• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Partition of Forecast Error into Positional and Structural Components

    2021-06-04 08:45:56IsidoraJANKOVScottGREGORYSaiRAVELAZoltanTOTHandMalaquasPE
    Advances in Atmospheric Sciences 2021年6期

    Isidora JANKOV, Scott GREGORY, Sai RAVELA, Zoltan TOTH, and Malaquías PE?A

    1Global Systems Laboratory, NOAA/OAR, Boulder, CO 80305, USA

    2General Atomics, Electromagnetic Systems Group, Longmont, CO 80501, USA

    3Earth Signals and Systems Group, Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,Cambridge, MA 02139, USA

    4Department of Civil and Environmental Engineering University of Connecticut, Storrs, CT 06269, USA

    ABSTRACT

    Key words:forecast error, orthogonal decomposition, positional, structural

    1.Introduction

    Assessing the quality of forecasts is critical to the development and proper use of Numerical Weather Prediction(NWP) systems. Traditional approaches use univariate methods comparing forecasts with verifying data independently at a set of observation sites or grid-points (i.e., error variance-EV, or root mean square error-RMSE), implicitly assuming that NWP errors are spatially independent. This assumption goes against basic synoptic experience that weather manifests in spatiotemporally organized structures.

    Such synoptic observations about the organization of weather systems have motivated decades-long efforts to separate and operationally utilize the positional (e.g., location of central pressure or track) and amplitude (i.e., value of central pressure, or intensity of maximum winds, Goerss and Sampson, 2004; Goerss, 2007; Kehoe at al., 2007) errors associated with Tropical Cyclones (TC, see, e.g., Colby, 2016).Errors in the central position of TCs can be further decomposed into along and across track errors (Buckingham et al.,2010). More recently, similar statistics have also been evaluated for extratropical cyclones (e.g., Colle and Charles,2011).

    Motivated by the decomposition for TC errors, the past decades saw the emergence of a number of other featurebased approaches. These studies include the object-oriented approach of Ebert and McBride (2000), Nachamkin (2004),and Davis et al. (2006), as well as a study by Wernli et al.(2008) that focuses on small regions around selected features to determine structure, amplitude, and location related error statistics.

    Other studies take a more systematic approach to forecast error decomposition. These use field deformation (also referred to as optical flow) to smoothly deform one field to align it with another, e.g. verification field. In its verification applications, field deformation is used to decompose full 2D forecast error fields (as opposed to only errors related to selected features). A study by Hoffman et al.(1995), further discussed in the next section, and the correlation and variational optic-flow-based technique of Keil and Craig (2007) is an example of this type of approach. The field deformation concept was first developed and used for other applications (e.g., data fusion-Mariano, 1990; hurricane relocation-Hoffman et al., 1995; bias correction-Nehrkorn et al., 2003; and data assimilation-Lawson and Hansen, 2005; Ravela et al., 2007; Beechler et al., 2010).

    In this study, a new method called Forecast Error Decomposition (FED) is introduced, using the Field Alignment(FA) technique of Ravela (Ravela, 2007; Ravela et al.,2007). FA and its application in FED are introduced in section 2. The experimental data and setup are described in section 3, while FED application results are shown in Section 4. section 5 offers a brief summary and a discussion of the characteristics of the approach.

    2.Methodology

    One of the first studies that attempted to formally decompose 2D forecast error fields into positional and other components is Hoffman et al. (1995). Their method concurrently aligns the forecast field (i.e., moves its features across a coarse grid), and adjusts its amplitudes to minimize the difference between the aligned and adjusted forecast field and the verifying observations or analysis field. Displacement and amplitude errors are related to the positional alignment and amplitude adjustment respectively, while the remaining difference between the aligned and adjusted forecast and observations or verifying analysis is called “residual” error that is a function of the smoothing parameters used in the method.Even though the method of Hoffman et al. (1995) provides a conceptual error decomposition, it requires the posterior(i.e., after alignment) forecast error covariance as an input,making its application problematic.

