• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Two-plume Convective Model for Precipitation Extremes

    2021-06-04 08:46:36ZihanYINPanxiDAIandJiNIE
    Advances in Atmospheric Sciences 2021年6期

    Zihan YIN, Panxi DAI, and Ji NIE

    Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100029, China

    ABSTRACT

    Key words:precipitation extremes, convective model, rain evaporation, environmental descent

    1.Introduction

    Understanding the dynamics of precipitation extremes(heavy precipitation events) and their responses to climate change is of great importance. Water vapor condensation and precipitation, by their nature, occur at cloud-microphysical and convective scales; however, the commonly used meteorological variables in global climate models (GCMs) are usually large-scale variables representing the grid-mean properties of tens-to-hundreds of kilometers scales (referred to as the GCM-grid scale in this study). Thus, an essential step in diagnosing the precipitation extremes in GCMs is to adopt a simple model relating precipitation with the GCMgrid-mean variables, typically including a thermodynamic variable representing atmospheric moisture and a dynamic variable representing large-scale vertical motion. These simple models (e.g., Emori and Brown, 2005; O’Gorman and Schneider, 2009a, b; Sugiyama et al., 2010; Chen et al.,2019) have been proven valuable in studies of precipitation extremes in several aspects, such as examining the coupling between large-scale and convective-scale dynamics in precipitation extremes (Nie et al., 2016; Nie and Fan, 2019),decomposing the thermodynamic and dynamic controls of precipitation extremes (O’Gorman and Schneider, 2009a;Seager et al., 2012; Pfahl et al., 2017; Li and O’Gorman,2020; Nie et al., 2020), and identifying uncertainties and model spreads among GCM simulations (O’Gorman and Schneider, 2009b; Sugiyama et al., 2010).

    A good simple model for precipitation extremes shall meet two requirements. First, the physical picture upon which the model is built depicts the relevant processes. In that case, the model also provides valuable insights into our understanding of the system. Second, the model results in a reasonably accurate approximation of precipitation extremes, so it is practically useful. In addition to the two requirements, a model with a simple formula and commonly used large-scale variables is favored. The previously proposed simple models of precipitation extremes may be classified into two categories based on their physical arguments. Models in the first category (e.g., Emori and Brown,2005; Westra et al., 2013; Nie et al., 2018; Chen et al.,2019) are based on the column moisture budget. Alternatively, O’Gorman and Schneider (2009a, b) proposed a model (the second-category model) based on saturated ascending air during heavy rainfall, and this model has enjoyed more popularity over recent years. The first-category models neglect the source and sink terms of moisture, and the key assumption of the second-category model that the whole air column is homogeneous and saturated may be oversimplified. Both models have sizeable errors in reproducing extreme precipitation climatology in many regions (e.g.,Pfahl et al., 2017).

    In this study, we propose a two-plume convective model for precipitation extremes with improved physical bases and accuracy. This model takes the sub-GCM-grid inhomogeneity of convection into account. It uses two plumes to model the precipitation extremes: one for convective updrafts and one for the unsaturated environment. The paper is organized as follows: In section 2, we introduce the data and two previously proposed models and show that these two models have sizeable errors in reproducing precipitation extremes in climate simulations. In section 3, we evaluate the sub-GCM-grid inhomogeneity using high-resolution observational data (reanalysis), introduce the two-plume convective model, and demonstrate its improvement in the estimation of extreme precipitation. Conclusions and discussion are presented in section 4.

    2.Data and models

    2.1.Data

    The GCMs differ substantially from each other in many aspects; to avoid dependences of results on individual GCMs, we evaluate the simple models of precipitation extremes using 20 GCM outputs in the CMIP5 achieve(Coupled Model Intercomparison Project Phase 5, Table S1 in the Electronic Supplementary Material, ESM). The outputs are daily data of the historical simulations between 1981 and 2000. The outputs of the 20 GCMs are interpolated to a 2.5° × 2.5° geographical grid so that they have the same horizontal resolution. The variables include pressure velocity ( ω), temperature ( T ), specific humidity ( q) and relative humidity ( r ) on vertical pressure ( p) levels, and surface precipitation. In GCMs, precipitation (and convection) is usually parameterized by several modules (e.g., convective precipitation produced by the convective parameterization of cumulus clouds, and grid-scale precipitation produced by the parameterization of stratus or layered clouds). This separation is an ad hoc treatment due to the insufficient resolution of GCMs. In this study, convection refers to clouds of all types.

