• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Two-plume Convective Model for Precipitation Extremes

    2021-06-04 08:46:36ZihanYINPanxiDAIandJiNIE
    Advances in Atmospheric Sciences 2021年6期

    Zihan YIN, Panxi DAI, and Ji NIE

    Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100029, China

    ABSTRACT

    Key words:precipitation extremes, convective model, rain evaporation, environmental descent

    1.Introduction

    Understanding the dynamics of precipitation extremes(heavy precipitation events) and their responses to climate change is of great importance. Water vapor condensation and precipitation, by their nature, occur at cloud-microphysical and convective scales; however, the commonly used meteorological variables in global climate models (GCMs) are usually large-scale variables representing the grid-mean properties of tens-to-hundreds of kilometers scales (referred to as the GCM-grid scale in this study). Thus, an essential step in diagnosing the precipitation extremes in GCMs is to adopt a simple model relating precipitation with the GCMgrid-mean variables, typically including a thermodynamic variable representing atmospheric moisture and a dynamic variable representing large-scale vertical motion. These simple models (e.g., Emori and Brown, 2005; O’Gorman and Schneider, 2009a, b; Sugiyama et al., 2010; Chen et al.,2019) have been proven valuable in studies of precipitation extremes in several aspects, such as examining the coupling between large-scale and convective-scale dynamics in precipitation extremes (Nie et al., 2016; Nie and Fan, 2019),decomposing the thermodynamic and dynamic controls of precipitation extremes (O’Gorman and Schneider, 2009a;Seager et al., 2012; Pfahl et al., 2017; Li and O’Gorman,2020; Nie et al., 2020), and identifying uncertainties and model spreads among GCM simulations (O’Gorman and Schneider, 2009b; Sugiyama et al., 2010).

    A good simple model for precipitation extremes shall meet two requirements. First, the physical picture upon which the model is built depicts the relevant processes. In that case, the model also provides valuable insights into our understanding of the system. Second, the model results in a reasonably accurate approximation of precipitation extremes, so it is practically useful. In addition to the two requirements, a model with a simple formula and commonly used large-scale variables is favored. The previously proposed simple models of precipitation extremes may be classified into two categories based on their physical arguments. Models in the first category (e.g., Emori and Brown,2005; Westra et al., 2013; Nie et al., 2018; Chen et al.,2019) are based on the column moisture budget. Alternatively, O’Gorman and Schneider (2009a, b) proposed a model (the second-category model) based on saturated ascending air during heavy rainfall, and this model has enjoyed more popularity over recent years. The first-category models neglect the source and sink terms of moisture, and the key assumption of the second-category model that the whole air column is homogeneous and saturated may be oversimplified. Both models have sizeable errors in reproducing extreme precipitation climatology in many regions (e.g.,Pfahl et al., 2017).

    In this study, we propose a two-plume convective model for precipitation extremes with improved physical bases and accuracy. This model takes the sub-GCM-grid inhomogeneity of convection into account. It uses two plumes to model the precipitation extremes: one for convective updrafts and one for the unsaturated environment. The paper is organized as follows: In section 2, we introduce the data and two previously proposed models and show that these two models have sizeable errors in reproducing precipitation extremes in climate simulations. In section 3, we evaluate the sub-GCM-grid inhomogeneity using high-resolution observational data (reanalysis), introduce the two-plume convective model, and demonstrate its improvement in the estimation of extreme precipitation. Conclusions and discussion are presented in section 4.

    2.Data and models

    2.1.Data

    The GCMs differ substantially from each other in many aspects; to avoid dependences of results on individual GCMs, we evaluate the simple models of precipitation extremes using 20 GCM outputs in the CMIP5 achieve(Coupled Model Intercomparison Project Phase 5, Table S1 in the Electronic Supplementary Material, ESM). The outputs are daily data of the historical simulations between 1981 and 2000. The outputs of the 20 GCMs are interpolated to a 2.5° × 2.5° geographical grid so that they have the same horizontal resolution. The variables include pressure velocity ( ω), temperature ( T ), specific humidity ( q) and relative humidity ( r ) on vertical pressure ( p) levels, and surface precipitation. In GCMs, precipitation (and convection) is usually parameterized by several modules (e.g., convective precipitation produced by the convective parameterization of cumulus clouds, and grid-scale precipitation produced by the parameterization of stratus or layered clouds). This separation is an ad hoc treatment due to the insufficient resolution of GCMs. In this study, convection refers to clouds of all types.