    2.1.Field Alignment

    As Hoffman et al. (1995) point out, there is no unique way of defining forecast displacement errors. In this study,we test the use of an alternative technique, the FA technique (Ravela et al., 2007) in FED. FA and its variants in the Field Alignment System and Testbed (FAST, Ravela,2007; Ravela et al., 2007) align two gridded fields (in its FED application, a forecast with its verifying analysis field)by smoothly remapping the coordinate system underlying the state of a variable. For example, for two 2D fields of a state variable (e.g. surface temperature), where one field is the observed or analyzed field (which would be considered as the target state) and the other one is a forecast of that field valid at the same time, the FA method estimates a smooth 2D displacement vector field that aligns the forecast with the analysis field. If the displacement vectors are applied to each grid point of the original forecast field as a translation operation in 2D space, the result is an adjusted forecast field for which the difference in RMSE between this aligned field and the analysis field (i.e., cost function) is minimized. The displacement vector field and the aligned field are derived through a variational minimization of the cost function in FA (Ravela, 2007). The smoothness of the displacement vector field is controlled via a “smoothness wavenumber parameter ” (SWP) in the FA truncation algorithm (Ravela, 2012). SWP defines the scales at which alignments of features between two fields are performed.Smaller scale features are moved along with the larger scale features that are aligned, without additional adjustments.SWP is the only free parameter in FA and it is analogous to the choice of truncation in Hoffman et al.’s (1995)approach.

    Unlike the method proposed by Hoffman et al. (1995),FA does not rely on forecast error covariance information.For additional details on how FA differs from the method of Hoffman et al. (1995), see Ravela et al., 2007; and Ravela,2014. As for other FA applications, Ravela (Ravela, 2007;Ravela et al., 2007) and Williams (2008) align the first guess forecast field with the latest observations before the application of a standard data assimilation scheme. This pre-processing reduces the remaining, mostly amplitude errors for a further improvement in the fit to the observations. FA has also been used to analyze (with ensemblebased analysis approaches, Ravela et al., 2009; Ravela,2012, 2014) and represent (e.g., Ravela et al., 2009) coherent structures in other fluid applications. Additionally, FA has been found to be an effective tool for nowcasting(Ravela, 2012, 2014), initialization, verification (Ravela et al., 2007; Ravela, 2014), and various other applications(Yang and Ravela, 2009a,b; Ravela, 2015a, b).

    2.2.Forecast Error Decomposition

    The purpose of this study is to demonstrate the use of the FA technique in FED for the quantification of what is subjectively perceived as major modes of error. In our study,we will use Error Variance (EV, or on some figures, its root, the Root Mean Square error-RMS) as traditional,scalar references measuring the difference between two 2D fields. The total forecast error variance (E) is defined as a difference between forecast (F) and analysis (A) fields. A displacement operator (D) adjusts the forecast field to a new,aligned state (F) for which the difference in RMSE between the forecast field (F) and the analysis (A) is minimized. The displacement operator generates both the displacement vector field and the scalar field of the magnitude of displacement.

    3.Experimental Design

    The Forecast Error Decomposition (FED) method described in section 2 is demonstrated using the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecasting System (GEFS, Toth and Kalnay, 1993; Zhu et al., 2012) with 0.5 degree horizontal grid spacing, along with Global Forecast System (GFS) analysis fields given on the same grid. The GEFS forecast uncertainty is determined by generating an ensemble of multiple (21) forecasts where both the initial conditions (Ensemble Transform with Rescaling - ETR, Wei et al., 2008) and the model integrations (stochastic noise, Hou et al., 2006) vary. GEFS global forecasts are produced four times a day, with each run extending out to 16 days. The most recent gridded forecast data and corresponding analyses are available through the NOAA National Operational Model Archive and Distribution System (NOMADS, Alpert et al., 2002, https://nomads.ncep.noaa.gov/).

    Fig. 1. Schematic of a forecast, verifying analysis, and aligned forecast (open black circles) situated in the phase space of full atmospheric variability, shown in 3D here. Smoothed versions of these fields(solid red circles) reside in the subspace of large scale atmospheric variability, represented with a plane.The orthogonally adjusted smoothed aligned forecast (green solid circle) is defined as a point on the Forecast - Aligned Forecast line in the large scale subspace closest to the Analysis. Large scale positional, large scale structural, and small scale error variances are defined as the variance distance between Forecast and Aligned Forecast, and Aligned Forecast and Analysis in the large scale subspace,and the sum of the variance distances between the original and smoothed Analyses, and the original and smoothed Forecasts, respectively. For further discussion, see text.

    In this study, FED has been applied to Mean Sea Level Pressure (MSLP) and 850 hPa temperature forecasts of the unperturbed (or control) member of the GEFS initialized at 0000 UTC during the period 1 to 30 September, 2011. This period was characterized by two tropical storms (Lee and an unnamed storm), two category one hurricanes (Maria and Nate), and two category four hurricanes (Katia and Ophelia)in the Atlantic Basin.

