• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Natural Climate Solutions for China:The Last Mile to Carbon Neutrality

    2021-06-04 08:46:16ZhangcaiQINXiDENGBronsonGRISCOMYaoHUANGTingtingLIPeteSMITHWenpingYUANandWenZHANG
    Advances in Atmospheric Sciences 2021年6期

    Zhangcai QIN, Xi DENG, Bronson GRISCOM, Yao HUANG, Tingting LI, Pete SMITH,Wenping YUAN, and Wen ZHANG

    1School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies,Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519000, China

    2Conservation International, Arlington, Virginia VA 22202, USA

    3State Key Laboratory of Vegetation and Environmental Change, Institute of Botany,Chinese Academy of Sciences, Beijing 100093, China

    4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    5Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK

    Key words:carbon sequestration, ecosystem, emissions, energy, greenhouse gas, mitigation

    “I call on all leaders worldwide to declare a State of Climate Emergency in their own countries until carbon neutrality is reached.”

    - António GUTERRES (United Nations Secretary General), 12 December, 2020

    There is no shortcut to a carbon neutral society; solutions are urgently required from both energy & industrial sectors and global ecosystems. While the former is often held accountable and emphasized in terms of its emissions reduction capability, the latter (recently termed natural climate solutions) should also be assessed for potential and limitations by the scientific community, the public, and policy makers.

    1.Energy- and nature-based solutions to climate change

    Global greenhouse gas (GHG) emissions have been increasing for centuries, especially since the Industrial Revolution due to rapidly growing consumption of fossil fuels, which has been a major factor driving climate change (IPCC, 2018;UNEP, 2020). To achieve the Paris Climate Agreement goal of limiting global temperature rise to well below 2°C above the preindustrial level and to pursue efforts to keep warming below 1.5°C, global efforts are urgently needed to greatly reduce GHG emissions. Global annual emissions need to drop by 50% in the next ten years and reach net zero by the 2050s so that the 1.5°C target can still be possible (IPCC, 2018; UNEP, 2020). Many countries, especially parties to the Paris Agreement, have made individual climate pledges to cut down GHG emissions, e.g., via Nationally Determined Contributions, or have declared a timeline to reach “carbon neutrality”, “climate neutrality” or net zero emissions (Iyer et al., 2017; Weitzel et al., 2019). The last three terms are often used interchangeably in literature (and in this article), referring to net zero emissions of all three major GHGs i.e., carbon dioxide (CO), methane (CH) and nitrous oxide (NO). In some instances though, they can differ in terms of inclusion of non-COgases, aerosol forcing or other short-lived climate forcers (IPCC,2018).

    The energy and industrial sectors are widely accepted as the major players in mitigating climate change, primarily due to their significant contributions to global GHG emissions. Over 50 Pg COe yrof GHG emissions are currently released to the atmosphere, about 65% of which are fossil COemissions (UNEP, 2020). Even with current policies (e.g., Nationally Determined Contributions), the global temperature would still rise by at least 3°C by the end of the century (UNEP,2020) (Fig.1). During the past few decades, energy related emissions (mainly COand CH) have dominated global GHG emissions, contributing over 60% of emissions annually (Olivier and Peters, 2020). It is therefore essential, if the Paris Agreement is to be achieved, to reduce energy and industry related emissions, following global pathways such as lowering fossil fuel use, increasing renewable energy share, and deploying cost-effective technologies of decarbonization (IPCC, 2018).

    However, while the energy and industrial sectors are essential to “reduce” emissions to close the gap, they are both insufficient, and unable to “remove” emissions. It is unlikely that the 1.5°C climate target can be met without significant removal of COand other major GHGs, mainly CHand NO, from the atmosphere (Fig. 1, light green line) (IPCC, 2018; Roe et al.,2019). Among many technologies designed for COor overall GHG removal (Fuss et al., 2018), natural climate solutions(NCS) has been recognized to be one of the most cost-effective and readily available options that can be used to supplement energy and industrial mitigation in the climate portfolio (Anderson et al., 2019; Griscom et al., 2019). They offer opportunities to reduce/avoid GHG emissions and more importantly sequester additional carbon in biomass and soils across natural ecosystems, e.g., agriculture, grasslands, forest and wetlands (Griscom et al., 2017; Roe et al., 2019; Goldstein et al.,2020; Qin et al., 2021). Global NCS deployment can remove historical and newly released GHGs, and help with the “l(fā)ast mile delivery” to carbon neutrality or net zero target within a relatively short period of time (i.e. 30 years), with relatively affordable economic, environmental and societal price (Fig. 1, dark green line) (Field and Mach, 2017; Fuss et al., 2018). It is estimated that NCS can deliver approximately 1/3 of the cost-effective GHG mitigation required (to 2030) for holding warming to below 2°C (66% chance) (Griscom et al., 2017).