    The precipitation extreme examined in this study is defined as the annual maximum daily precipitation (i.e.,RX1day in the literature, Alexander et al., 2006, Pfahl et al.,2017; Nie et al., 2020). This definition is roughly equivalent to the 99.7th percentile of precipitation, close to the 99.9th percentile in some other previous studies (e.g., O’Gorman and Schneider, 2009a, b). As the threshold of precipitation extreme changes, the performances of the simple models vary, however, our conclusions are still valid (later see section 3.3). To obtain a better physical understanding of the full probability distribution of precipitation is important(e.g., Chen et al., 2019); however, it is beyond the scope of this study.

    For the historical simulations, on each geographic grid we may find 20 extreme events (during the 20 years simulations) and their composites. We also extract the atmospheric variables conditioned on the extreme precipitation days, which are the inputs of the simple models. The precipitation extremes provided by the simple models are then compared with precipitation extremes from the direct outputs of GCMs. Their differences are treated as the errors of the simple models. The global mean relative error is the global sum of the absolute values of differences on each grid divided by the global sum of precipitation extremes. Unless otherwise specified, the results of the GCM outputs only show their multimodel means.

    We use the high-resolution ERA-Interim reanalysis(Dee et al., 2011) as the observational basis to examine the sub-GCM-grid inhomogeneity of precipitation extremes.The ERA reanalysis provides daily data between 1979 and 2016, with a horizontal resolution of 0.25° × 0.25°. The ERA precipitation is from the short-range forecast, which shows reasonable agreement with those of the satellite- and rain gauge-based GPCP (Global Precipitation Climatology Project version 1.2; Huffman et al., 2001) precipitation (Dai and Nie, 2020). To match the resolution of the GCM outputs, we constructed a set of coarsened-resolution reanalyses (2.5° × 2.5°) based on the high-resolution (0.25° ×0.25°) reanalyses. Precipitation extremes are selected using the coarsened-resolution reanalyses, while the high-resolution reanalyses provide information on the sub-GCM-grid inhomogeneity.

    2.2.Two previously proposed models

    For precipitation extremes within an area of a typical GCM grid, previous models may be roughly divided into two categories. Models in the first category (named model 1, e.g., Emori and Brown, 2005) are based on the column moisture budget. Since in heavy precipitation events the moisture sink due to precipitation is mainly balanced by vertical moisture advection, model 1 approximates precipitation extremes ( P) as

    where the overline denotes GCM-grid-mean variables, and{} denotes the vertical integral from the surface level to the tropopause (here defined as the layer where the pressure level below 50 hPa has a lapse rate of 2 K km?1). The subscript in P1denotes the model number (the same applies to model 2 and model 3). The variables in the simple models are conditioned on the extreme precipitation day. In model 1, the budget terms of moisture storage, horizontal moisture advection, surface evaporation, and moisture flux at the tropopause are neglected.

    The second-category model (model 2, O’Gorman and Schneider, 2009a, b) suggests that during heavy rainfall, the air column is close to saturation. Thus, precipitation is the excess of water vapor of saturated rising air following moist adiabatic processes, which has the formula of

    The above evaluation shows that model 1 and model 2 both have sizeable errors. Model 2 has better performance than model 1 has; however, it still has large errors in many regions. Over a GCM-grid-size column, saturated convective updrafts only occupy a fraction of area; saturation throughout the whole column is very rare even during heavy precipitation. Figure. S3 shows composites of relative humidity during precipitation extremes at several representative latitudes. Relative humidity during precipitation extremes can only reach up to approximately 70%-90% in the troposphere. Actually, many GCMs set an upper limit on the grid’s relative humidity by including a large-scale condensation parameterization. In the following, we propose a twoplume convective model for precipitation extremes that takes the sub-GCM-grid inhomogeneity into account and shows its improved performance.

    Fig. 1. (a) Multimodel-mean climatology of precipitation extremes from the direct GCM outputs ( P0) in the CMIP5 historical simulations. (b) and (c) show the errors of model 1 and model 2 in reproducing precipitation extremes,respectively.

    Table 1. The global-mean relative errors of the simple models.The time period for the RCP8.5 simulations is between 2081 and 2100. Note the global mean value of precipitation extreme is 22.8 mm d?1 for the CMIP5 historical simulations and 27.9 mm d?1 for the RCP8.5 simulations.

    3.Results

    3.1.The sub-GCM-grid inhomogeneity of precipitation extremes

    The horizontal scale of convection is usually much smaller than that of typical GCM grids. During heavy precipitation events, condensation and precipitation are associated with only convective updrafts within the GCM grids. Model 2 essentially approximates the precipitation extremes with a homogenously saturated convective plume, neglecting the effects of the sub-GCM-grid inhomogeneity.