    4.Results

    We first demonstrate FE D using an 84 h forecast initialized at 0000 UTC 9 March 2011. On this day hurricane Katia (2011) was located in the Caribbean area, classified as a category 3 hurricane, with maximum sustained wind speeds between 49.62 m sand 62.14 m s. Therefore, we focus on a domain covering a portion of the Northern Atlantic Ocean basin. Figure 2 shows the GFS analysis and the control (unperturbed) GEFS 84 h MSLP forecast valid at the same time. The forecast storm (Fig. 2b) lags behind the analysis both in terms of its location and its intensity.

    The decomposition of the error for the same 84-hour forecast is shown in Fig. 3, with total error as a difference between the original forecast and the verifying analysis field (a), the displacement vector field as defined by the difference in the position of the original and aligned forecast fields (b), the large scale positional error as a difference between the smoothed forecast and the adjusted smoothed aligned forecast fields (c), the large scale amplitude error as a difference between the adjusted smoothed aligned forecast and the smoothed analysis fields (d), and the small scale error as the difference between the total error and total error for large scales. For clarity, the displacement vector field (Fig. 3b) has been scaled and the data have been thinned (represented only at every 2nd grid point). In the tropical Atlantic, the magnitude of the displacement vectors is largest over and around the hurricane itself (Fig. 3b). The structure of the vector field indicates an error related to an along-track delay in the forecast movement of the storm.

    Fig. 2. GEFS control member 84 h forecast and the GFS analysis valid at 1200 UTC September 6, 2011.

    Fig. 3. Total error (a), displacement vector (b), large scale positional error (c), large scale amplitude error (d) and small scale error for the 84 h lead time GEFS Control member MSLP forecast initialized at 0000 UTC on 3 September 2011.The domain average Root Mean Square Error/Difference(RMSE/RMSD) is included for panels a, c, d and e. Error Variance/difference magnitudes are illustrated with the color bar (hPa).

    Focusing on the area of hurricane Katia (2011), the large scale positional error (Fig. 3c) manifests as a dipole pattern, indicating a slower than observed movement of the forecast storm. The large scale structural error (Fig. 3d), on the other hand, has a single minimum, pointing to a forecast storm less intense than observed. While the magnitudes of the large scale positional and structural error are similar,small scale error (Fig. 3e) has a much lower magnitude,except over the hurricane itself (see area average error variance numbers on error panels in Fig 3).

    The partitioning of the MSLP forecast error variance components as a function of lead times for the same Katia(2011) forecast also has been examined (Fig. 4). Interestingly, the total error variance initially grows, and then reaches a minimum for 48 h lead time before increasing again. Large scale positional and amplitude components of error follow the same trend as the total error. Importantly,for all lead times large scale positional error variance represents about ~50% of total error while the amplitude (structural) component contributes with only ~15%. The smallscale error variance mainly remains constant with time.

    Fig. 4. The error variance decomposition for MSLP, for different forecast horizons, calculated over the regional domain for a forecast initialized at 0000 UTC 6 September 2011.

    Fig. 5. GEFS control member 24 h forecast and the GFS analysis valid at 1200 UTC 6 September 2011.

    Further inspection of the displacement vector field in Fig. 3b reveals a displacement over the southeastern US even larger than present around hurricane Katia (2011).This particular displacement in the MSLP forecast is associated with the position of frontal zones connecting multiple low pressure centers along the eastern US. To evaluate error partition related to this phenomenon and a different variable, a shorter lead time forecast (24 h) than was available for 850 hPa temperature was evaluated over a domain centered on the Eastern US. Figure 5 shows generally good agreement between the GFS analysis and the GEFS control(unperturbed) member 24 h forecast. More substantial differences between the analysis and GEFS control run appear over the Great Lakes area. The error decomposition is illustrated in Fig. 6. Higher values in large scale amplitude error component are detected over the Great Lake area (Fig. 6d).Similarly, the large-scale positional error component is characterized by similar features in addition to displaying greater amplitudes along the east US coast (Fig. 6c). The domain averaged RMSE values show larger contribution to the total error coming from the positional component (~61%) as compared to the amplitude component (~28%). Small scale error is confined over limited areas in the Great Lake region and along the frontal zone (Fig. 6e).

    For a statistically more informative evaluation of FED results, Fig. 7 displays the magnitude of the three orthogonal error components over three large non-overlapping regions (tropics, Northern and Southern Hemisphere), averaged over the month of September 2011. First, we note that as expected, the total error (blue bars in Fig. 7) generally exhibits a growing tendency with increasing lead times. In all regions and at all lead times, large scale positional error(red bars) is the largest of the three components. Approximately 50%, 60%, and 75% of the total error variance is associated with the large-scale positional error for features over the Tropics, the Northern and Southern hemispheres, respectively. Large scale positional error in general also displays a growing tendency as a function of lead time, indicative of chaotic error growth.

