• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shadowing Homoclinic Chains to a Symplectic Critical Manifold

    2021-06-08 01:40:58SergeyBolotin
    Analysis in Theory and Applications 2021年1期

    Sergey Bolotin

    Moscow Steklov Mathematical Institute,Russian Academy of Sciences,Moscow,119991,Russia

    Abstract.We prove the existence of trajectories shadowing chains of heteroclinic orbits to a symplectic normally hyperbolic critical manifold of a Hamiltonian system.The results are quite different for real and complex eigenvalues.General results are applied to Hamiltonian systems depending on a parameter which slowly changes with rateε.If the frozen autonomous system has a hyperbolic equilibrium possessing transverse homoclinic orbits,we construct trajectories shadowing homoclinic chains with energy having quasirandom jumps of orderεand changing with average rate of order ε|lnε|.This provides a partial multidimensional extension of the results of A.Neishtadt on the destruction of adiabatic invariants for systems with one degree of freedom and a figure 8 separatrix.

    Key Words:Hamiltonian system,homoclinic orbit,shadowing.

    1 Introduction

    Consider a smooth Hamiltonian system(M,ω,H)with phase space M,symplectic form ωand Hamiltonian H.Let v=J?H be the Hamiltonian vector field andφthe phase flow.Suppose H has a connected symplectic nondegenerate critical manifold N.Then any z∈N is a critical point of H with rank dH(z)=dim M?dim N,and the restriction ω|is nondegenerate.We also assume that N is normally hyperbolic,i.e.,nonzero eigenvalues of the linearizationΛ(z)=Dv(z)have nonzero real parts.Denote by

    E={ξ∈TM:ω(ξ,η)=0 for allη∈TN}the symplectic complement to TN.Since N is symplectic,TM=TN⊕Eandω|is nondegenerate.Hence E=E⊕E,where EareΛ(z)-invariant Lagrangian stable and unstable subspaces of Ecorresponding to the eigenvalues with negative and positive real parts respectively.

    Let

    be the stable and unstable manifolds of z∈N and

    W(N)=∪W(z)

    the stable and unstable manifolds of N.The intersection W(N)∩W(N)N consists of orbitsγ:R→M homoclinic to N,i.e.,heteroclinic from z=γ(?∞)to z=γ(+∞).The heteroclinic orbit is called transverse if TW(z)∩TW(N)=R˙γ(t).

    Define a multivalued partially defined symplectic scattering map F:N→N by F(z)=zif there is a transverse heteroclinic from zto z.We call a sequenceσ=(σ)of transverse heteroclinic orbits a heteroclinic chain ifσ(+∞)=σ(?∞)=z∈N.A heteroclinic chain corresponds to an orbit z=(z)of the scattering map.We call the chain strongly nondegenerate if the orbit z is hyperbolic.

    Without loss of generality let N?Σ=H(0).Our goal is to construct,for smallμ,orbitsγ:R→Σ=H(μ)shadowing strongly nondegenerate infinite heteroclinic chains.This requires several assumptions which are different for real and complex eigenvalues.For degenerate heteroclinic chains we get weaker results.

    Our research is motivated by two classical problems.The first is Poincar′e’s theory of second species almost collision solutions in celestial mechanics.This application was already discussed in[6,7],so we will be brief.Consider the plane 3 body problem with two small masses of orderμ?1.Let the center of mass be at rest and let qbe the relative positions of small bodies with respect to the large one.Then we obtain the Hamiltonian

    where

    In the second application also complex eigenvalues may appear.Consider a slowly time dependent Hamiltonian system on a symplectic manifold M:

    is an adiabatic invariant[1].For smallεthe change of I(t)=I(τ(t),E(t))on long time intervals is small:

    Then the energy changes gradually:(τ,E)approximately follow a level curve I(τ,E)=const.

    However,(1.2)fails for trajectories passing near equilibria,since then the frozen dynamics is slow,and the averaging method does not work.A.Neishtadt[19]considered the case when the plane frozen system has a hyperbolic equilibrium with a figure 8 separatrix–union of two homoclinic loops.The separatrix divides the plane in 3 regions.In the interior of each region there is an adiabatic invariant,so(τ,E)follows its level curves.Neishtadt showed that when a trajectory crosses the separatrix,the adiabatic invariant,and hence also the energy,have jumps of orderε.Then large measure of trajectories have quasirandom behavior,and the energy changes with average speed of orderε|lnε|.

    Let us show how to reduce the problem to a general theorem on shadowing heteroclinic chains to a normally hyperbolic symplectic critical manifold.For simplicity suppose that H(z,τ)is periodic inτ∈T.Replacing H by H?H(z(τ),τ)we may assume that

    Consider an autonomous Hamiltonian system

    and symplectic structure

    and homoclinics of the frozen system define families of homoclinics to the manifold N.

    The shadowing theorems we prove have roots in many classical results in dynamical systems and calculus of variations which are too numerous to mention.Maybe the most important for us were the Turayev–Shilnikov theorem[23]and the works of P.Rabinowitz[12],E.Sere[21]and many others on the existence of multibump homoclinics by variational methods.Some ideas used in this paper were developed over the years in collaboration with Paul Rabinowitz.In particular[8]was a foundation to the present research.However we do not use global variational methods as in[8],since transversality of heteroclinics is assumed.