    We evaluate the sub-GCM-grid inhomogeneity of precipitation extremes by comparing the ERA reanalyses of high and coarsened resolutions. At each geographic location, 38 precipitation extremes (one event each year between 1979 and 2016) are selected from the coarsened-resolution reanalysis. Then, we examine the statistics of high-resolution data within the coarsened grids. Convective updrafts are defined as high-resolution grids with ω >0.1 Pa s?1at 500 hPa,and the rest are defined as environmental air. The following analyses are not sensitive to the definition. For example,slightly changing the threshold or using a different criterion,such as liquid water content greater than a threshold, leads to similar conclusions. Next, we calculate the convective updraft coverage ( a, fractional area of convective updrafts within a coarsened-resolution grid) and the mean properties of convective updrafts (denoted by subscript c) and environmental air (denoted by subscript e) of precipitation extremes.

    Figure 2 shows the map of convective updraft coverage during precipitation extremes. It is clear that within a GCM-scale grid, only a fraction of areas are convective updrafts during precipitation extremes, consistent with the relative humidity profile shown in Fig. S2. The probability distribution of a peaks around a =0.6, while events with a close to 1 or 0 are rare. There are distinct geographic patterns of a. Regions with greater climatology of precipitation extremes have a values closer to 1 (Figs. 1a and 2), while regions with weaker precipitation extremes have smaller a values.

    The dynamic and thermodynamic properties of convective updrafts and the coarsened-resolution grid means are compared for different a bins in Fig. 3. Convective updrafts are moister than the grid means (Fig. 3a), consistent with the fact that the gird mean humidity is not saturated (Fig. S2).As expected, the moisture difference increases asa decreases. In contrast, the temperature difference between the convective updrafts and the grid means is very small regardless of a (Fig. 3b). This slight temperature difference is also found in cloud observations from aircraft (e.g., Austin et al., 1985) and cloud-resolving simulations (e.g., Singh and O'Gorman, 2013). In many convective parameterizations, this small temperature difference is neglected (also called the zero-buoyancy approximation, Bretherton and Park, 2008; Singh and O'Gorman, 2013; Nie et al., 2019).The zero-buoyancy approximation states that any sizeable buoyancy difference between cloudy and environmental air will lead to strong entrainment mixing that consumes the positive buoyancy of clouds. Figure 3c shows that the convective updrafts have much greater vertical velocity than the grid means. These results indicate that using the grid means or, equivalently, a homogeneous plume to represent precipitation extremes may lead to systematic biases.

    3.2.A two-plume convective model for precipitation extremes

    Fig. 2. Geographic distribution of the convective updraft coverage during precipitation extremes from the ERA reanalysis.

    There are three components, cloud condensation (the dominant component), environmental motion, and rain evaporation, corresponding to the right-hand-side (RHS) terms in Eq. (3), respectively. The condensation term shares the same formula as that of model 2 (Eq. (2)); however, the interpretations of the two models are different. The other two components, environmental motion and rain evaporation, are secondary in terms of the global mean; however, they may be significant regionally.

    The two-plume convective model provides a new physical picture relating heavy precipitation, convection, and large-scale variables (see the schematic in Fig. 4). The previously proposed model 2 is based on the picture of columnwise ascent of horizontal homogenous saturated air. Here,the two-plume model highlights inhomogeneity within the air column: condensation and precipitation are only associated with convective updrafts occupying a part of the column, the environmental air is unsaturated and its vertical motion also contributes to the column means. The twoplume model does not require column-wise saturation, thus resolving the conflict between the saturation assumption in model 2 and the GCM outputs.

    3.3.Improvement of the convective model

    In this subsection, we parameterize the two sub-GCMgrid processes in model 3, rain evaporation and environmental motion, using the grid mean variables and show improvement of the convective model (model 3) in reproducing precipitation extremes.

    Fig. 4. Schematic of the two-plume convective model for precipitation extremes. Note the convective updrafts represent convection parameterized by both the convective parameterization module and grid-scale condensation module in GCMs.

    With the above empirical parameterization of rain evaporation and environmental descent, the two-plume convective model reproduces the climatology of precipitation extremes quite well (Figs. 6c and S1c). It reduces the global mean error by approximately half from model 2 (from 10.6% to 5.5%, Table 1), and largely reduces regional errors. The two-plume model not only works for the multimodel means,but also improves individual GCMs. For each GCM, its fitting parameters in Eqs. (4) and (5) are slightly different from the parameters for the multimodel means (Fig. S4a),due to the internal differences among the GCMs. The improvement of model 3 for each GCM output is also substantial (Fig. S4b). We also tested the sensitivity of our results on the threshold of precipitation extremes. For less intense precipitation extremes, model 3 still shows significant improvement over the other two models (Fig. S5). These comparisons indicate that the parametrizations of the two additional physical processes in the two-plume model are robust.