    Over the different lead times and domains, large scale structural and small scale error variance is ~20%?30% and~10%?15% percent of the total error variance, respectively.In contrast to the large scale positional error, these error components do not always exhibit a growing tendency with increasing lead time. For example, large scale structural /small scale errors do not have a clear growing tendency over the Tropics / Tropics and NH, respectively. The lack of error growth in these regions may be indicative of model error in representing natural phenomena in these regions.

    Fig. 6. As in Fig. 3, except for 850 hPa temperature, 24 h lead time and the domain centered on Eastern US.

    Fig. 6. (Continued).

    5.Summary and Discussion

    A Forecast Error Decomposition (FED) method has been proposed and demonstrated, partitioning the total forecast error into three orthogonal components: large scale positional, large scale structural, and small scale error. FED uses the Field Alignment (FA) technique of Ravela (Ravela,2007) to align a forecast field with the verifying analysis field on a point-by-point basis to minimize their differences subject to a predefined smoothness constraint. Positional and structural errors are defined and orthogonalized in a low-pass filtered (“smooth”) subspace, ensuring that the filtered-out, high frequency error component also lies orthogonal to the large-scale components. To our knowledge,FED is the first attempt at such an orthogonal error decomposition. For example, the partitioning of Hoffman et al (1995)does not guarantee the orthogonality. While in the present study we fixed the value of the smoothness parameter, in future investigations, more smoothing can be applied at longer lead times, reflecting the increasing level of noise,and decreasing level of information at longer lead times.

    Fig. 7. As in Figure 4, except for various regions of the globe(tropics-30°S?30°N, Northern-30°?90°N, and Southern hemispheres-30°?90°S) and for the entire month of September 2011.

    The main focus of this study was to demonstrate the use of the FA technique in FED for quantifying major modes of forecast error. The use of FED was illustrated through a case study [Hurricane Katia (2011)] where the approach was applied to two different variables, MSLP and 850 hPa temperature (Figs. 3 and 6), and through MSLP error statistics calculated over a month-long period (Sep.2011, Fig. 7). Both approaches showed consistent results. A significant portion of forecast error variance (~50%?70%,depending on geographical region and lead time) is associated with large-scale displacement of forecast features. Notably smaller portions of the total error variance are related to large-scale structural and small-scale error variance. The generality of these results will need to be assessed over extended datasets.

    In certain applications, feature-based error decomposition techniques have been used extensively. Errors in TC forecasts, for example, have been described in terms of position and intensity errors. Such applications (a) require the identification of certain features (e.g., the center of a TC), and (b)limit the forecast evaluation to the pre-selected feature. In contrast, with its more general approach, FED offers more detailed, gridded information pertaining not only to pre-selected features but to their environment as well. In case of TC forecasts, for example, the quality of the forecasts can be described by displacement vector and structural error fields,instead of just the error in the position and intensity of the central (or another selected) point of the storm (cf. Fig 3).

    Though FA has so far been demonstrated only on 2D fields, its extension to 3D is feasible. Even in its current form, the spatially distributed approach of FED naturally lends itself for use in more thorough diagnostic studies. Potential applications include the assessment of systematic errors in terms of positional and amplitude components. Detailed analyses of various experiments can provide useful feedback to model and data assimilation technique developers by suggesting areas that may be dominated more by positional or structural errors, associated more either with initial value (e.g., amplifying) or model related (e.g., systematic structural) uncertainties, respectively.

    Forecasters have long expressed an interest in separately assessing uncertainty in the phase (i.e., position) and amplitude of forecast features (see, e.g., NCEP, 2004).Given the encouraging experiments reported here, we advocate for the more widespread use of gridded error decomposition tools such as that tested in the current paper.

    Acknowledgements. The authors would like to thank Tim MARCHOK of GFDL for helpful discussions, Dr. Michael BRENNAN of NHC for providing along and across track error statistics for Hurricane Katia (2011), and Drs. Jie FENG, Lidia TRAILOVIC, Edward TOLLERUD (all formerly affiliated with GSL),and two anonymous reviewers for their comments on an earlier version of this manuscript.