    2.Natural climate solutions: time is of the essence to unleash the power of nature

    Natural climate solutions, also termed nature-based climate solutions in a broader sense, often largely refer to measures leading to reduced GHG emissions and additional carbon sinks in natural ecosystems (mostly land-based) such as forests, agriculture, grasslands, and wetlands (Griscom et al., 2017; Roe et al., 2019; Zhang et al., 2020). Some ocean-based ecosystems (e.g., mangroves, seagrasses, and salt marshes) are also part of the NCS (Griscom et al., 2017), while others(e.g., seaweed farming, aquaculture) that have not yet been included in NCS synthesis studies but are conceptually aligned may also contribute to climate mitigation (Hoegh-Guldberg et al., 2019; Jiao et al., 2020). With appropriate management,selected NCS pathways can avoid GHG emissions that would otherwise be released (e.g., avoided conversion of forest and grassland) (Hu et al., 2016; Griscom et al., 2017), reduce overall GHG emissions (e.g., agricultural nitrogen management,livestock management) (Zhang et al., 2013; Nayak et al., 2015), and/or increase carbon sequestration in biomass and soils(e.g., reforestation, biochar, and wetland restoration) (Qin et al., 2013; Paustian et al., 2016; Bossio et al., 2020).

    Fig. 1. A schematic graph showing historical annual GHG emissions and future emission scenarios. The lines and circles show relative sizes of annual emissions. The circled figures, each having five colors, indicate global emissions directly related to energy use (“energy”), agriculture, and land use, land use change and forestry (LULUCF) (“nature”, and “others”(including CO2 from international transport and non-energy, CH4 from waster and others, N2O from industrial processes and energy indirect/waste, and F-gases) (Olivier and Peters, 2020). The relative size of historical emissions (1850-2018) is based on Global Carbon Project (Le Quéré et al., 2018). Future temperature change under continued large emissions is based on“baseline” scenarios from IPCC AR5 (IPCC, 2014). The emission reduction scenarios reflect potential climate mitigation from both energy & industrial systems and natural systems (IPCC, 2018).

    The technical potential for any specific NCS pathway can be large (e.g., reforestation), but the applicable land extent and magnitude of mitigation can be further limited, for reasons including biological constraints (e.g., insects and growth rate), environmental constraints (e.g., water availability and biodiversity), availability and competing use of existing lands and ecosystems, and economic and social costs (Paustian et al., 2016; Griscom et al., 2017; Roe et al., 2019). Spatial limitations and operational feasibility should also be examined to avoid pitfalls and unintended consequences (e.g., water stress,yield loss) (Feng et al., 2016; Smith et al., 2020). Recently, Griscom et al. (2017) reported a total of 23.8 Pg COe yrof global maximum potential from 20 NCS pathways, with consideration of constraints in food security, fiber security, and biodiversity conservation (Fig. 2a). The forest sector makes the greatest contribution to the overall mitigation potential, with the reforestation pathway being the largest contributor. In particular, China alone can contribute about 10% of global potential within eight of the pathways estimated by country, with reforestation playing the leading role (Fig. 2b). When considering the social cost of CO, about half of the maximum potential cannot be deemed cost-effective (over 100 USD Mg COe)(Fig. 2c).

    Fig. 2. The mitigation potentials of NCS by ecosystem and by specific pathway. In total, 20 pathways (Global-20) were estimated for their individual NCS potentials at global scale, and eight pathways were specifically quantified for their potentials by country/region (Griscom et al., 2017). (a) Maximum potential by ecosystem, (b) maximum potential for eight specific pathways, and (c) global NCS potential constrained by cost and delay impacts. Maximum potential and costeffective potential are estimated by Griscom et al. (2017). The “achievable” mitigation is cost-effective mitigation accounting for NCS delay impacts, annualized over 30 years (2020-2050), with the time taken to reach designed extent and maximum intensity being at 30 and 5 years, respectively (Qin et al., 2021). Global-8 and China-8 refer to potentials of the eight pathways worldwide and for China, respectively. The area of the pie represents the relative size of individual potential by category.