    The convective model also works well for different climates, such as a warmer climate. We apply similar evaluations for the CMIP5 RCP8.5 simulations between 2081 and 2100. With the same parameters used for the historical simulations, model 3 has a global mean relative error of 5.4%, much smaller than that of model 2 (11.5%, Table 1).Again, model 3 reduces the regional errors significantly(Fig. S6). We calculated the parameters in Eqs. (4) and (5)by fitting them using the outputs of the RCP8.5 simulations.They are very close to the parameters obtained in the historical simulations, and the performance of model 3 is very close regardless of which set of parameters is used. This comparison indicates that the parametrizations of the two additional physical processes in the convective model are robust and likely reliable for different climates.

    4.Conclusions and discussion

    This study proposes a two-plume convective model that approximates precipitation extremes with large-scale (i.e.,GCM-grid-mean) variables. The convective model is built upon a physical picture in which the precipitating regional column consists of convective updrafts and unsaturated environments (Fig. 4) and includes three components: cloud condensation, rain evaporation, and environmental descent. The three components are expressed or parameterized using GCM-grid-mean variables with the zero-buoyancy approximation and guidance from the high-resolution reanalysis. The model is evaluated using outputs from 20 CMIP5 GCM simulations and compared with two previously proposed and widely used models. The new model largely reduces errors in reproducing precipitation extremes in terms of both global mean and regional errors. The validation of the convective model also suggests that its physical basis captures the most relevant physical processes during precipitation extremes.

    The convective model still has noticeable regional errors. For example, there are errors over mountainous regions, where interactions between convection and terrain are not included in the model. In addition, the convective model shall be applicable only for regional-scale (i.e., typical GCM grid-size of several hundred km) precipitation extremes, in which our assumption of partial occupation of convective updrafts is appropriate. For precipitation extremes at smaller scales, the correction terms of rain evaporation and environmental descent components may become less important, and the approximation of grid-scale saturation in O’Gorman and Schneider (2009a) may become more justifiable. Notwithstanding these limitations, the study sheds light on the dynamics of precipitation extremes,provides a reasonably accurate estimation for precipitation extremes, and has implications in understanding precipitation extremes and their future projections in climate simulations.

    Acknowledgements. The authors thank three anonymous reviewers for their valuable comments. This research was supported by National Natural Science Foundation of China (Grant nos.41875050 and 42075146). The ERA-Interim reanalysis is available at https://apps.ecmwf.int/datasets/. The CMIP5 data archive is available at https://esgf.llnl.gov.

    Electronic supplementary material: Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-021-0404-8.