    The precipitation extreme examined in this study is defined as the annual maximum daily precipitation (i.e.,RX1day in the literature, Alexander et al., 2006, Pfahl et al.,2017; Nie et al., 2020). This definition is roughly equivalent to the 99.7th percentile of precipitation, close to the 99.9th percentile in some other previous studies (e.g., O’Gorman and Schneider, 2009a, b). As the threshold of precipitation extreme changes, the performances of the simple models vary, however, our conclusions are still valid (later see section 3.3). To obtain a better physical understanding of the full probability distribution of precipitation is important(e.g., Chen et al., 2019); however, it is beyond the scope of this study.

    For the historical simulations, on each geographic grid we may find 20 extreme events (during the 20 years simulations) and their composites. We also extract the atmospheric variables conditioned on the extreme precipitation days, which are the inputs of the simple models. The precipitation extremes provided by the simple models are then compared with precipitation extremes from the direct outputs of GCMs. Their differences are treated as the errors of the simple models. The global mean relative error is the global sum of the absolute values of differences on each grid divided by the global sum of precipitation extremes. Unless otherwise specified, the results of the GCM outputs only show their multimodel means.

    We use the high-resolution ERA-Interim reanalysis(Dee et al., 2011) as the observational basis to examine the sub-GCM-grid inhomogeneity of precipitation extremes.The ERA reanalysis provides daily data between 1979 and 2016, with a horizontal resolution of 0.25° × 0.25°. The ERA precipitation is from the short-range forecast, which shows reasonable agreement with those of the satellite- and rain gauge-based GPCP (Global Precipitation Climatology Project version 1.2; Huffman et al., 2001) precipitation (Dai and Nie, 2020). To match the resolution of the GCM outputs, we constructed a set of coarsened-resolution reanalyses (2.5° × 2.5°) based on the high-resolution (0.25° ×0.25°) reanalyses. Precipitation extremes are selected using the coarsened-resolution reanalyses, while the high-resolution reanalyses provide information on the sub-GCM-grid inhomogeneity.

    2.2.Two previously proposed models

    For precipitation extremes within an area of a typical GCM grid, previous models may be roughly divided into two categories. Models in the first category (named model 1, e.g., Emori and Brown, 2005) are based on the column moisture budget. Since in heavy precipitation events the moisture sink due to precipitation is mainly balanced by vertical moisture advection, model 1 approximates precipitation extremes ( P) as

    where the overline denotes GCM-grid-mean variables, and{} denotes the vertical integral from the surface level to the tropopause (here defined as the layer where the pressure level below 50 hPa has a lapse rate of 2 K km?1). The subscript in P1denotes the model number (the same applies to model 2 and model 3). The variables in the simple models are conditioned on the extreme precipitation day. In model 1, the budget terms of moisture storage, horizontal moisture advection, surface evaporation, and moisture flux at the tropopause are neglected.

    The second-category model (model 2, O’Gorman and Schneider, 2009a, b) suggests that during heavy rainfall, the air column is close to saturation. Thus, precipitation is the excess of water vapor of saturated rising air following moist adiabatic processes, which has the formula of

    The above evaluation shows that model 1 and model 2 both have sizeable errors. Model 2 has better performance than model 1 has; however, it still has large errors in many regions. Over a GCM-grid-size column, saturated convective updrafts only occupy a fraction of area; saturation throughout the whole column is very rare even during heavy precipitation. Figure. S3 shows composites of relative humidity during precipitation extremes at several representative latitudes. Relative humidity during precipitation extremes can only reach up to approximately 70%-90% in the troposphere. Actually, many GCMs set an upper limit on the grid’s relative humidity by including a large-scale condensation parameterization. In the following, we propose a twoplume convective model for precipitation extremes that takes the sub-GCM-grid inhomogeneity into account and shows its improved performance.

    Fig. 1. (a) Multimodel-mean climatology of precipitation extremes from the direct GCM outputs ( P0) in the CMIP5 historical simulations. (b) and (c) show the errors of model 1 and model 2 in reproducing precipitation extremes,respectively.

    Table 1. The global-mean relative errors of the simple models.The time period for the RCP8.5 simulations is between 2081 and 2100. Note the global mean value of precipitation extreme is 22.8 mm d?1 for the CMIP5 historical simulations and 27.9 mm d?1 for the RCP8.5 simulations.

    3.Results

    3.1.The sub-GCM-grid inhomogeneity of precipitation extremes

    The horizontal scale of convection is usually much smaller than that of typical GCM grids. During heavy precipitation events, condensation and precipitation are associated with only convective updrafts within the GCM grids. Model 2 essentially approximates the precipitation extremes with a homogenously saturated convective plume, neglecting the effects of the sub-GCM-grid inhomogeneity.