    Phenomena similar to the ones studied in this paper appear in the problem of Arnold’s diffusion for nearly integrable Hamiltonian systems near a multiple resonance[2,11,14,20,26].Our research is also closely related to the theory of scattering maps[13]and of separatrix maps[25].

    In this paper we use local variational methods,more precisely generating functions of symplectic relations and discrete action functionals.For Tonelli Hamiltonians one can use global methods of Aubry–Mather theory[2,11,20].However for general Hamiltonians considered in this paper only local variational methods work.

    Next we formulate and prove general shadowing theorems for systems with a normally hyperbolic symplectic critical manifold.In the last section these results are applied to slowly time dependent systems.

    2 Main results

    Let Nbe a connected symplectic normally hyperbolic critical manifold of a Hamiltonian system(M,ω,H).We assume N?Σ=H(0).Define projectionsπ:W(N)→N byπ(x)=z if x∈W(z):

    Following[13],define a scattering relation R?N×N setting(z,z)∈R if there is an orbit heteroclinic from zto z,i.e.,there is a∈W(N)∩W(N)N such that π(a)=z.If R is locally a graph,then it defines a branch of the symplectic scattering map F:N→N.The general theory of scattering maps was developed in[13].However,our case is different because the manifold N is critical and the energy levelΣcontaining N is not a manifold,so the results in[13]do not apply directly.

    If a heteroclinic orbitγ(t)=φ(a),γ(±∞)=c∈N is transverse,then the following equivalent conditions hold.Let v be the Hamiltonian vector field.

    ?TW(c)∩TW(N)=R v(a).

    ?TW(c)∩TW(N)=R v(a).

    ?The symplectic formωdefines a nondegenerate modulo R v(a)bilinear form on TW(c)×TW(c).

    TW(L)∩TW(L)=R v(a).

    Then the scattering map F has a well defined smooth branch f:V→V,where V?N are neighborhoods of c.Let(x,y)∈Rbe local symplectic coordinates in Vsuch thatω|=d y∧d xand

    L={y=b}=B×, L={x=a}={a}×B,

    where c=(a,b)and Bare small balls in Rcentered at aand brespectively. Then for(x,y)in a neighborhood of(a,b),the Lagrangian manifolds W({x}×B)and W(B×{y})intersect transversely inΣalong a heteroclinic trajectoryσ(x,y)joining the points z=(x,y)with f(z)=z=(x,y).We represent f by a generating function S(x,y):

    Although the functional is formal,its derivative is a well defined sequence in l(R).It is well known that the orbit z is hyperbolic(has nonzero Lyapunov exponents)iff the Hessian A(z)has a bounded inverse in l.Then we call the chainσ=(σ)strongly nondegenerate.To shadow the chainσby a trajectory onΣ=H(μ)with smallμ/=0,we need more conditions.

    LetΛ(z)=Dv(z)andΛ(z)=Λ|.Let

    Then

    We call an eigenvalueλofΛ(z)leading if|Reλ|=α(z).Generically leading eigenvalues are simple.Then there are 2 cases:

    ?Real case:±α(z)are real simple leading eigenvalues.

    ?Complex case:±α(z)±iβ(z),β(z)>0,are complex simple leading eigenvalues.

    We assume that one of the cases hold for all z∈N.

    The results in the real and complex case are different.The real case was studied in[7]under the assumption that the eigenvalues have maximal multiplicity.For N a single hyperbolic equilibrium with real eigenvalues the result was discovered much earlier by Turayev and Shilnikov[23],and the proofs(with different generality)were given in[8,24].For N a hyperbolic equilibrium with complex eigenvalues of a system with two degrees of freedom the problem was studied by Devaney[15].In[10],variational methods were used to extend the results of[15]to the case of nontransverse homoclinics.

    First consider the real case.Then the flow on W(z)looks like a node:for any a∈W(z)there exist the limits

    H(z,q,p)=?α(z)pq+O(p,···,p,q,···,q)+O(p,q),

    we have s=?q+O(q)and s=p+O(p).

    For a leading heteroclinic orbitγset

    Note thatρ(γ)does not depend on the choice of the pointγ(0)onγ(R).

    Letσ=(σ)be a leading heteroclinic chain corresponding to an orbit(c)of the scattering map.We callσpositive(negative)if

    ρ(σ)ρ(σ)>0, (ρ(σ)ρ(σ)<0) for all i.

    Positive heteroclinic chains can be shadowed by orbits with small positive energy,and negative chains with small negative energy.

    Theorem 2.1.Suppose leading eigenvalues are real and simple.There isμ>0 such that for anyμ∈(0,μ]and any strongly nondegenerate positive heteroclinic chainσ=(σ)there exists an orbitγ:R→Σshadowing the chainσ.More precisely:

    π(γ(t))shadows the orbit(c)of the scattering map:d(c,z)≤Cμ|lnμ|.

    If the chainσis negative,then shadowing orbits exist onΣwithμ∈[?μ,0).If the chain is not positive or negative,then in general there are no shadowing orbits satisfying conditions in the theorem.

    Theorem 2.1 is a generalization of the main result in[7].In[7]it is assumed that Λ(z)=?α(z)I,and only periodic heteroclinic chains were considered.

    For complex leading eigenvalues there are more shadowing trajectories.