    可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆| 欧美潮喷喷水| 人妻制服诱惑在线中文字幕| 全区人妻精品视频| 久久久亚洲精品成人影院| av国产免费在线观看| 亚洲怡红院男人天堂| 国产精品国产三级国产av玫瑰| 综合色av麻豆| 国产精品综合久久久久久久免费| 久久精品国产自在天天线| 床上黄色一级片| 少妇裸体淫交视频免费看高清| 在线观看美女被高潮喷水网站| 亚洲精品影视一区二区三区av| 男插女下体视频免费在线播放| 精品久久久精品久久久| 亚洲va在线va天堂va国产| 国产成人aa在线观看| 国产精品一二三区在线看| 欧美 日韩 精品 国产| 丝瓜视频免费看黄片| 精品久久久久久久久久久久久| 欧美97在线视频| 欧美变态另类bdsm刘玥| 国产精品人妻久久久久久| 亚洲在久久综合| 人体艺术视频欧美日本| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人综合色| 国产单亲对白刺激| 国产成人freesex在线| 日本与韩国留学比较| 男女国产视频网站| 国产亚洲一区二区精品| 欧美激情国产日韩精品一区| 亚洲精品日韩在线中文字幕| 亚洲美女视频黄频| 两个人视频免费观看高清| 欧美成人a在线观看| 日韩一区二区三区影片| 国产探花极品一区二区| 日韩中字成人| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 亚洲色图av天堂| 少妇被粗大猛烈的视频| 亚洲综合精品二区| 秋霞伦理黄片| 91午夜精品亚洲一区二区三区| 久久久久久久午夜电影| 婷婷色av中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产综合精华液| 久久精品久久久久久久性| 91精品一卡2卡3卡4卡| 夜夜看夜夜爽夜夜摸| 一级毛片 在线播放| 搡老妇女老女人老熟妇| 欧美成人精品欧美一级黄| 一个人看视频在线观看www免费| 久久99蜜桃精品久久| 嫩草影院精品99| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 久久热精品热| 深爱激情五月婷婷| 成年av动漫网址| 波野结衣二区三区在线| 777米奇影视久久| 麻豆成人午夜福利视频| 小蜜桃在线观看免费完整版高清| av播播在线观看一区| 美女xxoo啪啪120秒动态图| 国产乱来视频区| 18+在线观看网站| 日日啪夜夜撸| 国产精品女同一区二区软件| 亚洲久久久久久中文字幕| 国产白丝娇喘喷水9色精品| 国产精品av视频在线免费观看| av在线播放精品| 一级av片app| 岛国毛片在线播放| 丰满人妻一区二区三区视频av| 美女cb高潮喷水在线观看| 日本一本二区三区精品| 日韩精品青青久久久久久| av在线天堂中文字幕| 麻豆av噜噜一区二区三区| 不卡视频在线观看欧美| 高清日韩中文字幕在线| 非洲黑人性xxxx精品又粗又长| 18+在线观看网站| 国产精品无大码| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 国产精品.久久久| 久久99热这里只有精品18| 一区二区三区乱码不卡18| 亚洲av成人精品一区久久| 中文天堂在线官网| 国产精品精品国产色婷婷| 韩国高清视频一区二区三区| 国产一区二区亚洲精品在线观看| 中文乱码字字幕精品一区二区三区 | 亚洲第一区二区三区不卡| 亚洲18禁久久av| 亚洲国产色片| 欧美激情国产日韩精品一区| 美女国产视频在线观看| 国产精品久久久久久精品电影小说 | 69av精品久久久久久| 九九爱精品视频在线观看| 国产精品久久久久久久电影| 久久久精品欧美日韩精品| 男人狂女人下面高潮的视频| 一级毛片黄色毛片免费观看视频| 国产精品一区二区三区四区久久| 建设人人有责人人尽责人人享有的 | 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办| 亚洲一区高清亚洲精品| 在线观看免费高清a一片| 少妇熟女欧美另类| 小蜜桃在线观看免费完整版高清| 亚洲精品亚洲一区二区| 男女国产视频网站| 能在线免费观看的黄片| 亚洲图色成人| 中国美白少妇内射xxxbb| 精品熟女少妇av免费看| 97人妻精品一区二区三区麻豆| 日韩欧美三级三区| 少妇被粗大猛烈的视频| 久久久久精品久久久久真实原创| 2018国产大陆天天弄谢| 久久97久久精品| 成人亚洲精品av一区二区| 一个人看的www免费观看视频| 久久久久久久久久黄片| 一级av片app| 老司机影院毛片| xxx大片免费视频| 