    涩涩av久久男人的天堂| 夜夜躁狠狠躁天天躁| 国产高清国产精品国产三级| 免费在线观看日本一区| 亚洲成人手机| 午夜91福利影院| 成年人午夜在线观看视频| 久久久久国产精品人妻aⅴ院 | 国产成人精品无人区| 国产成人精品无人区| 国产黄色免费在线视频| 国产精品一区二区在线观看99| 国产精品av久久久久免费| 免费女性裸体啪啪无遮挡网站| 麻豆av在线久日| 国产熟女午夜一区二区三区| 视频区图区小说| 免费久久久久久久精品成人欧美视频| 我的亚洲天堂| av电影中文网址| 欧美人与性动交α欧美软件| 麻豆乱淫一区二区| 午夜精品国产一区二区电影| 老熟女久久久| av在线播放免费不卡| 欧美激情 高清一区二区三区| 国产亚洲欧美在线一区二区| а√天堂www在线а√下载 | 侵犯人妻中文字幕一二三四区| 少妇 在线观看| 人人妻,人人澡人人爽秒播| 精品国产一区二区三区四区第35| 黄片小视频在线播放| 精品久久久久久久毛片微露脸| 久久久久久久久久久久大奶| 成年人黄色毛片网站| 99精品久久久久人妻精品| 十分钟在线观看高清视频www| 一级片'在线观看视频| 啦啦啦视频在线资源免费观看| 免费在线观看视频国产中文字幕亚洲| 欧美最黄视频在线播放免费 | 成人18禁在线播放| 亚洲精品av麻豆狂野| 又黄又爽又免费观看的视频| 国产亚洲av高清不卡| 自线自在国产av| av欧美777| 90打野战视频偷拍视频| cao死你这个sao货| 99精品久久久久人妻精品| 久久久国产一区二区| 99精品在免费线老司机午夜| 欧美人与性动交α欧美软件| 亚洲国产欧美日韩在线播放| 国产在线观看jvid| 国产精品免费一区二区三区在线 | 亚洲成国产人片在线观看| 国产片内射在线| 亚洲国产欧美网| 麻豆乱淫一区二区| 男女午夜视频在线观看| 少妇被粗大的猛进出69影院| 久久香蕉国产精品| 亚洲av日韩在线播放| 国产色视频综合| 18禁裸乳无遮挡动漫免费视频| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦视频在线资源免费观看| 一二三四在线观看免费中文在| 老熟女久久久| 免费在线观看完整版高清| 国产亚洲精品久久久久5区| 久久性视频一级片| 欧美丝袜亚洲另类 | 免费在线观看视频国产中文字幕亚洲| 精品国产超薄肉色丝袜足j| tube8黄色片| 国产精品二区激情视频| 日韩欧美一区视频在线观看| 久久狼人影院| 视频区欧美日本亚洲| 国产精品 国内视频| 亚洲免费av在线视频| 欧美精品av麻豆av| 欧美日韩国产mv在线观看视频| 又紧又爽又黄一区二区| 婷婷精品国产亚洲av在线 | 法律面前人人平等表现在哪些方面| 国精品久久久久久国模美| 一级黄色大片毛片| 男女午夜视频在线观看| 午夜福利,免费看| 性色av乱码一区二区三区2| 久久午夜亚洲精品久久| 中出人妻视频一区二区| 黄色怎么调成土黄色| 欧美国产精品va在线观看不卡| 丝袜在线中文字幕| avwww免费| 天天添夜夜摸| 丝袜人妻中文字幕| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 超碰成人久久| 亚洲全国av大片| 久久中文看片网| 大型av网站在线播放| 两人在一起打扑克的视频| 黄色丝袜av网址大全| 天天躁日日躁夜夜躁夜夜| 亚洲五月色婷婷综合| videos熟女内射| 他把我摸到了高潮在线观看| 18禁美女被吸乳视频| 老司机午夜十八禁免费视频| 成人18禁高潮啪啪吃奶动态图| av电影中文网址| 18禁观看日本| 亚洲男人天堂网一区| 男女下面插进去视频免费观看| 久99久视频精品免费| 国产人伦9x9x在线观看| 欧美 亚洲 国产 日韩一| 中文字幕制服av| av视频免费观看在线观看| 性色av乱码一区二区三区2| 后天国语完整版免费观看| 法律面前人人平等表现在哪些方面| 一本大道久久a久久精品| 大型黄色视频在线免费观看| 99热只有精品国产| 亚洲av日韩在线播放| 久久这里只有精品19| 一级毛片精品| 妹子高潮喷水视频| 黄色女人牲交| 国产成人精品无人区| 操美女的视频在线观看| 国产成人av激情在线播放| 老司机在亚洲福利影院| 黑人巨大精品欧美一区二区蜜桃| 深夜精品福利| 亚洲av熟女| 欧美黄色淫秽网站| 在线国产一区二区在线| 国产一区二区三区视频了| 新久久久久国产一级毛片| 欧美激情极品国产一区二区三区| 久久久久国内视频| 国产成人欧美在线观看 | 成人亚洲精品一区在线观看| 亚洲熟妇熟女久久| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久久久人妻精品电影| 亚洲欧美激情综合另类| 窝窝影院91人妻| 丰满饥渴人妻一区二区三| 久久国产精品男人的天堂亚洲| 