    C is a constant independent ofμand the chainσ.

    Theorem 2.2.Suppose the leading eigenvalues are simple and complex.For any integer mthere existsμ>0 such that for any strongly nondegenerate leading heteroclinic chainσ=(σ),any integer sequence 0≤n≤m,and anyμ∈[?μ,μ]{0},

    Remark 2.2.In the complex case there exist also shadowing orbits onΣ,including multibump homoclinic orbits.For two degrees of freedom and N a single equilibrium this was proved in[10].However we will not discuss this result since it does not apply to slowly time dependent systems.

    It follows from the proof that the orbits in Theorems 2.1 and 2.2 are hyperbolic with nonzero Lyapunov exponents.Sinceμis independent of the chain,if F has a compact hyperbolic invariant set,then shadowing orbits form a compact hyperbolic invariant set inΣ.If the heteroclinic chain(and the sequence(n)in Theorem 2.2)are periodic,then the shadowing orbits will be periodic.

    Unfortunately in our application to slowly time dependent systems the heteroclinic chains are degenerate.So we need weaker results for finite homoclinic chains.

    In particular,

    In the complex case we have

    In particular,by(2.8),

    The proofs of Theorems 2.3 and 2.4 are simplified versions of the proofs of Theorems 2.1 and 2.2,so we skip them.These theorems work for finite chains with n independent ofμ.But then one can continue the procedure using a version of the continuation lemma,see[25,26]and[17].The details will be published in another paper.

    3 Proofs of the shadowing theorems

    3.1 Generating functions of local symplectic relations

    First we describe trajectories passing close to the critical manifold N.Take a small domain V?N with symplectic coordinates z=(x,y)and identify V with a domain in R.If V is small enough,a tubular neighborhood U of V in M can be identified with

    in such a way that

    and the coordinates in U are symplectic:

    ω|=d y∧d x+d p∧d q, z=(x,y)∈V.

    Then

    where

    g=O(q), g=O(p), h=O(q), h=O(p).

    They can be also represented by generating functions.

    Proposition 3.1.There exist smooth functions

    on open sets in R×R×Rsuch that for any z= (x,y) ∈ V and A=(x,y,q,p)∈U,

    Equivalently,

    Define a symplectic relation L?U×U as follows:(A,A)∈L if there exists z∈V such that A∈W(z).The relation is represented by the generating function

    F(z,Z)=S(y,x,q)+S(x,y,p)?〈x,y〉, Z=(x,y,q,p),via the equations

    Let

    L(Z)=CritF(z,Z)=F(ζ(Z),Z),

    which means taking the critical value at the nondegenerate critical point z=ζ(Z)with respect to z.We obtain

    Proposition 3.2.The generating function L defines the symplectic relation(A,A)∈L by the equations

    d L(Z)=yd x+xd y+pd q+qd p.

    From now on we assume that r>0 is small enough.The next proposition is a minor generalization of Shilnikov’s theorem[22],orλ-lemma.The proof is an application of the contraction principle,see[7,16].

    Proposition 3.3.For any(z,q,p)∈V×B×Band T≥1:

    ?There exists a unique solutionγ:[?T,T]→U,

    satisfying the initial–boundary conditions

    ?γsmoothly depends on z,q,p,T.

    ?Letγ(?T)=A=(z,q,p).Then

    We write for simplicityα=α(z).Let

    If Z=(x,q,y,p)is given,we can solve Eqs.(3.9a)–(3.9b)for z=ζ(Z)+O(Te).

    Then we obtain a symplectic relation(A,A)∈Lif the points are joined by a trajectoryγ:[?T,T]→U.The relation Lis defined by the generating function

    L(Z)=L(Z)+O(Te).

    To construct trajectories with given energy we need to find H(γ(0))for the trajectory γin Proposition 3.3.Up to now it did not matter if the leading eigenvalues were real or complex.Now we have to consider these cases separately.

    H(γ(0))=αes(z,q)s(z,p)+O(e), ν>0.

    LetΩbe a compact set contained in

    {(z,q,p)∈V×B×B:s(z,q)s(z,,p)>0}.

    Later on we takeΩ=V×Q×P,where P,Q?BBare small closed balls.Letμ>0 be small enough andμ∈(0,μ].Solving the equation H(γ(0))=μfor T we obtain:

    Proposition 3.4.For anyμ∈(0,μ]and(z,q,p)∈Ω:

    ?There exist

    and a unique solution(3.7)onΣ∩U satisfying(3.8).

    ?γand T smoothly depend on z,q,p,μ.

    ?γconverges to the concatenationγ·γasμ→0.

    ?The boundary points Aofγsatisfy d(A,B)≤Cμ|lnμ|.

    Proposition 3.4 was proved in[7]for equal real eigenvalues.In[16]the proof was extended to the generic real case.

    We have a symplectic relation:(A,A)∈Lif there exists zsuch that the points Aare joined by a trajectory in Proposition 3.4.The generating function of the relation is

    where L is the generating function in Proposition 3.2.

    Lemma 3.1.We have whereν>0 and f,g are linear functions such that

    The proof is a computation similar to the one in[10].LetΛ=Λ(z).We have

    We obtain:

    Proposition 3.5.For any integer mthere existsμ>0 such that forμ∈[?μ,μ]{0}and any(z,q,p)∈Ω:

    ?γand Tsmoothly depend on z,q,p,μ.