狂野欧美白嫩少妇大欣赏| 亚洲性久久影院| 3wmmmm亚洲av在线观看| 一个人免费在线观看电影| 一区二区三区高清视频在线| 永久网站在线| 久久久久久九九精品二区国产| 国产不卡一卡二| 欧美性猛交╳xxx乱大交人| 久久久久久久大尺度免费视频| av福利片在线观看| av免费在线看不卡| 美女内射精品一级片tv| 亚洲精品,欧美精品| 日本午夜av视频| 国产高清国产精品国产三级 | 国产日韩欧美在线精品| 久久久久久久久久成人| 国产高清不卡午夜福利| 亚洲熟女精品中文字幕| 2021少妇久久久久久久久久久| 午夜视频国产福利| 色综合亚洲欧美另类图片| 乱系列少妇在线播放| 精品少妇黑人巨大在线播放| 久久人人爽人人爽人人片va| 中文字幕制服av| 日本-黄色视频高清免费观看| 国产视频首页在线观看| 国产久久久一区二区三区| 精品一区二区三区人妻视频| 亚洲av一区综合| 精品亚洲乱码少妇综合久久| av在线观看视频网站免费| 91精品伊人久久大香线蕉| 亚洲丝袜综合中文字幕| 亚洲怡红院男人天堂| 国产人妻一区二区三区在| 十八禁网站网址无遮挡 | 免费av观看视频| 亚洲国产av新网站| 欧美丝袜亚洲另类| av.在线天堂| 嫩草影院精品99| 直男gayav资源| 国内少妇人妻偷人精品xxx网站| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 最近的中文字幕免费完整| 国产精品.久久久| 有码 亚洲区| 午夜福利成人在线免费观看| 日产精品乱码卡一卡2卡三| videossex国产| 人人妻人人看人人澡| 日韩不卡一区二区三区视频在线| 天堂俺去俺来也www色官网 | 一级毛片我不卡| 久久久欧美国产精品| 日韩制服骚丝袜av| 极品教师在线视频| 国产精品一区二区性色av| 国产黄色小视频在线观看| 丝袜喷水一区| 婷婷六月久久综合丁香| 日本黄色片子视频| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生| 久久久久久久亚洲中文字幕| 少妇被粗大猛烈的视频| 亚洲人与动物交配视频| 大陆偷拍与自拍| 国产视频首页在线观看| 日韩视频在线欧美| av免费在线看不卡| 国产精品久久久久久久久免| 人妻夜夜爽99麻豆av| 成人午夜高清在线视频| 成人美女网站在线观看视频| 欧美bdsm另类| 日韩 亚洲 欧美在线| av福利片在线观看| 国精品久久久久久国模美| 久久这里有精品视频免费| 2022亚洲国产成人精品| 男人爽女人下面视频在线观看| 久久久久国产网址| 一级毛片久久久久久久久女| 小蜜桃在线观看免费完整版高清| 国产 亚洲一区二区三区 | 最近的中文字幕免费完整| 波野结衣二区三区在线| 亚洲欧美日韩卡通动漫| kizo精华| 九色成人免费人妻av| 丝瓜视频免费看黄片| 国产av在哪里看| 国产亚洲精品久久久com| 日韩国内少妇激情av| 亚洲国产av新网站| 午夜精品在线福利| 在线播放无遮挡| 日韩伦理黄色片| 在线观看免费高清a一片| 蜜桃亚洲精品一区二区三区| 国产成人午夜福利电影在线观看| 日本黄大片高清| 亚洲欧洲日产国产| 非洲黑人性xxxx精品又粗又长| 91精品一卡2卡3卡4卡| 91av网一区二区| 视频中文字幕在线观看| 免费在线观看成人毛片| 18+在线观看网站| 免费看a级黄色片| 一级毛片电影观看| 亚洲人与动物交配视频| 欧美日本视频| 国产精品无大码| 99九九线精品视频在线观看视频| 免费在线观看成人毛片| 特级一级黄色大片| 看非洲黑人一级黄片| 色播亚洲综合网| 免费黄频网站在线观看国产| 男的添女的下面高潮视频| 男女视频在线观看网站免费| 免费大片黄手机在线观看| 狂野欧美激情性xxxx在线观看| 国产大屁股一区二区在线视频| 亚洲成人精品中文字幕电影| 麻豆成人午夜福利视频| 国产精品久久久久久久电影| 丰满少妇做爰视频| 人人妻人人澡人人爽人人夜夜 | 欧美潮喷喷水| 中文精品一卡2卡3卡4更新| 99热这里只有精品一区| 国产一区二区在线观看日韩| 如何舔出高潮| 哪个播放器可以免费观看大片| 午夜激情福利司机影院| 亚洲精品aⅴ在线观看| 精品久久久久久久末码| 成人亚洲精品一区在线观看 | 少妇人妻一区二区三区视频| 青春草国产在线视频| 男的添女的下面高潮视频| 午夜免费激情av| 久久久久国产网址| 日日干狠狠操夜夜爽| 免费av观看视频| 少妇的逼好多水| 亚洲天堂国产精品一区在线| 亚洲怡红院男人天堂| 欧美 日韩 精品 国产| freevideosex欧美| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 