 日韩人妻精品一区2区三区| 久久草成人影院| 在线观看舔阴道视频| 神马国产精品三级电影在线观看 | 交换朋友夫妻互换小说| 啦啦啦 在线观看视频| 极品教师在线免费播放| 在线视频色国产色| 亚洲精品中文字幕在线视频| 一本综合久久免费| 久久人妻av系列| 男女下面插进去视频免费观看| 欧美人与性动交α欧美软件| 悠悠久久av| 久久天堂一区二区三区四区| 电影成人av| 国产高清国产精品国产三级| 国产视频一区二区在线看| 欧美激情 高清一区二区三区| 国产精品 国内视频| 精品久久久久久成人av| 亚洲欧美日韩另类电影网站| 午夜免费观看网址| 男女下面插进去视频免费观看| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 国产主播在线观看一区二区| 久久人妻福利社区极品人妻图片| 国产欧美日韩综合在线一区二区| 在线国产一区二区在线| 亚洲三区欧美一区| 精品人妻在线不人妻| 狠狠狠狠99中文字幕| 男女高潮啪啪啪动态图| 少妇 在线观看| 天堂动漫精品| 三级毛片av免费| 日韩免费高清中文字幕av| 一a级毛片在线观看| 中亚洲国语对白在线视频| 久久伊人香网站| 精品国产超薄肉色丝袜足j| 亚洲av美国av| av福利片在线| 99国产精品99久久久久| 国产深夜福利视频在线观看| 亚洲九九香蕉| 亚洲欧美激情综合另类| 亚洲午夜理论影院| 乱人伦中国视频| 午夜福利在线免费观看网站| 男人操女人黄网站| 成人18禁高潮啪啪吃奶动态图| 黄色 视频免费看| 国产精品爽爽va在线观看网站 | 又紧又爽又黄一区二区| 村上凉子中文字幕在线| 免费搜索国产男女视频| xxx96com| 国产亚洲av高清不卡| 精品国产美女av久久久久小说| 嫁个100分男人电影在线观看| 黄色毛片三级朝国网站| 99国产极品粉嫩在线观看| 叶爱在线成人免费视频播放| 女人精品久久久久毛片| 老司机亚洲免费影院| 午夜视频精品福利| 欧美激情高清一区二区三区| 美女扒开内裤让男人捅视频| 久久精品91蜜桃| 19禁男女啪啪无遮挡网站| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久人人做人人爽| 成人黄色视频免费在线看| 欧美乱码精品一区二区三区| 精品久久久久久,| 1024视频免费在线观看| 久久久久久久久免费视频了| 波多野结衣高清无吗| 欧美激情高清一区二区三区| 色尼玛亚洲综合影院| 老司机靠b影院| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 国产无遮挡羞羞视频在线观看| 久久久久久大精品| 色综合欧美亚洲国产小说| 亚洲av五月六月丁香网| 国产成年人精品一区二区 | 黄色 视频免费看| 黑丝袜美女国产一区| 国产亚洲欧美精品永久| 亚洲国产欧美日韩在线播放| 19禁男女啪啪无遮挡网站| 亚洲一区高清亚洲精品| 久久精品亚洲熟妇少妇任你| 91麻豆精品激情在线观看国产 | 天天躁夜夜躁狠狠躁躁| 欧美日韩乱码在线| 久久久久精品国产欧美久久久| 嫩草影视91久久| 国产精品久久久久久人妻精品电影| 黄色怎么调成土黄色| av中文乱码字幕在线| 这个男人来自地球电影免费观看| 可以在线观看毛片的网站| 亚洲成人免费av在线播放| 亚洲一区二区三区欧美精品| 精品国产乱子伦一区二区三区| 涩涩av久久男人的天堂| 超色免费av| 精品久久久精品久久久| 亚洲av美国av| 日本wwww免费看| 手机成人av网站| www.999成人在线观看| 十分钟在线观看高清视频www| 久久香蕉精品热| 久久久久久大精品| 亚洲国产中文字幕在线视频| 国产高清视频在线播放一区| 久久久久久久精品吃奶| 我的亚洲天堂| 欧美在线黄色| 国产欧美日韩一区二区精品| 中文字幕高清在线视频| 一区二区日韩欧美中文字幕| 日本一区二区免费在线视频| 激情在线观看视频在线高清| 啦啦啦 在线观看视频| 精品欧美一区二区三区在线| 午夜激情av网站| 女性生殖器流出的白浆| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费 | 亚洲成人国产一区在线观看| 国产麻豆69| 一级黄色大片毛片| 大陆偷拍与自拍| 国产人伦9x9x在线观看| 国产三级在线视频| 在线观看免费日韩欧美大片| 日韩免费高清中文字幕av| 国产成年人精品一区二区 | 人人妻,人人澡人人爽秒播| av网站免费在线观看视频| 国产激情欧美一区二区| 国产一区在线观看成人免费| 欧美精品一区二区免费开放| 国产免费男女视频| 欧美黑人欧美精品刺激| 国产麻豆69| 久久香蕉精品热| 国产精品av久久久久免费| 最近最新中文字幕大全电影3 | 久久人妻福利社区极品人妻图片| 91大片在线观看| 亚洲成人精品中文字幕电影 | 国产av一区在线观看免费| 亚洲少妇的诱惑av| 成年人黄色毛片网站| 精品福利观看| 啦啦啦 在线观看视频| 亚洲精品国产一区二区精华液| 亚洲 国产 在线| 欧美在线一区亚洲| 99精品在免费线老司机午夜| 久久天堂一区二区三区四区| 很黄的视频免费| 久久香蕉精品热| 性色av乱码一区二区三区2| 久久午夜综合久久蜜桃| 久久人人精品亚洲av| 久久精品亚洲av国产电影网| 久久精品亚洲精品国产色婷小说| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 三上悠亚av全集在线观看| 在线观看午夜福利视频| 国产成+人综合+亚洲专区| 午夜福利,免费看| 成人三级做爰电影| 