    ?γconverges to the concatenationγ·γasμ→0.

    Without restricting toΩwe get a multivaluedψ.

    ?The boundary points satisfy d(A,B)≤Cμ|lnμ|.

    The following corollary works both for real and complex cases.Let the sets P and Q be chosen as above.In the complex case we fix an integer k∈[0,m]and drop the dependence on k from the notation.Letμ∈(0,μ]in the real case,andμ∈[?μ,0)∪(0,μ]in the complex case.Let F be the generating function in(3.6).

    Corollary 3.1.The symplectic relation Lis given by the generating function

    via the equations

    3.2 Discrete variational problem

    To formulate a variational problem for shadowing orbits we need to relate the generating functions of the stable and unstable manifolds W(N)and of the scattering map F.

    Let f:V→Vbe a local branch of F represented by a generating function S as in(2.1).Then to any(x,y)in a small open set W?Rthere corresponds the transverse heteroclinicσ(x,y)joining z=(x,y)∈Vwith z=f(z)=(x,y)∈V.As in(3.1),let(x,y,q,p)be symplectic coordinates in a neighborhood

    Let A(x,y)∈Ube the first intersection point ofσ(x,y)with the cross section|q|=r,and A(x,y)∈Uthe last intersection point with the cross section|p|=r.Let Obe a small neighborhood of A(W)in U.

    We introduce a symplectic relation R?O×Oas follows:(B,B)∈R if there is a trajectory on the energy levelΣjoining Bwith Band close to the heteroclinics inσ(W).Under certain transversality conditions(nonconjugacy of Aand Aalongσ),which one can verify as in[7],to any X=(y,p,x,q)in an open set D?Rthere correspond points B=(x,y,q,p)∈Osuch that(B,B)∈R.We obtain:

    Proposition 3.6.The relation R is given by a generating function R(X),X =(y,p,x,q)∈D,as follows:

    We denote by B(X)the points corresponding to X∈D.

    Suppose now thatμ>0 is sufficiently small and letμ∈[?μ,μ].Proposition 3.6 implies

    Corollary 3.2.For anyμ∈[?μ,μ]and X=(y,p,x,q)∈D there exist x,p,y,qsuch that the points B(X,μ)= (x,y,q,p)∈ Σare joined by a trajectory inΣ,smoothly depending onμ.The symplectic relation Rbetween Bis given by a generating function R(X)=R(X)+O(μ):

    (B,B)∈R? d R(X)=pd q+yd x+xd y+qd p.

    Let Sbe the generating functions(3.3)of the local stable and unstable manifolds W(V).Set

    Eqs.(3.5a),(3.5b)and(3.16)imply:

    Proposition 3.7.

    ?The critical value is the generating function of the scattering map:

    Next we introduce a discrete action functional whose critical points correspond to heteroclinic chains.

    In a neighborhood U~=V×B×Bof Vin M we will use symplectic coordinates(x,y,q,p)as in(3.1).Let

    be the exit point ofσfrom U,and

    given by the generating function R(X)via

    are joined by a trajectory onΣclose toσ.

    Let

    which is the generating function of the symplectic map f.

    Let us define a formal discrete action functional

    where

    The functional is defined on V×D,where

    Proposition 3.8.

    ?For any z∈V close to c(with small‖z?c‖),the function X∈D→B(z,X)has a strongly nondegenerate critical point X(z).

    ?The(formal)critical value equals the action functional(2.2):

    A(z)=B(z,X(z)).

    ?If c is a strongly nondegenerate critical point of A,then(c,X(c))is a strongly nondegenerate critical point of B on V×D.

    We call a critical point strongly nondegenerate if the Hessian has an inverse which is bounded in l.The first item of Proposition 3.8 follows from the fact that for fixed z the functional split into a sum of independent functions of X,and these functions have nondegenerate critical points with the critical values(3.18).The rest follows easily.

    By Corollaries 3.1 and 3.2,

    ‖?A??B‖≤Cμ|lnμ|.

    By Proposition 3.8,the functional B has a strongly nondegenerate critical point(c,X(c)).

    Now the proof is completed by the implicit function theorem in l.

    4 Slowly time dependent systems

    the stable and unstable manifolds of the equilibrium z(τ).Ifγ:R→W(τ)∩W(τ)is a transverse homoclinic orbit of the frozen system:

    then it smoothly depends onτ.The Maupertuis action

    is called the Poincar′e potential,and

    is called Melnikov’s function.Ifωis nonexact,the Poincar′e potential may be multivalued,but P(τ)is always correctly defined.

    Let us find the scattering map for the extended system(1.4).The stable and unstable manifolds W(τ,h)of a point(z(τ),τ,h)∈?N are

    A homoclinicγof the frozen system defines a family of heteroclinics

    of the extended system,where by(4.3),

    The Hamiltonian(1.5)is unbounded as h→0.Thus we fix smallδ>0 and study the system for h∈[δ,δ].Then we can try to apply the results of section 2 to the symplectic critical manifold

    f(τ,h)=(τ,h+n P(τ))

    S(τ,h)=τh+P(τ).