    We evaluate the sub-GCM-grid inhomogeneity of precipitation extremes by comparing the ERA reanalyses of high and coarsened resolutions. At each geographic location, 38 precipitation extremes (one event each year between 1979 and 2016) are selected from the coarsened-resolution reanalysis. Then, we examine the statistics of high-resolution data within the coarsened grids. Convective updrafts are defined as high-resolution grids with ω >0.1 Pa s?1at 500 hPa,and the rest are defined as environmental air. The following analyses are not sensitive to the definition. For example,slightly changing the threshold or using a different criterion,such as liquid water content greater than a threshold, leads to similar conclusions. Next, we calculate the convective updraft coverage ( a, fractional area of convective updrafts within a coarsened-resolution grid) and the mean properties of convective updrafts (denoted by subscript c) and environmental air (denoted by subscript e) of precipitation extremes.

    Figure 2 shows the map of convective updraft coverage during precipitation extremes. It is clear that within a GCM-scale grid, only a fraction of areas are convective updrafts during precipitation extremes, consistent with the relative humidity profile shown in Fig. S2. The probability distribution of a peaks around a =0.6, while events with a close to 1 or 0 are rare. There are distinct geographic patterns of a. Regions with greater climatology of precipitation extremes have a values closer to 1 (Figs. 1a and 2), while regions with weaker precipitation extremes have smaller a values.

    The dynamic and thermodynamic properties of convective updrafts and the coarsened-resolution grid means are compared for different a bins in Fig. 3. Convective updrafts are moister than the grid means (Fig. 3a), consistent with the fact that the gird mean humidity is not saturated (Fig. S2).As expected, the moisture difference increases asa decreases. In contrast, the temperature difference between the convective updrafts and the grid means is very small regardless of a (Fig. 3b). This slight temperature difference is also found in cloud observations from aircraft (e.g., Austin et al., 1985) and cloud-resolving simulations (e.g., Singh and O'Gorman, 2013). In many convective parameterizations, this small temperature difference is neglected (also called the zero-buoyancy approximation, Bretherton and Park, 2008; Singh and O'Gorman, 2013; Nie et al., 2019).The zero-buoyancy approximation states that any sizeable buoyancy difference between cloudy and environmental air will lead to strong entrainment mixing that consumes the positive buoyancy of clouds. Figure 3c shows that the convective updrafts have much greater vertical velocity than the grid means. These results indicate that using the grid means or, equivalently, a homogeneous plume to represent precipitation extremes may lead to systematic biases.

    3.2.A two-plume convective model for precipitation extremes

    Fig. 2. Geographic distribution of the convective updraft coverage during precipitation extremes from the ERA reanalysis.

    There are three components, cloud condensation (the dominant component), environmental motion, and rain evaporation, corresponding to the right-hand-side (RHS) terms in Eq. (3), respectively. The condensation term shares the same formula as that of model 2 (Eq. (2)); however, the interpretations of the two models are different. The other two components, environmental motion and rain evaporation, are secondary in terms of the global mean; however, they may be significant regionally.

    The two-plume convective model provides a new physical picture relating heavy precipitation, convection, and large-scale variables (see the schematic in Fig. 4). The previously proposed model 2 is based on the picture of columnwise ascent of horizontal homogenous saturated air. Here,the two-plume model highlights inhomogeneity within the air column: condensation and precipitation are only associated with convective updrafts occupying a part of the column, the environmental air is unsaturated and its vertical motion also contributes to the column means. The twoplume model does not require column-wise saturation, thus resolving the conflict between the saturation assumption in model 2 and the GCM outputs.

    3.3.Improvement of the convective model

    In this subsection, we parameterize the two sub-GCMgrid processes in model 3, rain evaporation and environmental motion, using the grid mean variables and show improvement of the convective model (model 3) in reproducing precipitation extremes.

    Fig. 4. Schematic of the two-plume convective model for precipitation extremes. Note the convective updrafts represent convection parameterized by both the convective parameterization module and grid-scale condensation module in GCMs.