    Adding another layer of uncertainty to NCS, the delays in NCS deployment can impact the time taken for action and therefore actual mitigation, which further challenges our current understanding of the magnitude of mitigation potential in ecosystems (Qin et al., 2021). The time we spend to take meaningful NCS action, to fully deploy NCS technologies, and for ecosystems to reach potential mitigation intensity can all be delayed. For instance, if we set these three delays at 0, 30, and 5 years respectively, assuming aggressive NCS actions worldwide, the “achievable” potential (6.7 Pg COe yr) that can actually happen is only about 60% of the total cost-effective potential and 28% of the maximum potential (Fig. 2c). Similar delays also apply to energy and industrial sectors, and should be avoided or minimized to the greatest extent possible (Qin et al., 2021).

    Global challenges for deploying both NCS and energy and industry climate mitigation options are daunting. In the case of NCS, we emphasize here reasons for optimism indicated by actions that have been taken regionally and historically leading to measurable mitigation benefits. For instance, multiple policies since the 2000s contributed to decrease of Brazilian Amazon deforestation (Heilmayr et al., 2020); ecological restoration projects (e.g., forest, grasslands) over the past several decades have led to greening in China (Hu et al., 2016; Chen et al., 2019). The experience from the past can well inform future NCS actions.

    3.Natural climate solutions for China: the future in the past

    Human activities, if rationally planned and managed, are expected to bring “order” to the human-natural systems (Ye et al., 2001). Over the past half century, China has launched tens of ecological projects nationwide, with the main purposes of protection and restoration of forests and grasslands, primarily to prevent flooding, desertification and soil erosion, and to improve biomass productivity (Bryan et al., 2018; Lu et al., 2018). Now, in the context of climate change mitigation, they are becoming probably the world’s largest NCS program, in terms of scale and investment (Bryan et al., 2018; Lu et al.,2018). A recent report estimated about 0.5 Pg COe of sequestration in natural ecosystems during the 2000s, owing to six ecological projects started during 1978-2003. In particular, The “Natural Forest Protection Project” alone contributed over 50% of total carbon sinks, followed by “Three-North Shelter Forest Program” (19%) and “Returning Grazing Land to Grassland Project” (12%). Reforestation and afforestation alone contributed about 0.4 Pg COe yr(Lu et al., 2018), that is already slightly higher than the size of cost-effective mitigation estimated for reforestation in China (0.38 Pg COe yr)(Fig. 2a) (Griscom et al., 2017); however, deduction of “baseline” reforestation trends account for a more constrained estimate by Griscom et al. (2017). Recent top-down observational evidence also shows greening in China (Chen et al., 2019) and increasing land carbon sinks owing to large-scale ecological restoration (Wang et al., 2020).

    In addition, many of the ecological projects in China are still active with plans to renew and expand their extent (MoA,2017; NDRC, 2020). The legacy effects of existing restored ecosystems (i.e., forest and grassland) and continuing efforts for expansion of project extent could further augment carbon sequestration potentials in biomass and soils. For instance, the Returning Grazing Land to Grassland Project, among others, is still actively enrolling additional land. By 2020, a total of 90 Mha of grazing lands are expected to be restored to grasslands (MoA, 2017), which is 50% additional coverage from the 2010 level (Lu et al., 2018). Optimized management (e.g., grazing exclusion and reduced grazing intensity) would be applied to about 200 Mha of grazing lands (MoA, 2017), resulting in additional carbon sequestration, especially in soils(Nayak et al., 2015). Studies also suggest other NCS pathways leading to additional mitigation, e.g., China has the largest potential of any country for agroforestry and silvopasture - by integrating trees into crop and grazing lands without disrupting yields (Chapman et al., 2020).