大型黄色视频在线免费观看| 最近最新免费中文字幕在线| 欧美日韩国产mv在线观看视频| 国产精品二区激情视频| 精品欧美一区二区三区在线| ponron亚洲| 亚洲精华国产精华精| 日韩免费高清中文字幕av| 日韩三级视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 最好的美女福利视频网| 午夜精品在线福利| 成年版毛片免费区| 亚洲九九香蕉| 人妻丰满熟妇av一区二区三区| 操出白浆在线播放| 99久久国产精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产有黄有色有爽视频| 我的亚洲天堂| 久久亚洲精品不卡| 桃色一区二区三区在线观看| 99久久久亚洲精品蜜臀av| 在线观看午夜福利视频| 老司机在亚洲福利影院| 免费女性裸体啪啪无遮挡网站| 美女福利国产在线| 欧美黄色片欧美黄色片| 亚洲男人的天堂狠狠| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 亚洲精品在线美女| 中亚洲国语对白在线视频| 国产亚洲精品一区二区www| 国产一区二区激情短视频| 国产精品一区二区免费欧美| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 国产av又大| 精品一区二区三区视频在线观看免费 | 91精品三级在线观看| 国产激情久久老熟女| 啦啦啦免费观看视频1| aaaaa片日本免费| 免费在线观看影片大全网站| 桃红色精品国产亚洲av| 午夜激情av网站| 51午夜福利影视在线观看| 精品久久久精品久久久| 亚洲中文av在线| 久久人人爽av亚洲精品天堂| 丰满的人妻完整版| 高清av免费在线| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 12—13女人毛片做爰片一| 欧美成狂野欧美在线观看| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 亚洲色图av天堂| 在线看a的网站| 色婷婷久久久亚洲欧美| 国产有黄有色有爽视频| av电影中文网址| 亚洲性夜色夜夜综合| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 黄色怎么调成土黄色| 国产av一区二区精品久久| 成人三级做爰电影| 无遮挡黄片免费观看| 女人被狂操c到高潮| 亚洲精品在线观看二区| x7x7x7水蜜桃| 老熟妇仑乱视频hdxx| 亚洲人成电影免费在线| 久久婷婷成人综合色麻豆| 成人黄色视频免费在线看| 久久精品91蜜桃| 超色免费av| 夜夜看夜夜爽夜夜摸 | av天堂久久9| 一进一出好大好爽视频| 免费av中文字幕在线| 黄色女人牲交| 夫妻午夜视频| 精品久久久久久久久久免费视频 | av网站免费在线观看视频| 激情在线观看视频在线高清| 亚洲av第一区精品v没综合| 99国产精品一区二区三区| 亚洲欧美一区二区三区黑人| 成人永久免费在线观看视频| 香蕉丝袜av| 国产亚洲精品一区二区www| 90打野战视频偷拍视频| 国产成人精品久久二区二区免费| 美女高潮到喷水免费观看| av国产精品久久久久影院| 男女床上黄色一级片免费看| 久久热在线av| 在线免费观看的www视频| 9色porny在线观看| 国产又爽黄色视频| 久久午夜亚洲精品久久| 美女国产高潮福利片在线看| 中文字幕另类日韩欧美亚洲嫩草| 免费av中文字幕在线| 成人国产一区最新在线观看| 国产国语露脸激情在线看| 一区二区三区激情视频| 男女下面插进去视频免费观看| 亚洲自偷自拍图片 自拍| 国产成人精品在线电影| 搡老熟女国产l中国老女人| 精品国产乱码久久久久久男人| 日韩国内少妇激情av| 69av精品久久久久久| 变态另类成人亚洲欧美熟女 | 如日韩欧美国产精品一区二区三区| 国产99白浆流出| 99热国产这里只有精品6| 91字幕亚洲| 美女 人体艺术 gogo| 成人国产一区最新在线观看| 99香蕉大伊视频| 亚洲 欧美 日韩 在线 免费| 91国产中文字幕| 18禁观看日本| bbb黄色大片| 村上凉子中文字幕在线| 国产亚洲欧美精品永久| 婷婷六月久久综合丁香| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 久久午夜综合久久蜜桃| 国产精品一区二区三区四区久久 | 啦啦啦免费观看视频1| 成人18禁在线播放| 岛国视频午夜一区免费看| 99精品在免费线老司机午夜| 成人免费观看视频高清| av电影中文网址| 久久久久久久精品吃奶| 女同久久另类99精品国产91| 中文欧美无线码| 悠悠久久av| 极品人妻少妇av视频| 在线视频色国产色| 精品久久久久久成人av| 午夜免费观看网址| xxxhd国产人妻xxx| 亚洲性夜色夜夜综合| 岛国在线观看网站| 18美女黄网站色大片免费观看| 黄网站色视频无遮挡免费观看| 午夜精品久久久久久毛片777| 日韩精品青青久久久久久| 国产成人欧美在线观看| avwww免费| 黄片播放在线免费| 国产精品九九99| 午夜福利影视在线免费观看| 久久亚洲真实| 久久香蕉精品热| 中文字幕人妻熟女乱码| 男女午夜视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 岛国视频午夜一区免费看| 丁香六月欧美| 丝袜美腿诱惑在线| 欧美日韩av久久| 99在线视频只有这里精品首页| 亚洲美女黄片视频| 精品无人区乱码1区二区|