    With the above empirical parameterization of rain evaporation and environmental descent, the two-plume convective model reproduces the climatology of precipitation extremes quite well (Figs. 6c and S1c). It reduces the global mean error by approximately half from model 2 (from 10.6% to 5.5%, Table 1), and largely reduces regional errors. The two-plume model not only works for the multimodel means,but also improves individual GCMs. For each GCM, its fitting parameters in Eqs. (4) and (5) are slightly different from the parameters for the multimodel means (Fig. S4a),due to the internal differences among the GCMs. The improvement of model 3 for each GCM output is also substantial (Fig. S4b). We also tested the sensitivity of our results on the threshold of precipitation extremes. For less intense precipitation extremes, model 3 still shows significant improvement over the other two models (Fig. S5). These comparisons indicate that the parametrizations of the two additional physical processes in the two-plume model are robust.

    The convective model also works well for different climates, such as a warmer climate. We apply similar evaluations for the CMIP5 RCP8.5 simulations between 2081 and 2100. With the same parameters used for the historical simulations, model 3 has a global mean relative error of 5.4%, much smaller than that of model 2 (11.5%, Table 1).Again, model 3 reduces the regional errors significantly(Fig. S6). We calculated the parameters in Eqs. (4) and (5)by fitting them using the outputs of the RCP8.5 simulations.They are very close to the parameters obtained in the historical simulations, and the performance of model 3 is very close regardless of which set of parameters is used. This comparison indicates that the parametrizations of the two additional physical processes in the convective model are robust and likely reliable for different climates.

    4.Conclusions and discussion

    This study proposes a two-plume convective model that approximates precipitation extremes with large-scale (i.e.,GCM-grid-mean) variables. The convective model is built upon a physical picture in which the precipitating regional column consists of convective updrafts and unsaturated environments (Fig. 4) and includes three components: cloud condensation, rain evaporation, and environmental descent. The three components are expressed or parameterized using GCM-grid-mean variables with the zero-buoyancy approximation and guidance from the high-resolution reanalysis. The model is evaluated using outputs from 20 CMIP5 GCM simulations and compared with two previously proposed and widely used models. The new model largely reduces errors in reproducing precipitation extremes in terms of both global mean and regional errors. The validation of the convective model also suggests that its physical basis captures the most relevant physical processes during precipitation extremes.

    The convective model still has noticeable regional errors. For example, there are errors over mountainous regions, where interactions between convection and terrain are not included in the model. In addition, the convective model shall be applicable only for regional-scale (i.e., typical GCM grid-size of several hundred km) precipitation extremes, in which our assumption of partial occupation of convective updrafts is appropriate. For precipitation extremes at smaller scales, the correction terms of rain evaporation and environmental descent components may become less important, and the approximation of grid-scale saturation in O’Gorman and Schneider (2009a) may become more justifiable. Notwithstanding these limitations, the study sheds light on the dynamics of precipitation extremes,provides a reasonably accurate estimation for precipitation extremes, and has implications in understanding precipitation extremes and their future projections in climate simulations.

    Acknowledgements. The authors thank three anonymous reviewers for their valuable comments. This research was supported by National Natural Science Foundation of China (Grant nos.41875050 and 42075146). The ERA-Interim reanalysis is available at https://apps.ecmwf.int/datasets/. The CMIP5 data archive is available at https://esgf.llnl.gov.

    Electronic supplementary material: Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-021-0404-8.