    As in Section 2,we assume that the leading eigenvalues of the equilibrium z(τ)are simple.In the real case they are±α(τ),and in the complex case±α(τ)±iβ(τ).

    We construct trajectories with negative energy corresponding to a negative code.For positive codes and positive energy there is a similar result.Theorem 2.3 withμ=?ε<0 implies the following:

    ?E(0)=?εhand E(t)<0 for 0≤t≤T=(τ?τ)/ε.

    ?The sequencesτand h=?E(t)/εsatisfy

    Thus(τ,h)shadows a trajectory of the scattering map F.

    Theorem 4.1 was proved in[4]by a different method.The complex case was not considered in[4].Then we use Theorem 2.4.The code is now a pair of sequences(k,n),where the sequence k∈K is arbitrary and 0≤n≤m.The assertion is the same except that(4.4a)is replaced by

    where O(ε)is bounded independent of n.

    Appendix

    We have seen that for H=o(ε)the reduction(1.5)does not work.Let us discuss this case briefly.The frozen system has a compact normally hyperbolic invariant manifold N={(z(τ),τ):τ∈T}in M×T.Hence for smallεthere is a normally hyperbolic compact invariant manifold

    N={(z(τ),τ):τ∈T}, z(τ)=z(τ)+O(ε).

    By(1.3)we have H|=H(z(τ),τ)=O(ε).Let us describe multibump trajectories coming exponentially close to N.

    0<δ

    Atrajectory will correspond to a code which is a strictly increasing sequence(τ∈T).

    Theorem A.1.Suppose thatε>0 is sufficiently small.Then for any code(τ)there exists a unique trajectoryγ(t)∈M,τ=τ+εt,such that for all i∈Z,

    ?d((γ(t),τ),N)≤efor min|τ?τ|≥δ.

    Acknowledgements

    This work is supported by the Russian Science Foundation under grant No.19-71-30012.