精品国产一区二区三区久久久樱花| 欧美日韩福利视频一区二区| 最新美女视频免费是黄的| 九色亚洲精品在线播放| 国产成人系列免费观看| 极品教师在线免费播放| 免费在线观看黄色视频的| 精品第一国产精品| 国产精品免费视频内射| 国产一区在线观看成人免费| 俄罗斯特黄特色一大片| 国产麻豆69| 精品少妇久久久久久888优播| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 色精品久久人妻99蜜桃| 国产区一区二久久| 一区二区三区国产精品乱码| 国产亚洲精品久久久久久毛片 | 在线av久久热| 在线观看舔阴道视频| 亚洲精品在线观看二区| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利免费观看在线| 精品熟女少妇八av免费久了| 欧美久久黑人一区二区| 麻豆乱淫一区二区| 国产蜜桃级精品一区二区三区 | 欧美性长视频在线观看| 午夜免费成人在线视频| 五月开心婷婷网| 午夜老司机福利片| 久久国产亚洲av麻豆专区| 身体一侧抽搐| 91av网站免费观看| 国产精华一区二区三区| 夫妻午夜视频| 欧美性长视频在线观看| 亚洲成人免费av在线播放| 国产精品自产拍在线观看55亚洲 | www.自偷自拍.com| 美女高潮到喷水免费观看| 久9热在线精品视频| 我的亚洲天堂| 曰老女人黄片| 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| 69av精品久久久久久| 国产成人av教育| 欧美日韩亚洲国产一区二区在线观看 | 成熟少妇高潮喷水视频| 欧美精品啪啪一区二区三区| 午夜福利视频在线观看免费| 欧美日韩亚洲综合一区二区三区_| 美女 人体艺术 gogo| 在线国产一区二区在线| 自线自在国产av| 国产精品自产拍在线观看55亚洲 | 国产亚洲精品第一综合不卡| 99精国产麻豆久久婷婷| 夜夜夜夜夜久久久久| 一本大道久久a久久精品| 国产成人系列免费观看| а√天堂www在线а√下载 | 亚洲片人在线观看| 夜夜爽天天搞| 在线播放国产精品三级| 女同久久另类99精品国产91| 美女高潮喷水抽搐中文字幕| 一区二区三区精品91| 午夜免费鲁丝| 国产成人欧美| 国产精品.久久久| 精品无人区乱码1区二区| 亚洲中文日韩欧美视频| 老熟妇仑乱视频hdxx| 91成年电影在线观看| 一级作爱视频免费观看| 亚洲国产欧美网| 久久国产乱子伦精品免费另类| а√天堂www在线а√下载 | 国产av一区二区精品久久| 视频在线观看一区二区三区| 欧美大码av| 亚洲精品国产区一区二| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 看黄色毛片网站| 日本五十路高清| 国产精品av久久久久免费| 少妇的丰满在线观看| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 亚洲中文字幕日韩| 久久久久精品人妻al黑| 99久久国产精品久久久| 咕卡用的链子| 国产又爽黄色视频| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 午夜福利,免费看| 99久久国产精品久久久| 亚洲自偷自拍图片 自拍| 久久精品熟女亚洲av麻豆精品| 一级,二级,三级黄色视频| 最新美女视频免费是黄的| 丝袜在线中文字幕| 国产一区二区三区在线臀色熟女 | 9色porny在线观看| 久久久久久免费高清国产稀缺| 欧美激情极品国产一区二区三区| 色婷婷av一区二区三区视频| 老司机亚洲免费影院| 国产欧美日韩一区二区三| 亚洲熟女精品中文字幕| 精品高清国产在线一区| 午夜影院日韩av| 欧美精品人与动牲交sv欧美| 精品第一国产精品| 好男人电影高清在线观看| 亚洲av第一区精品v没综合| 国产精品欧美亚洲77777| 在线观看www视频免费| 国产亚洲欧美在线一区二区| 十分钟在线观看高清视频www| 午夜激情av网站| 欧美激情 高清一区二区三区| 一进一出抽搐动态| 午夜福利影视在线免费观看| av在线播放免费不卡| 成人手机av| 色播在线永久视频| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 丁香六月欧美| 国产成人系列免费观看| 一边摸一边抽搐一进一小说 | 亚洲熟妇熟女久久| e午夜精品久久久久久久| 国产精品国产高清国产av | 黄片播放在线免费| 日韩欧美国产一区二区入口| 久久99一区二区三区| 最新美女视频免费是黄的| 欧美+亚洲+日韩+国产| 一夜夜www| 最新美女视频免费是黄的| 99久久人妻综合| 色精品久久人妻99蜜桃| 一级毛片精品| 日本欧美视频一区| 69av精品久久久久久| 