    中国美女看黄片| 成年人免费黄色播放视频| 人人妻人人爽人人添夜夜欢视频| 欧美激情高清一区二区三区| 精品久久久久久电影网| 国产在线精品亚洲第一网站| www日本在线高清视频| 亚洲全国av大片| 黄片小视频在线播放| 日韩精品免费视频一区二区三区| 亚洲激情在线av| 天天影视国产精品| 91麻豆精品激情在线观看国产 | 色精品久久人妻99蜜桃| 制服诱惑二区| 精品久久久久久电影网| 国产成人啪精品午夜网站| 人妻久久中文字幕网| 大码成人一级视频| 欧美中文综合在线视频| 国产在线精品亚洲第一网站| 男男h啪啪无遮挡| 一级毛片高清免费大全| 又黄又爽又免费观看的视频| 亚洲精品在线美女| 99国产极品粉嫩在线观看| 欧美+亚洲+日韩+国产| 乱人伦中国视频| 99国产极品粉嫩在线观看| 无遮挡黄片免费观看| 天天影视国产精品| 最近最新免费中文字幕在线| 国产高清videossex| 好看av亚洲va欧美ⅴa在| 韩国精品一区二区三区| 久久久精品欧美日韩精品| 精品熟女少妇八av免费久了| 在线观看免费高清a一片| 12—13女人毛片做爰片一| 国产精品久久久人人做人人爽| 国产一区二区三区在线臀色熟女 | 天天躁狠狠躁夜夜躁狠狠躁| 在线看a的网站| 国产成人欧美在线观看| 欧美激情久久久久久爽电影 | 国产精品九九99| 嫁个100分男人电影在线观看| 中文字幕人妻丝袜制服| 色播在线永久视频| 亚洲情色 制服丝袜| 50天的宝宝边吃奶边哭怎么回事| 亚洲三区欧美一区| 精品人妻在线不人妻| 午夜福利在线免费观看网站| 日本撒尿小便嘘嘘汇集6| 日日爽夜夜爽网站| 男女午夜视频在线观看| 男女下面插进去视频免费观看| 色综合欧美亚洲国产小说| 亚洲自偷自拍图片 自拍| 亚洲美女黄片视频| 男女下面插进去视频免费观看| 美女扒开内裤让男人捅视频| 一级a爱视频在线免费观看| 精品一品国产午夜福利视频| 久久久久久久精品吃奶| 久久热在线av| 天天躁夜夜躁狠狠躁躁| 天堂中文最新版在线下载| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 新久久久久国产一级毛片| 嫩草影院精品99| 99久久精品国产亚洲精品| 欧美日韩国产mv在线观看视频| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 国产熟女午夜一区二区三区| 桃色一区二区三区在线观看| 亚洲精品国产色婷婷电影| xxxhd国产人妻xxx| 国产精品国产高清国产av| 久久精品91蜜桃| 好男人电影高清在线观看| 国产真人三级小视频在线观看| 啦啦啦免费观看视频1| 丰满的人妻完整版| 国产欧美日韩精品亚洲av| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 久久人人97超碰香蕉20202| 香蕉久久夜色| 伦理电影免费视频| 色婷婷av一区二区三区视频| 国产男靠女视频免费网站| aaaaa片日本免费| 在线观看日韩欧美| 久久久久九九精品影院| 性色av乱码一区二区三区2| 男人舔女人的私密视频| 午夜福利一区二区在线看| 亚洲九九香蕉| 电影成人av| 欧美成狂野欧美在线观看| 国产国语露脸激情在线看| 亚洲免费av在线视频| 一级片'在线观看视频| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 91精品国产国语对白视频| 欧美人与性动交α欧美软件| 欧美日韩av久久| 久久国产精品影院| 99久久久亚洲精品蜜臀av| 在线视频色国产色| 免费在线观看完整版高清| 亚洲黑人精品在线| 91老司机精品| 亚洲少妇的诱惑av| 亚洲精品中文字幕一二三四区| 大码成人一级视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产熟女xx| 色在线成人网| 1024视频免费在线观看| 欧美最黄视频在线播放免费 | 午夜福利免费观看在线| 熟女少妇亚洲综合色aaa.| 国产精品一区二区精品视频观看| 老汉色av国产亚洲站长工具| 国产成人欧美在线观看| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美98| 亚洲午夜理论影院| 久久香蕉精品热| 在线视频色国产色| 国产有黄有色有爽视频| 成人18禁在线播放| 亚洲av成人不卡在线观看播放网| 男女下面插进去视频免费观看| 正在播放国产对白刺激| 精品国产亚洲在线| 淫秽高清视频在线观看| av网站在线播放免费| 九色亚洲精品在线播放| 久久久久久久午夜电影 | 国产精品香港三级国产av潘金莲| 制服诱惑二区| netflix在线观看网站| 亚洲国产精品999在线| 满18在线观看网站| 人人妻人人澡人人看| 可以在线观看毛片的网站| 久久欧美精品欧美久久欧美| 