    激情 狠狠 欧美| 亚洲aⅴ乱码一区二区在线播放| 能在线免费看毛片的网站| 色视频www国产| 免费观看精品视频网站| 黄色日韩在线| 亚洲美女视频黄频| 国精品久久久久久国模美| 一级黄片播放器| 又黄又爽又刺激的免费视频.| 国产毛片a区久久久久| 午夜日本视频在线| 国产亚洲午夜精品一区二区久久 | 欧美成人一区二区免费高清观看| 色尼玛亚洲综合影院| 亚洲最大成人中文| 97人妻精品一区二区三区麻豆| 久久久精品欧美日韩精品| 国产精品一区www在线观看| 亚洲在线自拍视频| 国产精品一区二区在线观看99 | 久久精品夜色国产| 欧美潮喷喷水| 午夜日本视频在线| 狂野欧美激情性xxxx在线观看| av女优亚洲男人天堂| av在线老鸭窝| 大陆偷拍与自拍| 日本午夜av视频| 超碰av人人做人人爽久久| 免费黄色在线免费观看| 午夜免费观看性视频| 国产一级毛片七仙女欲春2| 亚洲国产精品专区欧美| 久久午夜福利片| 欧美日韩亚洲高清精品| 日本一本二区三区精品| 成人午夜精彩视频在线观看| 十八禁国产超污无遮挡网站| 久久久久久久亚洲中文字幕| 国产成人a区在线观看| 国产精品久久久久久久久免| 国产单亲对白刺激| 国产精品美女特级片免费视频播放器| 18禁动态无遮挡网站| 久久久精品欧美日韩精品| 一夜夜www| 性插视频无遮挡在线免费观看| 久久6这里有精品| 天天躁日日操中文字幕| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区乱码不卡18| 午夜老司机福利剧场| 国产亚洲av嫩草精品影院| 高清欧美精品videossex| 国产亚洲一区二区精品| 亚洲精品456在线播放app| 精品人妻一区二区三区麻豆| 一二三四中文在线观看免费高清| 日本爱情动作片www.在线观看| 麻豆成人午夜福利视频| 中文字幕亚洲精品专区| 日韩电影二区| 国内精品美女久久久久久| av免费观看日本| 噜噜噜噜噜久久久久久91| 婷婷色综合www| 国产精品久久久久久久久免| 欧美变态另类bdsm刘玥| 亚洲人成网站在线观看播放| 精品国内亚洲2022精品成人| 欧美潮喷喷水| 人妻一区二区av| 色综合站精品国产| 欧美另类一区| 免费看美女性在线毛片视频| 亚洲精品影视一区二区三区av| 免费观看的影片在线观看| 美女内射精品一级片tv| 国产亚洲一区二区精品| 九草在线视频观看| 日本wwww免费看| 欧美激情在线99| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久 | 91久久精品国产一区二区成人| 18禁裸乳无遮挡免费网站照片| 老师上课跳d突然被开到最大视频| 欧美三级亚洲精品| 国产亚洲91精品色在线| 久久人人爽人人片av| 91精品一卡2卡3卡4卡| 2021天堂中文幕一二区在线观| 久久综合国产亚洲精品| 午夜福利成人在线免费观看| 免费av不卡在线播放| 99热网站在线观看| 亚洲四区av| 成年女人在线观看亚洲视频 | 久久久久久国产a免费观看| 国产黄色视频一区二区在线观看| 99久久精品一区二区三区| 国产精品国产三级专区第一集| 偷拍熟女少妇极品色| 国产精品蜜桃在线观看| 天天一区二区日本电影三级| 我的女老师完整版在线观看| 午夜激情欧美在线| 免费看光身美女| 日韩精品有码人妻一区| 2021少妇久久久久久久久久久| 欧美97在线视频| 日韩人妻高清精品专区| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 大陆偷拍与自拍| 中文精品一卡2卡3卡4更新| 日韩 亚洲 欧美在线| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 午夜免费激情av| 国产成人精品一,二区| 边亲边吃奶的免费视频| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| 免费观看在线日韩| 欧美另类一区| 欧美 日韩 精品 国产| 久久久久久久久久久免费av| 色哟哟·www| 又爽又黄无遮挡网站| 伦理电影大哥的女人| 日日撸夜夜添| 久久久久性生活片| 久久久久久久久久久免费av| 激情五月婷婷亚洲| 亚洲精品456在线播放app| 国产男女超爽视频在线观看| 搡老乐熟女国产| 国产视频内射| 熟女电影av网| 日韩强制内射视频| 久久久久久久国产电影| 寂寞人妻少妇视频99o| 舔av片在线| 亚洲美女搞黄在线观看| 寂寞人妻少妇视频99o| 嫩草影院精品99| 成年av动漫网址| 精品国产露脸久久av麻豆 | 午夜精品国产一区二区电影 | 日本黄大片高清| 日韩强制内射视频| av线在线观看网站| h日本视频在线播放| 午夜福利网站1000一区二区三区| 久久久久精品性色| 超碰97精品在线观看| 午夜视频国产福利| 国产精品一区二区在线观看99 | 成人亚洲欧美一区二区av| 成年女人看的毛片在线观看| 日韩人妻高清精品专区| 久久99热这里只有精品18| 床上黄色一级片| 日本爱情动作片www.在线观看| 综合色丁香网| 成人av在线播放网站| 少妇人妻精品综合一区二区| 九九爱精品视频在线观看| 久久这里有精品视频免费| 免费av不卡在线播放| 免费观看a级毛片全部| 国产真实伦视频高清在线观看| 欧美人与善性xxx| 色综合色国产| 欧美日韩一区二区视频在线观看视频在线 | 日韩制服骚丝袜av| 又粗又硬又长又爽又黄的视频| 日本爱情动作片www.