50天的宝宝边吃奶边哭怎么回事| av线在线观看网站| 高清黄色对白视频在线免费看| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 天堂中文最新版在线下载| 在线播放国产精品三级| 国产亚洲一区二区精品| 国产一区二区三区在线臀色熟女 | 精品一区二区三区四区五区乱码| 久热这里只有精品99| 久久天躁狠狠躁夜夜2o2o| 脱女人内裤的视频| 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 搡老岳熟女国产| 久久午夜亚洲精品久久| 天天躁日日躁夜夜躁夜夜| 国产不卡av网站在线观看| 视频区图区小说| 9热在线视频观看99| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 亚洲精品在线美女| 黑丝袜美女国产一区| 成人18禁在线播放| 999久久久国产精品视频| 天天添夜夜摸| 欧美大码av| 村上凉子中文字幕在线| 桃红色精品国产亚洲av| netflix在线观看网站| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久久成人av| 1024香蕉在线观看| 色婷婷av一区二区三区视频| 少妇 在线观看| 99精国产麻豆久久婷婷| 国产片内射在线| 新久久久久国产一级毛片| 亚洲人成电影观看| 好看av亚洲va欧美ⅴa在| 欧美黄色片欧美黄色片| 国产成人欧美在线观看 | 69精品国产乱码久久久| 岛国在线观看网站| 99在线人妻在线中文字幕 | 国产又爽黄色视频| 在线观看日韩欧美| 欧美日韩精品网址| 久久久久久久午夜电影 | 免费在线观看日本一区| 国产xxxxx性猛交| 欧美日韩福利视频一区二区| 国产乱人伦免费视频| 亚洲中文av在线| 制服人妻中文乱码| 精品久久久久久,| 亚洲色图 男人天堂 中文字幕| 欧美国产精品va在线观看不卡| 女人久久www免费人成看片| 久久久国产成人精品二区 | 99国产极品粉嫩在线观看| 欧美日韩成人在线一区二区| 日韩免费高清中文字幕av| 天堂√8在线中文| 欧美中文综合在线视频| 韩国精品一区二区三区| 中国美女看黄片| 欧美精品啪啪一区二区三区| 国产一区二区激情短视频| 伦理电影免费视频| 在线视频色国产色| 免费在线观看黄色视频的| 一边摸一边做爽爽视频免费| 午夜亚洲福利在线播放| 国产激情欧美一区二区| 国产精品国产av在线观看| 国产麻豆69| 日韩中文字幕欧美一区二区| 男女之事视频高清在线观看| 国产激情欧美一区二区| 亚洲精品久久成人aⅴ小说| 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 国产伦人伦偷精品视频| 国产精品电影一区二区三区 | 高清在线国产一区| 无遮挡黄片免费观看| 一区在线观看完整版| 成年人午夜在线观看视频| 久久久久久久午夜电影 | 亚洲午夜理论影院| av欧美777| 国产亚洲欧美98| 天天躁夜夜躁狠狠躁躁| 在线观看午夜福利视频| 欧美国产精品va在线观看不卡| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 亚洲国产看品久久| 国产区一区二久久| 日韩免费av在线播放| 日韩大码丰满熟妇| 老司机亚洲免费影院| 人人妻人人澡人人爽人人夜夜| 多毛熟女@视频| 亚洲欧美色中文字幕在线| bbb黄色大片| 建设人人有责人人尽责人人享有的| 交换朋友夫妻互换小说| 国产在视频线精品| av有码第一页| 夜夜躁狠狠躁天天躁| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9 | 性色av乱码一区二区三区2| 91精品国产国语对白视频| 人妻一区二区av| av一本久久久久| 亚洲第一av免费看| 操美女的视频在线观看| 久久久久久人人人人人| 成年人黄色毛片网站| 久热爱精品视频在线9| 亚洲精品中文字幕一二三四区| 丝袜美足系列| 欧美日本中文国产一区发布| 伦理电影免费视频| 成年动漫av网址| 在线av久久热| 精品人妻1区二区| bbb黄色大片| 中文字幕制服av| 两性夫妻黄色片| 变态另类成人亚洲欧美熟女 | 婷婷丁香在线五月| 黄片播放在线免费| 亚洲视频免费观看视频| 国产男女内射视频| 十八禁高潮呻吟视频| 免费在线观看黄色视频的| 身体一侧抽搐| 久久九九热精品免费| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 香蕉久久夜色| 精品久久久久久久毛片微露脸| 国产激情欧美一区二区| www.999成人在线观看| 久久影院123| 国产不卡av网站在线观看| 黑人猛操日本美女一级片| 