国产精品 国内视频| 久久久久久久久免费视频了| 成年版毛片免费区| 天天影视国产精品| 一区在线观看完整版| 黑人操中国人逼视频| 99久久人妻综合| 免费av毛片视频| 久久 成人 亚洲| 国产99久久九九免费精品| 99国产精品一区二区三区| 999久久久国产精品视频| 欧美老熟妇乱子伦牲交| 香蕉丝袜av| 国产精品久久视频播放| 久久草成人影院| 亚洲精品久久午夜乱码| 亚洲自偷自拍图片 自拍| 成人av一区二区三区在线看| 一区福利在线观看| 欧美日本中文国产一区发布| 国产精品久久视频播放| 少妇的丰满在线观看| 欧美日韩国产mv在线观看视频| 久久国产精品影院| 国产精品香港三级国产av潘金莲| 亚洲欧美一区二区三区黑人| av片东京热男人的天堂| 成人精品一区二区免费| 久久人人97超碰香蕉20202| 国产伦人伦偷精品视频| 欧美成人免费av一区二区三区| 国产精品野战在线观看 | 黑丝袜美女国产一区| 老司机午夜福利在线观看视频| 变态另类成人亚洲欧美熟女 | 免费在线观看黄色视频的| 国产精品久久久久成人av| 99re在线观看精品视频| 久久精品国产亚洲av高清一级| 精品第一国产精品| 一区二区三区激情视频| 亚洲中文av在线| 久久久久国产一级毛片高清牌| 久久精品91蜜桃| 99国产综合亚洲精品| 级片在线观看| 又紧又爽又黄一区二区| 久久精品人人爽人人爽视色| 欧美久久黑人一区二区| 国产又爽黄色视频| 在线观看日韩欧美| 午夜两性在线视频| 国产精品自产拍在线观看55亚洲| 成人18禁在线播放| 在线观看一区二区三区激情| 中亚洲国语对白在线视频| 搡老乐熟女国产| 成人国产一区最新在线观看| 久久精品亚洲av国产电影网| a级毛片黄视频| 老汉色av国产亚洲站长工具| 日韩免费av在线播放| 亚洲国产精品一区二区三区在线| 亚洲国产欧美网| 久久国产精品男人的天堂亚洲| 亚洲av熟女| 涩涩av久久男人的天堂| 80岁老熟妇乱子伦牲交| 久久99一区二区三区| 国产极品粉嫩免费观看在线| 欧美一级毛片孕妇| 亚洲欧美一区二区三区久久| 女人被躁到高潮嗷嗷叫费观| 国产一卡二卡三卡精品| 大型av网站在线播放| 国产区一区二久久| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区精品视频观看| 国产主播在线观看一区二区| 日本a在线网址| 97超级碰碰碰精品色视频在线观看| 久久青草综合色| 国产精品一区二区精品视频观看| 色在线成人网| 亚洲精品中文字幕一二三四区| av片东京热男人的天堂| 国产成人免费无遮挡视频| 亚洲 欧美 日韩 在线 免费| 亚洲精品久久成人aⅴ小说| 久久精品人人爽人人爽视色| 国产成人影院久久av| 中国美女看黄片| 真人一进一出gif抽搐免费| 97超级碰碰碰精品色视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕高清在线视频| 亚洲国产毛片av蜜桃av| 电影成人av| 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 大香蕉久久成人网| 麻豆一二三区av精品| 男人舔女人的私密视频| 18禁美女被吸乳视频| 久久精品国产99精品国产亚洲性色 | 人妻久久中文字幕网| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线| 日韩三级视频一区二区三区| 久久久国产成人精品二区 | 性色av乱码一区二区三区2| 成年女人毛片免费观看观看9| 欧美成人午夜精品| 老鸭窝网址在线观看| 国产亚洲精品一区二区www| 99国产精品免费福利视频| 免费久久久久久久精品成人欧美视频| 日本欧美视频一区| 女人精品久久久久毛片| av天堂在线播放| 如日韩欧美国产精品一区二区三区| 女性被躁到高潮视频| 亚洲av电影在线进入| av天堂久久9| 成人三级黄色视频| 人人妻人人澡人人看| 精品国产亚洲在线| 国产精品久久电影中文字幕| 精品一区二区三卡| 婷婷丁香在线五月| 亚洲第一av免费看| 97超级碰碰碰精品色视频在线观看| 老汉色∧v一级毛片| 一边摸一边抽搐一进一小说| 国产精品免费视频内射| av网站免费在线观看视频| 99精品在免费线老司机午夜| 久久人人精品亚洲av| 男女下面插进去视频免费观看| 午夜成年电影在线免费观看| 妹子高潮喷水视频| 国产精品自产拍在线观看55亚洲| 欧美一级毛片孕妇| 激情视频va一区二区三区| 19禁男女啪啪无遮挡网站| 欧美丝袜亚洲另类 | 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 1024视频免费在线观看| 一级毛片女人18水好多| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 