在线观看| 97热精品久久久久久| 三级国产精品片| 天堂网av新在线| 国产一区二区三区综合在线观看 | 免费在线观看成人毛片| 波野结衣二区三区在线| 亚洲自偷自拍三级| 精品一区二区免费观看| 菩萨蛮人人尽说江南好唐韦庄| 天美传媒精品一区二区| 中文字幕制服av| 99re6热这里在线精品视频| 国产高清不卡午夜福利| 男的添女的下面高潮视频| 亚洲国产av新网站| 综合色丁香网| 在线免费十八禁| 国产单亲对白刺激| 国产激情偷乱视频一区二区| 亚洲成色77777| 亚洲欧美日韩无卡精品| 爱豆传媒免费全集在线观看| 综合色丁香网| 日本欧美国产在线视频| 别揉我奶头 嗯啊视频| 80岁老熟妇乱子伦牲交| 国产精品综合久久久久久久免费| 国产成人福利小说| 女的被弄到高潮叫床怎么办| freevideosex欧美| 美女cb高潮喷水在线观看| 免费av观看视频| 亚洲怡红院男人天堂| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 狂野欧美激情性xxxx在线观看| 国产乱人偷精品视频| 在线观看av片永久免费下载| 成人无遮挡网站| 国产又色又爽无遮挡免| 国产成人免费观看mmmm| 国产v大片淫在线免费观看| 亚洲欧美一区二区三区黑人 | 一级毛片黄色毛片免费观看视频| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| eeuss影院久久| 亚洲国产色片| 美女脱内裤让男人舔精品视频| 成人漫画全彩无遮挡| 午夜久久久久精精品| 国产精品国产三级专区第一集| 最后的刺客免费高清国语| 色5月婷婷丁香| 黑人高潮一二区| 国产一级毛片在线| 男的添女的下面高潮视频| av卡一久久| 亚洲精品一二三| 美女黄网站色视频| 99久国产av精品| 91久久精品电影网| 午夜福利在线观看吧| 欧美日本视频| 一级a做视频免费观看| 99热这里只有精品一区| 男女啪啪激烈高潮av片| 亚洲综合精品二区| 少妇熟女aⅴ在线视频| 久久久久久久午夜电影| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版 | 十八禁网站网址无遮挡 | 日韩国内少妇激情av| 国产成人精品婷婷| 亚洲图色成人| 国产一区二区在线观看日韩| 秋霞在线观看毛片| 大话2 男鬼变身卡| 能在线免费看毛片的网站| 搞女人的毛片| 免费大片18禁| 尾随美女入室| or卡值多少钱| 看黄色毛片网站| 日韩欧美三级三区| 欧美极品一区二区三区四区| 91av网一区二区| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站 | 免费观看精品视频网站| 精品一区二区免费观看| 午夜福利成人在线免费观看| 哪个播放器可以免费观看大片| 乱系列少妇在线播放| 国产av码专区亚洲av| 日日干狠狠操夜夜爽| 中文字幕av在线有码专区| 国产成年人精品一区二区| 亚洲精品国产av蜜桃| 纵有疾风起免费观看全集完整版 | 两个人视频免费观看高清| av免费观看日本| 欧美日韩视频高清一区二区三区二| 性色avwww在线观看| 毛片一级片免费看久久久久| 亚洲国产成人一精品久久久| 老司机影院毛片| 一级毛片 在线播放| 精品一区二区三区视频在线| 午夜精品一区二区三区免费看| 亚洲人成网站在线观看播放| 午夜福利高清视频| 日韩av免费高清视频| 一级毛片我不卡| 国产 一区 欧美 日韩| 欧美激情国产日韩精品一区| 久久久久精品久久久久真实原创| 两个人视频免费观看高清| 免费黄网站久久成人精品| 99视频精品全部免费 在线| 国产成人91sexporn| 成年人午夜在线观看视频 | 亚洲国产高清在线一区二区三| 亚洲av电影在线观看一区二区三区 | 国内精品宾馆在线| 99热网站在线观看| 最近中文字幕高清免费大全6| 一级av片app| 麻豆成人av视频| 精品久久久久久电影网| 亚洲精品国产av成人精品| 亚洲精品一区蜜桃| 国产熟女欧美一区二区| 亚洲自偷自拍三级| 午夜老司机福利剧场| 久久久久久久亚洲中文字幕| 麻豆久久精品国产亚洲av| 久久人人爽人人爽人人片va| 国产乱来视频区| 国产毛片a区久久久久| 亚洲综合色惰| 在线 av 中文字幕| 人人妻人人看人人澡| 亚州av有码| 内地一区二区视频在线| 黄片wwwwww| 干丝袜人妻中文字幕| 亚洲精品视频女| 能在线免费观看的黄片| 国产爱豆传媒在线观看| 一本一本综合久久| 人妻夜夜爽99麻豆av| 国内精品宾馆在线| 精品一区二区三区人妻视频| 在现免费观看毛片| 身体一侧抽搐| 成年人午夜在线观看视频 | 男女边吃奶边做爰视频| 免费人成在线观看视频色| 亚洲国产欧美在线一区| 国产高清三级在线| 精品午夜福利在线看| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 亚洲天堂国产精品一区在线| 免费电影在线观看免费观看| 久久精品国产鲁丝片午夜精品| 亚洲美女视频黄频| 国产乱人偷精品视频| 精品久久久久久电影网| 乱码一卡2卡4卡精品| 亚洲av.av天堂| 尤物成人国产欧美一区二区三区| 久久久久久伊人网av| 尤物成人国产欧美一区二区三区| 在线免费观看的www视频| 天堂影院成人在线观看| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 国产欧美另类精品又又久久亚洲欧美| 欧美97在线视频| 亚洲av成人av| 赤兔流量卡办理| 精品一区在线观看国产| 久久久欧美国产精品| 国产精品爽爽va在线观看网站| 国产又色又爽无遮挡免| 免费看美女性在线毛片视频| 成人高潮视频无遮挡免费网站| 久久99热这里只频精品6学生| 内射极品少妇av片p| 久久99热这里只频精品6学生| 伊人久久精品亚洲午夜| 久久6这里有精品| 国产精品.久久久| 免费观看无遮挡的男女| 国产精品1区2区在线观看.| 精品久久久久久久末码| 熟女电影av网| 在线免费十八禁| 中文字幕av成人在线电影| 午夜激情福利司机影院| 国产极品天堂在线| 亚洲精品456在线播放app| 五月伊人婷婷丁香| 直男gayav资源| 一级毛片 在线播放| 国产一区有黄有色的免费视频 | 亚洲美女搞黄在线观看| 我的女老师完整版在线观看| 大又大粗又爽又黄少妇毛片口| 2018国产大陆天天弄谢| 国产探花在线观看一区二区| 91久久精品国产一区二区三区| 小蜜桃在线观看免费完整版高清| 观看美女的网站| 免费看光身美女| 91久久精品国产一区二区成人| 国产精品1区2区在线观看.| 一区二区三区乱码不卡18| 亚洲第一区二区三区不卡| 亚洲四区av| ponron亚洲| 欧美xxxx性猛交bbbb| freevideosex欧美| 欧美 日韩 精品 国产| 亚洲欧洲国产日韩| 国产亚洲av片在线观看秒播厂 | 久久久久久久大尺度免费视频| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费看| www.