    What can we learn from current knowledge and China’s experience? Here we list some recommended practices for policy making, global coordination, and ecosystem management (Table 1), expanded from a previous estimate to reduce NCS delays (Qin et al., 2021). First of all, the best time to act is now (if not already) (Table 1). China started its first major project in the 1970s, and it took over 40 years and several phases to finally re-shape its degraded landscapes, especially in North and Northwest China (e.g., Loess Plateau) (Lu et al., 2018). It is a race against time to meet the Paris climate target,while delayed action is dragging the race from the starting line (IPCC, 2018). Secondly, worldwide NCS needs global governance and involvement of governments, stakeholders, land users and even other programs related to land management(Table 1). The ecological projects could serve multiple purposes such as increasing productivity, preventing soil erosion and improving biodiversity. Climate change mitigation often comes together with better management and soil health improvement (Bradford et al., 2019; Bossio et al., 2020). Thirdly, the delays in NCS of various forms could be further shortened providing local and global management efforts directed towards sustainable ecosystems, e.g., protecting ecosystems with rich and irrecoverable carbon pools, prioritizing certain NCS pathways (including ocean-based) with cost-effective mitigation potential, and minimizing ecosystem disturbances (Table 1). Finally, the NCS pathways need to be regularly revisited and often realigned to face challenges on the way (Bryan et al., 2018; Lu et al., 2018). Most of the six projects had multiple phases which allowed for potential pitfalls and corrections (Lu et al., 2018) emphasizing the need to anticipate unintended consequences and unexpected delays of various types when scaling NCS (Cao et al., 2011; Qin et al., 2021).

    To conclude, there is no shortcut to a carbon neutral future; all efforts should be accounted for. Emissions from theenergy and industrial sectors must be immediately and aggressively reduced, but all NCS pathways, both land- and oceanbased, should be embraced to help go the extra mile for hard-to-abate sectors and emission sources (Anderson et al., 2019;Griscom et al., 2019). China has been deeply involved in NCS, and we have reasons to believe that in the next 40 years,NCS can and should play a significant role in accomplishing the last mile delivery to nationwide carbon neutrality by 2060,as pledged by the Chinese government. Even globally, the power of nature should still be respected with regard to climate mitigation, especially if other substitutive negative emissions technologies (e.g., direct air capture, enhanced weathering,ocean alkalinization, and ocean fertilization) are not immediately available for safe large-scale deployment in a cost-effective manner (Fuss et al., 2018). Global immediate actions on NCS are urgently required to avoid delays in delivering climate targets and potentially other sustainable development goals (Griscom et al., 2017; Qin et al., 2021).

    Table 1. An incomplete list of best management practices to deploy global NCS, based on current understanding and lessons learned from past experience.

    Acknowledgements. This work was jointly supported by the National Basic Research Program of China (2016YFA0602701), the National Natural Science Foundation of China (41975113), the Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies (2020B1212060025) and the Guangdong Provincial Department of Science and Technology (2019ZT08G090). We appreciate the support from the China Association for Science and Technology Working Group for UN Environment Consultation.