90打野战视频偷拍视频| 视频在线观看一区二区三区| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 亚洲av日韩精品久久久久久密| 久久久国产成人精品二区 | 亚洲av美国av| 热99re8久久精品国产| 国产伦一二天堂av在线观看| 美女大奶头视频| 国产亚洲精品久久久久5区| av网站在线播放免费| 成人特级黄色片久久久久久久| 日本精品一区二区三区蜜桃| 久久这里只有精品19| www日本在线高清视频| 宅男免费午夜| 久久午夜亚洲精品久久| 黄片播放在线免费| 亚洲少妇的诱惑av| 国产精品 国内视频| 在线播放国产精品三级| 久久人人97超碰香蕉20202| 母亲3免费完整高清在线观看| 好看av亚洲va欧美ⅴa在| 欧美午夜高清在线| 夜夜夜夜夜久久久久| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 欧美不卡视频在线免费观看 | 成人影院久久| 国产91精品成人一区二区三区| 黄片大片在线免费观看| 老熟妇乱子伦视频在线观看| 电影成人av| 亚洲午夜精品一区,二区,三区| 久久人妻熟女aⅴ| 国产熟女xx| 精品久久久久久久毛片微露脸| 看片在线看免费视频| 十八禁网站免费在线| 久久久久久久久免费视频了| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 欧美老熟妇乱子伦牲交| 亚洲在线自拍视频| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| www.999成人在线观看| 国产成人av激情在线播放| 在线观看免费视频网站a站| 老司机午夜福利在线观看视频| 久久人人精品亚洲av| 国产亚洲欧美98| 最好的美女福利视频网| 久久草成人影院| 国产成人系列免费观看| 亚洲avbb在线观看| 两个人免费观看高清视频| 日韩欧美在线二视频| 精品人妻在线不人妻| √禁漫天堂资源中文www| 国产高清激情床上av| 日韩欧美在线二视频| 国产高清激情床上av| 午夜成年电影在线免费观看| 18禁国产床啪视频网站| 人妻丰满熟妇av一区二区三区| 十八禁网站免费在线| 一级毛片女人18水好多| 视频区欧美日本亚洲| 男男h啪啪无遮挡| 91成年电影在线观看| 久久久久久久久中文| 欧美日韩中文字幕国产精品一区二区三区 | 国产麻豆69| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 日本五十路高清| 亚洲成a人片在线一区二区| 成人国产一区最新在线观看| 亚洲一区二区三区欧美精品| 亚洲国产欧美网| 国产成人精品在线电影| 无限看片的www在线观看| 免费女性裸体啪啪无遮挡网站| 超碰成人久久| av超薄肉色丝袜交足视频| 亚洲精品一卡2卡三卡4卡5卡| 中国美女看黄片| 亚洲熟女毛片儿| 两性夫妻黄色片| 久久久久久免费高清国产稀缺| 青草久久国产| 好男人电影高清在线观看| 性少妇av在线| 巨乳人妻的诱惑在线观看| 亚洲精品国产一区二区精华液| 男女下面进入的视频免费午夜 | 视频在线观看一区二区三区| 热re99久久精品国产66热6| 两性夫妻黄色片| 成人av一区二区三区在线看| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 少妇的丰满在线观看| 日韩 欧美 亚洲 中文字幕| √禁漫天堂资源中文www| 亚洲激情在线av| 人人妻人人添人人爽欧美一区卜| 国产免费现黄频在线看| 亚洲va日本ⅴa欧美va伊人久久| 交换朋友夫妻互换小说| 黑人巨大精品欧美一区二区mp4| 超色免费av| 老司机靠b影院| 国产成人av教育| av中文乱码字幕在线| 亚洲第一欧美日韩一区二区三区| 久久亚洲精品不卡| 最近最新中文字幕大全电影3 | 麻豆久久精品国产亚洲av | 国产精品香港三级国产av潘金莲| 久久午夜综合久久蜜桃| 一二三四社区在线视频社区8| 免费av中文字幕在线| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 岛国视频午夜一区免费看| 亚洲精品av麻豆狂野| 成在线人永久免费视频| 欧美精品啪啪一区二区三区| 一边摸一边抽搐一进一小说| 伦理电影免费视频| 一区福利在线观看| 最新美女视频免费是黄的| 亚洲熟妇熟女久久| 国产伦一二天堂av在线观看| 亚洲精华国产精华精| 亚洲中文字幕日韩| 女警被强在线播放| 国产成人系列免费观看| 国产精品一区二区在线不卡| 久久香蕉国产精品| 男男h啪啪无遮挡| 亚洲精品粉嫩美女一区| 人人妻人人添人人爽欧美一区卜| 亚洲激情在线av| 午夜免费观看网址| 日本vs欧美在线观看视频| 亚洲 欧美 日韩 在线 免费| 欧美日韩乱码在线| 啦啦啦在线免费观看视频4| 