亚洲国产中文字幕在线视频| 亚洲欧美色中文字幕在线| 操美女的视频在线观看| av线在线观看网站| 午夜老司机福利片| 亚洲 国产 在线| 操出白浆在线播放| 成人特级黄色片久久久久久久| 亚洲精品自拍成人| 777久久人妻少妇嫩草av网站| 亚洲一码二码三码区别大吗| 热99国产精品久久久久久7| 久久中文看片网| 国产精品一区二区在线不卡| 久久精品国产亚洲av香蕉五月 | av欧美777| 免费久久久久久久精品成人欧美视频| 美女午夜性视频免费| 久久久久国产一级毛片高清牌| 波多野结衣av一区二区av| 亚洲一区高清亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 可以免费在线观看a视频的电影网站| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 国产日韩欧美亚洲二区| aaaaa片日本免费| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 国产成人免费观看mmmm| 亚洲成人免费av在线播放| 亚洲成国产人片在线观看| 国产在线观看jvid| 777米奇影视久久| 国产一区在线观看成人免费| 一级片'在线观看视频| 久久精品熟女亚洲av麻豆精品| 亚洲国产中文字幕在线视频| 80岁老熟妇乱子伦牲交| svipshipincom国产片| 国产免费av片在线观看野外av| 在线播放国产精品三级| 久久中文看片网| 午夜免费鲁丝| 成年人免费黄色播放视频| 国产1区2区3区精品| 一个人免费在线观看的高清视频| 亚洲欧美一区二区三区久久| 叶爱在线成人免费视频播放| 欧美乱码精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 丝袜美足系列| 国产有黄有色有爽视频| 国产成+人综合+亚洲专区| 日韩欧美免费精品| 老司机亚洲免费影院| av超薄肉色丝袜交足视频| 麻豆乱淫一区二区| 亚洲色图 男人天堂 中文字幕| 午夜视频精品福利| 久久这里只有精品19| 午夜福利视频在线观看免费| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 国产精品欧美亚洲77777| 亚洲,欧美精品.| 国产日韩一区二区三区精品不卡| 99国产精品免费福利视频| 日日摸夜夜添夜夜添小说| 成人免费观看视频高清| 国产1区2区3区精品| 国产av精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 母亲3免费完整高清在线观看| 欧美成人午夜精品| 午夜精品在线福利| 久久人人97超碰香蕉20202| 女警被强在线播放| 国产在线一区二区三区精| 国产成人免费观看mmmm| 丝瓜视频免费看黄片| 成年女人毛片免费观看观看9 | 十八禁人妻一区二区| 老汉色∧v一级毛片| 三级毛片av免费| ponron亚洲| 亚洲精品乱久久久久久| 黄色女人牲交| 国产成人av激情在线播放| 国产欧美亚洲国产| 咕卡用的链子| 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| av超薄肉色丝袜交足视频| 婷婷成人精品国产| 三级毛片av免费| 巨乳人妻的诱惑在线观看| 国产精品永久免费网站| 亚洲精品美女久久久久99蜜臀| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 岛国在线观看网站| a在线观看视频网站| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看亚洲国产| 午夜福利欧美成人| 久久ye,这里只有精品| 黄色视频不卡| 超碰成人久久| 又大又爽又粗| 亚洲全国av大片| 狂野欧美激情性xxxx| 丰满的人妻完整版| 窝窝影院91人妻| 免费女性裸体啪啪无遮挡网站| 一级a爱视频在线免费观看| 久久香蕉激情| 欧美av亚洲av综合av国产av| 中文字幕最新亚洲高清| av有码第一页| 欧美日韩瑟瑟在线播放| 黄片大片在线免费观看| 亚洲全国av大片| 色综合欧美亚洲国产小说| 另类亚洲欧美激情| 美女福利国产在线| 男女下面插进去视频免费观看| 热re99久久精品国产66热6| 亚洲欧美激情综合另类| 午夜福利一区二区在线看| 国精品久久久久久国模美| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产精品美女特级片免费视频播放器 | 亚洲精品中文字幕在线视频| 久久香蕉激情| 亚洲第一av免费看| 久久久久久久久免费视频了| 亚洲九九香蕉| 欧美成人午夜精品| 精品久久久久久电影网| 乱人伦中国视频| svipshipincom国产片|