    亚洲,一卡二卡三卡| 午夜福利影视在线免费观看| 美女xxoo啪啪120秒动态图| 亚洲情色 制服丝袜| 综合色丁香网| 日日爽夜夜爽网站| 热re99久久国产66热| 午夜老司机福利剧场| 最近的中文字幕免费完整| 少妇精品久久久久久久| 国产高清不卡午夜福利| 久久久久精品久久久久真实原创| 男男h啪啪无遮挡| 极品教师在线视频| 岛国毛片在线播放| 日韩伦理黄色片| 一级毛片久久久久久久久女| 国产黄色视频一区二区在线观看| 国产精品人妻久久久久久| 两个人的视频大全免费| 各种免费的搞黄视频| 亚洲婷婷狠狠爱综合网| 久久精品国产鲁丝片午夜精品| 黄色一级大片看看| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 欧美丝袜亚洲另类| 免费少妇av软件| 久久精品久久久久久久性| 亚洲精华国产精华液的使用体验| 丝瓜视频免费看黄片| 欧美3d第一页| 久久久久精品久久久久真实原创| www.色视频.com| 在线观看三级黄色| 97在线视频观看| 天堂8中文在线网| 免费观看无遮挡的男女| 久久午夜福利片| 男人和女人高潮做爰伦理| 国产精品99久久99久久久不卡 | 午夜日本视频在线| 大码成人一级视频| 国产精品一区www在线观看| 精品亚洲成国产av| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看| 国模一区二区三区四区视频| 91成人精品电影| 人人妻人人澡人人爽人人夜夜| 成人黄色视频免费在线看| 成人漫画全彩无遮挡| 97精品久久久久久久久久精品| 又黄又爽又刺激的免费视频.| 国产黄片美女视频| 爱豆传媒免费全集在线观看| 国产精品嫩草影院av在线观看| av黄色大香蕉| 色94色欧美一区二区| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 热99国产精品久久久久久7| 99久久人妻综合| 国产又色又爽无遮挡免| 国产极品天堂在线| 一级a做视频免费观看| 肉色欧美久久久久久久蜜桃| 免费观看a级毛片全部| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 亚洲无线观看免费| freevideosex欧美| 国产精品.久久久| 成人黄色视频免费在线看| 国产成人精品婷婷| 秋霞在线观看毛片| 久久久久人妻精品一区果冻| 嘟嘟电影网在线观看| 人人妻人人看人人澡| 成人毛片a级毛片在线播放| 最近最新中文字幕免费大全7| videossex国产| 日韩 亚洲 欧美在线| 国产淫片久久久久久久久| 日韩视频在线欧美| 国产亚洲一区二区精品| 涩涩av久久男人的天堂| 欧美日本中文国产一区发布| 亚洲精品视频女| 亚洲一级一片aⅴ在线观看| 一本久久精品| h视频一区二区三区| 高清黄色对白视频在线免费看 | 久久人人爽人人片av| 精品少妇久久久久久888优播| 男人狂女人下面高潮的视频| 日韩熟女老妇一区二区性免费视频| 欧美bdsm另类| 精品少妇久久久久久888优播| 精品久久久精品久久久| 日本av免费视频播放| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久久久久久大奶| 精品午夜福利在线看| 免费观看无遮挡的男女| 三上悠亚av全集在线观看 | 亚洲国产精品一区二区三区在线| 亚洲怡红院男人天堂| 久久6这里有精品| 亚洲综合精品二区| 精品卡一卡二卡四卡免费| 欧美丝袜亚洲另类| 国产在线免费精品| 国产极品粉嫩免费观看在线 | 女人精品久久久久毛片| 免费在线观看成人毛片| 久久久久久久精品精品| 精品久久久久久久久亚洲| 在线观看av片永久免费下载| 国产男女超爽视频在线观看| 午夜福利在线观看免费完整高清在| 国产极品粉嫩免费观看在线 | 九色成人免费人妻av| 五月伊人婷婷丁香| 各种免费的搞黄视频| 日韩大片免费观看网站| 成年美女黄网站色视频大全免费 | 美女脱内裤让男人舔精品视频| 妹子高潮喷水视频| 国产免费又黄又爽又色| 人体艺术视频欧美日本| 久久久久久久久大av| 六月丁香七月| av视频免费观看在线观看| av播播在线观看一区| 最近中文字幕高清免费大全6| 在线观看www视频免费| 欧美+日韩+精品| 国产精品成人在线| 国产av国产精品国产| 亚洲欧美日韩另类电影网站| 水蜜桃什么品种好| 在线精品无人区一区二区三| 69精品国产乱码久久久| 亚洲国产最新在线播放| 免费黄网站久久成人精品| 亚洲电影在线观看av| 午夜av观看不卡| 午夜免费鲁丝| 国产在线一区二区三区精| kizo精华| 久久精品国产自在天天线| 一二三四中文在线观看免费高清| 国产深夜福利视频在线观看| 国产男女超爽视频在线观看| 国产欧美日韩综合在线一区二区 | 在线观看www视频免费| 黄色一级大片看看| 亚洲综合色惰| 亚洲高清免费不卡视频| 青春草视频在线免费观看| 插逼视频在线观看| 极品人妻少妇av视频| 卡戴珊不雅视频在线播放| 国产精品国产三级国产专区5o| 久久狼人影院| av播播在线观看一区| 亚洲情色 制服丝袜| 色视频www国产| 尾随美女入室| 看非洲黑人一级黄片| 丰满迷人的少妇在线观看| 男人狂女人下面高潮的视频| 免费看日本二区| 熟女av电影| 哪个播放器可以免费观看大片| 免费观看性生交大片5| 成年av动漫网址| 女人久久www免费人成看片| 亚洲真实伦在线观看| 成人国产麻豆网| 日日啪夜夜爽| 国产淫语在线视频| 精品一区二区三卡| av卡一久久| 天堂俺去俺来也www色官网| 黑人巨大精品欧美一区二区蜜桃 | 国产精品99久久99久久久不卡 | 亚洲精品成人av观看孕妇| 日本91视频免费播放| 国产熟女欧美一区二区| 国产成人91sexporn| 国产精品久久久久久av不卡| 亚洲欧美中文字幕日韩二区| 国产成人freesex在线| 99久久中文字幕三级久久日本| 狂野欧美白嫩少妇大欣赏| 国产探花极品一区二区| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| 黄色一级大片看看| 精品国产乱码久久久久久小说| av卡一久久| h视频一区二区三区| 如日韩欧美国产精品一区二区三区 | 极品教师在线视频| 人妻夜夜爽99麻豆av| 18禁在线播放成人免费| 欧美精品高潮呻吟av久久| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 一级爰片在线观看| 亚洲欧美精品专区久久| 毛片一级片免费看久久久久| 赤兔流量卡办理| 又大又黄又爽视频免费| 老司机影院成人| av专区在线播放| 国内少妇人妻偷人精品xxx网站| 久久 成人 亚洲| 亚洲美女搞黄在线观看| kizo精华| 成人特级av手机在线观看| 国产成人免费无遮挡视频| 亚洲婷婷狠狠爱综合网| 亚洲精品456在线播放app| 日本黄色片子视频| 涩涩av久久男人的天堂| 午夜免费观看性视频| 一级爰片在线观看| 国产精品一区二区性色av| 免费人妻精品一区二区三区视频| 99九九线精品视频在线观看视频| 2021少妇久久久久久久久久久| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久| 日本91视频免费播放| 18+在线观看网站| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久久免| 最新的欧美精品一区二区| 能在线免费看毛片的网站| 国产成人精品一,二区| 天天躁夜夜躁狠狠久久av| 六月丁香七月| 久久久久久久久久成人| 91久久精品国产一区二区三区| 99热这里只有是精品在线观看| 亚洲在久久综合| 少妇人妻久久综合中文| 一级黄片播放器| av视频免费观看在线观看| 亚洲国产av新网站| 极品教师在线视频| 亚洲一区二区三区欧美精品| 精品久久久精品久久久| 中国美白少妇内射xxxbb| 日本-黄色视频高清免费观看| 在线观看美女被高潮喷水网站| 国产高清三级在线| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 两个人免费观看高清视频 | 亚洲伊人久久精品综合| 毛片一级片免费看久久久久| 国产成人freesex在线| 国产男人的电影天堂91| 中文字幕亚洲精品专区| 久久久午夜欧美精品| 久久久精品94久久精品| 免费看日本二区| 大陆偷拍与自拍| 国产 一区精品| 99久国产av精品国产电影| 亚洲国产精品999| 99久久中文字幕三级久久日本| 成年人午夜在线观看视频| 国产一区二区三区综合在线观看 | 伊人久久国产一区二区| 91成人精品电影| 午夜福利网站1000一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲av成人精品一区久久| 国产黄色免费在线视频| av国产久精品久网站免费入址| 极品教师在线视频| 涩涩av久久男人的天堂| 3wmmmm亚洲av在线观看| 狂野欧美激情性bbbbbb| 欧美激情极品国产一区二区三区 | a 毛片基地| 黑人巨大精品欧美一区二区蜜桃 | 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| 伊人久久精品亚洲午夜| 欧美xxⅹ黑人| 午夜精品国产一区二区电影| 一本久久精品| 一区二区三区乱码不卡18| 婷婷色av中文字幕| 亚洲欧美日韩东京热| 看非洲黑人一级黄片| 日韩强制内射视频| 99久久综合免费| 狠狠精品人妻久久久久久综合| 亚洲,欧美,日韩| 国产免费福利视频在线观看| 