18禁裸乳无遮挡免费网站照片| 一个人看视频在线观看www免费| 精品一区在线观看国产| 国产午夜精品一二区理论片| 国产成年人精品一区二区| 国产久久久一区二区三区| 免费观看a级毛片全部| 三级国产精品片| 亚洲精品aⅴ在线观看| 高清欧美精品videossex| 成年版毛片免费区| 性插视频无遮挡在线免费观看| 欧美+日韩+精品| 色哟哟·www| 天堂网av新在线| 久久久久久久久大av| 成人亚洲精品av一区二区| 精品人妻视频免费看| 97精品久久久久久久久久精品| 晚上一个人看的免费电影| 丝袜美腿在线中文| 欧美日本视频| or卡值多少钱| 久久久久免费精品人妻一区二区| 偷拍熟女少妇极品色| 大又大粗又爽又黄少妇毛片口| 日韩欧美三级三区| 免费少妇av软件| 国产 亚洲一区二区三区 | 简卡轻食公司| 国内少妇人妻偷人精品xxx网站| 久久久色成人| 人妻夜夜爽99麻豆av| 毛片女人毛片| 成人毛片60女人毛片免费| 春色校园在线视频观看| 大话2 男鬼变身卡| 成人性生交大片免费视频hd| 精品人妻偷拍中文字幕| 秋霞在线观看毛片| av在线观看视频网站免费| 韩国av在线不卡| 日韩精品青青久久久久久| 日韩 亚洲 欧美在线| 一区二区三区高清视频在线| 国产麻豆成人av免费视频| 1000部很黄的大片| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 国产人妻一区二区三区在| 国产高潮美女av| 最近手机中文字幕大全| 亚洲av日韩在线播放| 男人和女人高潮做爰伦理| 国产av码专区亚洲av| 大片免费播放器 马上看| 十八禁网站网址无遮挡 | 亚洲成色77777| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| 婷婷色综合www| 欧美日韩一区二区视频在线观看视频在线 | 免费不卡的大黄色大毛片视频在线观看 | 成人毛片60女人毛片免费| 国产高清有码在线观看视频| 国产色婷婷99| 哪个播放器可以免费观看大片| 亚洲综合精品二区| 国产精品99久久久久久久久| 亚洲av免费在线观看| 午夜福利成人在线免费观看| 精品人妻偷拍中文字幕| 国精品久久久久久国模美| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 最近中文字幕高清免费大全6| 午夜久久久久精精品| 久久久久久九九精品二区国产| 我要看日韩黄色一级片| 日本三级黄在线观看| 精品不卡国产一区二区三区| 免费大片18禁| 精品人妻一区二区三区麻豆| freevideosex欧美| 亚洲aⅴ乱码一区二区在线播放| 国产免费又黄又爽又色| 男女下面进入的视频免费午夜| 午夜爱爱视频在线播放| 欧美日韩综合久久久久久| 视频中文字幕在线观看| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 97精品久久久久久久久久精品| 国产精品一区二区三区四区免费观看| 色吧在线观看| 日本黄色片子视频| 午夜福利网站1000一区二区三区| 亚洲高清免费不卡视频| 十八禁国产超污无遮挡网站| 午夜福利成人在线免费观看| 在线天堂最新版资源| 一级毛片久久久久久久久女| 午夜精品国产一区二区电影 | 亚洲欧美日韩东京热| 久久久精品欧美日韩精品| 国产探花在线观看一区二区| a级毛色黄片| 亚洲欧美日韩东京热| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| av网站免费在线观看视频 | 国产成人精品一,二区| 热99在线观看视频| 99热全是精品| 在线观看av片永久免费下载| 欧美激情在线99| 99久久精品一区二区三区| 国产精品一及| 国产精品蜜桃在线观看| 只有这里有精品99| 亚洲国产精品成人久久小说| 九九在线视频观看精品| 一二三四中文在线观看免费高清| 国产成人freesex在线| 夫妻午夜视频| 欧美成人午夜免费资源| 亚洲精品自拍成人| 一本一本综合久久| 亚洲色图av天堂| 一夜夜www| 色5月婷婷丁香| 日本猛色少妇xxxxx猛交久久| 中文字幕人妻熟人妻熟丝袜美| av国产免费在线观看| 久久99热6这里只有精品| 中文天堂在线官网| 欧美成人一区二区免费高清观看| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在| 超碰97精品在线观看| 永久网站在线| 亚洲精品影视一区二区三区av| 国产亚洲精品av在线| 亚洲av成人av| 精品亚洲乱码少妇综合久久| 亚洲自拍偷在线| 久99久视频精品免费| 亚洲欧美精品自产自拍| 久久精品国产亚洲网站| 最新中文字幕久久久久| 