免费少妇av软件| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 久久亚洲真实| 欧美 亚洲 国产 日韩一| 亚洲av日韩精品久久久久久密| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av在线| bbb黄色大片| 一进一出抽搐gif免费好疼 | 韩国av一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 中亚洲国语对白在线视频| 亚洲精品中文字幕在线视频| 最新在线观看一区二区三区| 免费av毛片视频| 黄色毛片三级朝国网站| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 久久久国产成人免费| 亚洲精品一区av在线观看| 色综合欧美亚洲国产小说| 久久中文看片网| 看黄色毛片网站| 天堂中文最新版在线下载| 久久香蕉精品热| 99久久国产精品久久久| 精品国产一区二区三区四区第35| 精品第一国产精品| 国产免费现黄频在线看| 一边摸一边抽搐一进一出视频| 一区二区三区精品91| 国产精品影院久久| 亚洲国产中文字幕在线视频| 亚洲av成人av| 久久精品亚洲熟妇少妇任你| 两性夫妻黄色片| www.自偷自拍.com| 亚洲avbb在线观看| 亚洲精品粉嫩美女一区| 久久久久国产精品人妻aⅴ院| 欧美精品一区二区免费开放| 久久人人精品亚洲av| 成年人免费黄色播放视频| 国产成人免费无遮挡视频| 久久久国产精品麻豆| 成人精品一区二区免费| 嫩草影院精品99| 国产精品乱码一区二三区的特点 | 高清在线国产一区| 欧美日韩中文字幕国产精品一区二区三区 | 两个人看的免费小视频| 91成年电影在线观看| 97人妻天天添夜夜摸| 操出白浆在线播放| 亚洲片人在线观看| 91精品国产国语对白视频| 人成视频在线观看免费观看| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久成人av| 青草久久国产| 美女大奶头视频| 50天的宝宝边吃奶边哭怎么回事| 黄频高清免费视频| 亚洲精品中文字幕在线视频| 亚洲欧美精品综合久久99| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久成人av| 欧美精品一区二区免费开放| 丁香欧美五月| 精品国内亚洲2022精品成人| 亚洲国产精品一区二区三区在线| 99久久久亚洲精品蜜臀av| av网站在线播放免费| 日韩三级视频一区二区三区| 成年版毛片免费区| 美女 人体艺术 gogo| avwww免费| 黄色毛片三级朝国网站| a级毛片在线看网站| 国产深夜福利视频在线观看| 成人影院久久| 香蕉丝袜av| 不卡一级毛片| 99久久综合精品五月天人人| 99在线人妻在线中文字幕| 欧美精品啪啪一区二区三区| 日韩有码中文字幕| 久久亚洲精品不卡| 精品卡一卡二卡四卡免费| 18禁裸乳无遮挡免费网站照片 | 亚洲自偷自拍图片 自拍| 国产精华一区二区三区| 亚洲国产精品999在线| 看免费av毛片| 母亲3免费完整高清在线观看| www.自偷自拍.com| 制服人妻中文乱码| av在线天堂中文字幕 | 交换朋友夫妻互换小说| 韩国精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产av一区二区精品久久| 人人妻人人添人人爽欧美一区卜| 中文字幕另类日韩欧美亚洲嫩草| 999久久久精品免费观看国产| 精品午夜福利视频在线观看一区| 女生性感内裤真人,穿戴方法视频| av免费在线观看网站| 老司机午夜十八禁免费视频| 日韩欧美三级三区| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人妻熟女乱码| avwww免费| 亚洲av成人一区二区三| 国产精品成人在线| 国产不卡一卡二| 看片在线看免费视频| 18禁裸乳无遮挡免费网站照片 | 日韩精品中文字幕看吧| bbb黄色大片| 宅男免费午夜| 热99国产精品久久久久久7| 午夜精品久久久久久毛片777| 国产精品香港三级国产av潘金莲| 日日摸夜夜添夜夜添小说| 亚洲精华国产精华精| 村上凉子中文字幕在线| 我的亚洲天堂| 亚洲国产欧美一区二区综合| 黄色 视频免费看| 欧美黄色淫秽网站| 80岁老熟妇乱子伦牲交| 亚洲一区二区三区不卡视频| 别揉我奶头~嗯~啊~动态视频| 国产精品国产av在线观看| 国产伦一二天堂av在线观看| 国产熟女午夜一区二区三区| 一区二区日韩欧美中文字幕| 日韩免费高清中文字幕av| 国产欧美日韩一区二区精品| av在线播放免费不卡| 午夜日韩欧美国产| 久久九九热精品免费| 日韩欧美一区视频在线观看| 国产成+人综合+亚洲专区| 国产精品美女特级片免费视频播放器 |