色视频.com| 一级爰片在线观看| 亚洲欧洲日产国产| av在线亚洲专区| 欧美激情在线99| 欧美日韩综合久久久久久| 大香蕉97超碰在线| 国产黄色免费在线视频| 国产精品伦人一区二区| 草草在线视频免费看| 晚上一个人看的免费电影| 草草在线视频免费看| 观看免费一级毛片| 久久久精品94久久精品| 99re6热这里在线精品视频| 日韩av在线大香蕉| 午夜福利在线观看免费完整高清在| 五月天丁香电影| 日韩精品青青久久久久久| 欧美3d第一页| www.色视频.com| 中文字幕久久专区| 搡老乐熟女国产| 亚洲最大成人中文| 日本一二三区视频观看| 天天躁夜夜躁狠狠久久av| 色视频www国产| 免费播放大片免费观看视频在线观看| 久久久久久久亚洲中文字幕| av一本久久久久| 人妻一区二区av| 少妇猛男粗大的猛烈进出视频 | 欧美精品国产亚洲| 中国美白少妇内射xxxbb| 欧美激情在线99| 全区人妻精品视频| 99热6这里只有精品| 日本午夜av视频| 天堂影院成人在线观看| 一级毛片电影观看| 久久久久久久久中文| 一级片'在线观看视频| 简卡轻食公司| 国产一级毛片在线| 国内精品美女久久久久久| 综合色丁香网| 日本一本二区三区精品| 久久99热这里只有精品18| 成年免费大片在线观看| 日韩av不卡免费在线播放| 我的老师免费观看完整版| 亚洲精品久久午夜乱码| 99re6热这里在线精品视频| 国产精品女同一区二区软件| 久久久久久久久中文| 国产av不卡久久| 一级爰片在线观看| 亚洲自偷自拍三级| 最近最新中文字幕大全电影3| 七月丁香在线播放| 久久精品国产鲁丝片午夜精品| 日韩伦理黄色片| www.色视频.com| 国产乱来视频区| 国产av码专区亚洲av| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 青青草视频在线视频观看| 日日摸夜夜添夜夜添av毛片| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| 色哟哟·www| 久久这里有精品视频免费| 国国产精品蜜臀av免费| 成年女人在线观看亚洲视频 | 久久精品夜夜夜夜夜久久蜜豆| 免费看日本二区| 免费高清在线观看视频在线观看| 亚洲欧美中文字幕日韩二区| 国产午夜福利久久久久久| 午夜老司机福利剧场| 大陆偷拍与自拍| av国产久精品久网站免费入址| 国产精品一区二区在线观看99 | 在线观看人妻少妇| 国产成人免费观看mmmm| 午夜福利高清视频| 成人性生交大片免费视频hd| 久久久久久九九精品二区国产| av女优亚洲男人天堂| 大话2 男鬼变身卡| 日韩亚洲欧美综合| 午夜福利在线观看免费完整高清在| 精品久久久精品久久久| 国产精品综合久久久久久久免费| 亚洲国产成人一精品久久久| 2018国产大陆天天弄谢| 国内精品一区二区在线观看| 日本欧美国产在线视频| 亚洲欧美日韩无卡精品| 亚洲在线自拍视频| 免费看美女性在线毛片视频| 国产成人freesex在线| 久久精品久久精品一区二区三区| 国产精品一区二区在线观看99 | 久久鲁丝午夜福利片| 一区二区三区四区激情视频| 全区人妻精品视频| 好男人在线观看高清免费视频| ponron亚洲| 久久人人爽人人片av| 亚洲真实伦在线观看| 久久久久性生活片| 亚洲真实伦在线观看| 免费看日本二区| 男人舔女人下体高潮全视频| 内地一区二区视频在线| 亚洲伊人久久精品综合| 老女人水多毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜老司机福利剧场| 精品一区二区三区人妻视频| 亚洲成人久久爱视频| av在线蜜桃| 久久人人爽人人片av| av免费观看日本| 久久久久久久久久久丰满| 爱豆传媒免费全集在线观看| 一级毛片aaaaaa免费看小| 国产精品爽爽va在线观看网站| 精品少妇黑人巨大在线播放| 精品一区在线观看国产| 特级一级黄色大片| 日韩强制内射视频| 91狼人影院| 国产高清有码在线观看视频| 岛国毛片在线播放| 天天躁日日操中文字幕| 国产av码专区亚洲av| 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 国产 一区精品| 亚洲美女搞黄在线观看| 97超视频在线观看视频| 精品一区二区三卡| 一级毛片电影观看| 久久久久久久久久成人| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 能在线免费观看的黄片| av播播在线观看一区| 韩国高清视频一区二区三区| 97人妻精品一区二区三区麻豆| 国产在线一区二区三区精| 精品午夜福利在线看| 久久久久久久久中文| 日本爱情动作片www.在线观看| 黄色日韩在线| 2021少妇久久久久久久久久久| 男女啪啪激烈高潮av片| 男人狂女人下面高潮的视频| 九九久久精品国产亚洲av麻豆| 十八禁国产超污无遮挡网站| 国产精品日韩av在线免费观看| 高清视频免费观看一区二区 | 岛国毛片在线播放| 日韩欧美精品免费久久| 插逼视频在线观看| 国产亚洲精品久久久com| 久久久久久九九精品二区国产| 久久99热6这里只有精品| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 五月玫瑰六月丁香| kizo精华| 91精品伊人久久大香线蕉| 熟女电影av网| 午夜爱爱视频在线播放| 国产精品无大码| 精品久久久久久久久久久久久| 亚洲内射少妇av| 尾随美女入室| 精品久久久久久久末码| 成人毛片60女人毛片免费| 天堂俺去俺来也www色官网 | 性色avwww在线观看| 边亲边吃奶的免费视频| 韩国高清视频一区二区三区| 又大又黄又爽视频免费| 天堂网av新在线| 99九九线精品视频在线观看视频| 国产精品.久久久| 日韩亚洲欧美综合| 久久99蜜桃精品久久| 伊人久久国产一区二区| 亚洲国产欧美人成| 黄色一级大片看看|