久久久久视频综合| 五月伊人婷婷丁香| 色哟哟·www| 国产成人免费无遮挡视频| 一级毛片我不卡| 丝袜在线中文字幕| 午夜免费观看性视频| 亚洲精品久久久久久婷婷小说| 99久久综合免费| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 国产国拍精品亚洲av在线观看| 久久久久久人妻| 婷婷色麻豆天堂久久| 最近中文字幕高清免费大全6| 亚洲国产精品国产精品| 一级毛片黄色毛片免费观看视频| 99久久中文字幕三级久久日本| 天堂俺去俺来也www色官网| 麻豆成人av视频| 色婷婷av一区二区三区视频| 老司机影院成人| 精品一品国产午夜福利视频| 久久精品久久久久久噜噜老黄| 热99国产精品久久久久久7| 99久久精品一区二区三区| 久久99一区二区三区| 男女边吃奶边做爰视频| 热99国产精品久久久久久7| 五月开心婷婷网| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 99热网站在线观看| 性色avwww在线观看| 尾随美女入室| 免费久久久久久久精品成人欧美视频 | 色5月婷婷丁香| 国产国拍精品亚洲av在线观看| 高清毛片免费看| 亚洲欧美精品专区久久| 丰满饥渴人妻一区二区三| 男人舔奶头视频| 水蜜桃什么品种好| 永久免费av网站大全| 国产成人a∨麻豆精品| 久久av网站| 有码 亚洲区| 国产欧美日韩一区二区三区在线 | 男人爽女人下面视频在线观看| 久久久久网色| av国产精品久久久久影院| 免费黄网站久久成人精品| 久久久久久久久久久免费av| 国产亚洲5aaaaa淫片| 婷婷色综合大香蕉| 男女无遮挡免费网站观看| 日本黄色日本黄色录像| 欧美亚洲 丝袜 人妻 在线| 免费大片18禁| 成年av动漫网址| 国产伦理片在线播放av一区| 国内揄拍国产精品人妻在线| 亚洲av免费高清在线观看| 国产免费又黄又爽又色| 亚洲精品,欧美精品| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 91aial.com中文字幕在线观看| 美女福利国产在线| av黄色大香蕉| 国产黄色免费在线视频| 一区二区三区乱码不卡18| 亚洲国产精品999| 国产午夜精品久久久久久一区二区三区| 视频中文字幕在线观看| 一级av片app| 国产精品人妻久久久久久| 夫妻性生交免费视频一级片| 99热网站在线观看| 国产亚洲精品久久久com| 日韩精品免费视频一区二区三区 | 日本黄大片高清| 午夜福利视频精品| 少妇精品久久久久久久| 草草在线视频免费看| 春色校园在线视频观看| 内射极品少妇av片p| 如日韩欧美国产精品一区二区三区 | 水蜜桃什么品种好| 内地一区二区视频在线| 国产黄片美女视频| 精品一区二区免费观看| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 亚洲美女黄色视频免费看| 最近手机中文字幕大全| 秋霞伦理黄片| 22中文网久久字幕| 九九在线视频观看精品| 国产乱来视频区| 建设人人有责人人尽责人人享有的| 欧美变态另类bdsm刘玥| av网站免费在线观看视频| 国产成人精品久久久久久| 大码成人一级视频| av天堂久久9| 欧美丝袜亚洲另类| 国产在线视频一区二区| 视频区图区小说| 我要看黄色一级片免费的| 国产欧美日韩精品一区二区| 成人毛片a级毛片在线播放| 日韩av免费高清视频| 国产爽快片一区二区三区| 99精国产麻豆久久婷婷| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 精品一区二区三卡| 国产精品福利在线免费观看| 91在线精品国自产拍蜜月| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 国产真实伦视频高清在线观看| 亚洲内射少妇av| 亚洲成人一二三区av| 国产精品欧美亚洲77777| 久久人人爽人人爽人人片va| 建设人人有责人人尽责人人享有的| 熟女av电影| freevideosex欧美| 91精品国产国语对白视频| 国产精品不卡视频一区二区| 精华霜和精华液先用哪个| 久久韩国三级中文字幕| av在线老鸭窝| 午夜日本视频在线| 日日摸夜夜添夜夜爱| 高清毛片免费看| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 亚洲国产精品国产精品| 国产亚洲5aaaaa淫片| 国语对白做爰xxxⅹ性视频网站| 中国美白少妇内射xxxbb| 如何舔出高潮| 国产欧美亚洲国产| 最近最新中文字幕免费大全7| 亚洲精品成人av观看孕妇| 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 