天堂网av新在线| 国产视频首页在线观看| 少妇高潮的动态图| 99久久精品国产国产毛片| 亚洲精品自拍成人| 亚洲人成网站在线播| 高清日韩中文字幕在线| 看黄色毛片网站| 国产黄色小视频在线观看| 夫妻性生交免费视频一级片| 人妻少妇偷人精品九色| 久久国产乱子免费精品| 十八禁国产超污无遮挡网站| 噜噜噜噜噜久久久久久91| 岛国毛片在线播放| 在线 av 中文字幕| 日韩欧美精品v在线| 日本三级黄在线观看| 亚洲av成人av| 精品少妇黑人巨大在线播放| 亚洲欧美清纯卡通| 国产亚洲5aaaaa淫片| 99热这里只有精品一区| 2018国产大陆天天弄谢| 国产成人freesex在线| 国语对白做爰xxxⅹ性视频网站| 中文天堂在线官网| 久久久久久久大尺度免费视频| 最近最新中文字幕免费大全7| 日韩一区二区视频免费看| 久久综合国产亚洲精品| av天堂中文字幕网| 精品人妻熟女av久视频| 精华霜和精华液先用哪个| 久久久a久久爽久久v久久| 淫秽高清视频在线观看| 人人妻人人澡人人爽人人夜夜 | 黄色一级大片看看| 久久久色成人| 美女大奶头视频| 真实男女啪啪啪动态图| 中国国产av一级| 99久久九九国产精品国产免费| 国产精品嫩草影院av在线观看| av播播在线观看一区| 日韩欧美国产在线观看| 嫩草影院精品99| 免费av不卡在线播放| 国产精品美女特级片免费视频播放器| 日韩中字成人| 一级毛片aaaaaa免费看小| 国产黄色小视频在线观看| 日本免费在线观看一区| 久久精品久久久久久久性| 七月丁香在线播放| 中文资源天堂在线| 最近手机中文字幕大全| 亚洲欧美精品专区久久| 极品少妇高潮喷水抽搐| 听说在线观看完整版免费高清| 国产男女超爽视频在线观看| 国产中年淑女户外野战色| 国产伦精品一区二区三区视频9| 国产激情偷乱视频一区二区| 午夜福利视频精品| 亚洲精品乱码久久久久久按摩| 中文字幕免费在线视频6| 2018国产大陆天天弄谢| 国产成人精品福利久久| 水蜜桃什么品种好| 久久这里只有精品中国| 免费看不卡的av| videossex国产| 2022亚洲国产成人精品| 精品亚洲乱码少妇综合久久| 久久久精品欧美日韩精品| 精品不卡国产一区二区三区| 久久99热6这里只有精品| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜添av毛片| 亚洲va在线va天堂va国产| 自拍偷自拍亚洲精品老妇| 国产 一区 欧美 日韩| 欧美性感艳星| 免费观看在线日韩| 啦啦啦啦在线视频资源| 五月玫瑰六月丁香| 国内精品一区二区在线观看| 人妻少妇偷人精品九色| 日本wwww免费看| 18+在线观看网站| 日韩欧美精品免费久久| 亚洲精品,欧美精品| 十八禁国产超污无遮挡网站| 亚洲精品久久午夜乱码| 国产免费一级a男人的天堂| 国产v大片淫在线免费观看| 国产国拍精品亚洲av在线观看| 国产成人精品福利久久| 三级毛片av免费| 久久久久久伊人网av| 国产成人一区二区在线| 国产精品熟女久久久久浪| 免费观看a级毛片全部| 久久精品熟女亚洲av麻豆精品 | 熟妇人妻久久中文字幕3abv| 在线 av 中文字幕| 日韩精品有码人妻一区| 午夜视频国产福利| 嫩草影院新地址| 成人亚洲精品一区在线观看 | av又黄又爽大尺度在线免费看| 狠狠精品人妻久久久久久综合| 免费观看a级毛片全部| 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄| 国产在线一区二区三区精| 免费电影在线观看免费观看| 亚洲在线观看片| 亚洲国产欧美人成| 久久久欧美国产精品| 午夜亚洲福利在线播放| 中文资源天堂在线| 免费观看无遮挡的男女| 大陆偷拍与自拍| 在线 av 中文字幕| 久久久午夜欧美精品| 久久草成人影院| 亚洲国产精品专区欧美| 日本一本二区三区精品| 有码 亚洲区| 国产成人一区二区在线| 一本一本综合久久| 精品国产三级普通话版| 久久亚洲国产成人精品v| 亚洲最大成人手机在线| 成人国产麻豆网| 国产伦理片在线播放av一区| 精品一区二区三区视频在线| 国产精品av视频在线免费观看| 国产午夜精品论理片| 亚洲精品日本国产第一区| 日韩制服骚丝袜av| 熟妇人妻久久中文字幕3abv| 亚洲成人久久爱视频| 色吧在线观看| 大香蕉久久网| 99热这里只有是精品在线观看| 精品午夜福利在线看| 人人妻人人澡人人爽人人夜夜 | 91久久精品电影网| 又爽又黄a免费视频| 国产黄片视频在线免费观看| 久久热精品热| av在线老鸭窝| 国产成人a∨麻豆精品| 国产三级在线视频| av专区在线播放| 美女cb高潮喷水在线观看| 又大又黄又爽视频免费|