国产视频内射| 国产在线免费精品| 大片电影免费在线观看免费| 国产精品久久久久久精品古装| 男女啪啪激烈高潮av片| 国产高清有码在线观看视频| 人人妻人人看人人澡| 久久午夜综合久久蜜桃| 色5月婷婷丁香| 久久午夜综合久久蜜桃| 18+在线观看网站| 91久久精品国产一区二区三区| 久久久a久久爽久久v久久| 七月丁香在线播放| 91成人精品电影| 99热国产这里只有精品6| 国产精品久久久久久精品古装| 91aial.com中文字幕在线观看| 欧美日韩av久久| 中文天堂在线官网| 国产 精品1| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 又爽又黄a免费视频| 亚洲真实伦在线观看| 国产日韩欧美视频二区| 亚洲精品日韩在线中文字幕| 国产精品久久久久久久久免| 中文字幕人妻丝袜制服| 日韩中文字幕视频在线看片| 国产精品国产三级专区第一集| 综合色丁香网| 自线自在国产av| 九草在线视频观看| 亚洲av福利一区| 如何舔出高潮| 国产精品一区二区在线观看99| 免费av中文字幕在线| 一级av片app| h日本视频在线播放| 久久久国产一区二区| 欧美日韩国产mv在线观看视频| 免费人成在线观看视频色| 日韩av不卡免费在线播放| 日韩亚洲欧美综合| kizo精华| 亚洲久久久国产精品| 只有这里有精品99| 少妇人妻精品综合一区二区| 人人妻人人澡人人爽人人夜夜| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 啦啦啦啦在线视频资源| 成人黄色视频免费在线看| 中文在线观看免费www的网站| 精品久久久久久电影网| 赤兔流量卡办理| 日韩强制内射视频| 老司机影院毛片| 最后的刺客免费高清国语| 亚洲精品亚洲一区二区| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区在线观看99| 精品久久久久久久久av| 亚洲人成网站在线播| 日本av免费视频播放| 欧美 亚洲 国产 日韩一| h视频一区二区三区| 国内揄拍国产精品人妻在线| 水蜜桃什么品种好| 伊人亚洲综合成人网| 热re99久久国产66热| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| 大又大粗又爽又黄少妇毛片口| 亚洲精品久久午夜乱码| 在线精品无人区一区二区三| 99久国产av精品国产电影| 如日韩欧美国产精品一区二区三区 | av天堂中文字幕网| 水蜜桃什么品种好| 久久精品久久久久久噜噜老黄| 亚洲图色成人| 亚洲精品国产色婷婷电影| www.av在线官网国产| 国产免费一区二区三区四区乱码| 这个男人来自地球电影免费观看 | 观看免费一级毛片| 免费大片18禁| 国产成人freesex在线| 老司机亚洲免费影院| 国产熟女午夜一区二区三区 | 国产欧美日韩一区二区三区在线 | 久久精品国产自在天天线| 欧美一级a爱片免费观看看| 欧美精品国产亚洲| 黄色一级大片看看| 熟女人妻精品中文字幕| 亚洲精品,欧美精品| av在线老鸭窝| 久久久久久久精品精品| 色94色欧美一区二区| 一级黄片播放器| 22中文网久久字幕| 日本黄色片子视频| 精品午夜福利在线看| 成人午夜精彩视频在线观看| 18禁在线无遮挡免费观看视频| 最新的欧美精品一区二区| 婷婷色av中文字幕| 2018国产大陆天天弄谢| 亚洲精华国产精华液的使用体验| 午夜福利影视在线免费观看| av天堂中文字幕网| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 免费黄频网站在线观看国产| 免费观看a级毛片全部| 日韩视频在线欧美| 日韩制服骚丝袜av| 亚洲国产精品999| 午夜免费鲁丝| 中文天堂在线官网| 亚洲欧美日韩另类电影网站| 国产真实伦视频高清在线观看| 亚洲国产欧美日韩在线播放 | 91精品国产九色| 自拍欧美九色日韩亚洲蝌蚪91 | 青春草亚洲视频在线观看| 国产精品99久久久久久久久| 麻豆成人午夜福利视频| 一级,二级,三级黄色视频| 中文在线观看免费www的网站| 日韩三级伦理在线观看| 亚洲在久久综合| 国产精品久久久久成人av| 两个人的视频大全免费| 99久久人妻综合| 啦啦啦在线观看免费高清www| 黄色配什么色好看| 99久久综合免费| 久久99蜜桃精品久久| 99热这里只有精品一区| 亚洲欧洲日产国产| .国产精品久久| 亚洲国产精品一区二区三区在线| 少妇 在线观看| 亚洲精品乱久久久久久| 亚洲人成网站在线观看播放| 春色校园在线视频观看| 日韩av在线免费看完整版不卡| 日本91视频免费播放| 美女主播在线视频| 久久这里有精品视频免费| 插阴视频在线观看视频| 久久久亚洲精品成人影院| 国产精品伦人一区二区|