冀曉珊,李秋義,劉 娟
玉米芯骨料生態(tài)混凝土的制備及性能
冀曉珊,李秋義,劉 娟※
(青島農(nóng)業(yè)大學(xué)建筑工程學(xué)院,青島 266109)
生態(tài)混凝土;復(fù)合材料;玉米芯;再生砂漿;顆粒級(jí)配
玉米是中國(guó)年產(chǎn)量最高的農(nóng)作物,因此每年會(huì)產(chǎn)生大量玉米芯,多數(shù)玉米芯被丟棄或作為燃料燒掉,不僅造成資源浪費(fèi)而且嚴(yán)重污染環(huán)境。玉米芯是玉米棒脫粒后的穗軸,一般占玉米棒質(zhì)量的20%~30%[1],玉米芯中的有機(jī)質(zhì)主要是纖維素、木質(zhì)素等,具有較高的承載能力及韌性,多孔結(jié)構(gòu)又使其具備輕質(zhì)、隔音及隔熱等性能,因此,玉米芯可用于保溫材料或非承重結(jié)構(gòu),是一種天然的生物質(zhì)資源[2-3]。中國(guó)目前對(duì)生物質(zhì)資源的利用多集中于秸稈[4-8],將秸稈加入無(wú)機(jī)膠凝材料中,不僅降低建材的密度和導(dǎo)熱系數(shù),其纖維物質(zhì)還能有效抑制建材的開(kāi)裂;也有部分對(duì)稻殼灰的研究,稻殼灰中含有大量SiO2,又具有巨大的比表面積,是理想的活性礦物摻合料[9-14]。國(guó)內(nèi)對(duì)玉米芯用于建筑的研究相對(duì)較少,大部分玉米芯用于飼料、菌類種植及化工行業(yè)等[15-20],利用率也較低,因此,如何消納更多的玉米芯等農(nóng)業(yè)固體廢棄物并將其資源化利用成為農(nóng)業(yè)農(nóng)村迫在眉睫的問(wèn)題。
再生骨料是由廢棄混凝土經(jīng)過(guò)破碎、篩分制備的骨料,可全部或部分取代天然骨料,實(shí)現(xiàn)建筑垃圾的循環(huán)再利用[21-23]。根據(jù)粒徑的大小可將再生骨料分為再生粗骨料及再生細(xì)骨料,將再生細(xì)骨料即再生砂與水泥攪拌可形成再生砂漿。本文將破碎后的玉米芯顆粒作為粗骨料摻入再生砂漿中制備生態(tài)混凝土,進(jìn)行玉米芯骨料的顆粒級(jí)配分析及生態(tài)混凝土的基本性能研究,并探討生態(tài)混凝土用于農(nóng)業(yè)農(nóng)村建設(shè)的可行性。
目前中國(guó)農(nóng)村建筑中仍大量采用高耗能高污染的黏土磚作為圍護(hù)結(jié)構(gòu),部分地區(qū)采用輕質(zhì)保溫的加氣混凝土砌塊,但加氣混凝土砌塊的生產(chǎn)要經(jīng)過(guò)發(fā)氣、蒸壓養(yǎng)護(hù)等工藝,噪音及大氣污染較為嚴(yán)重,且砌塊的強(qiáng)度及干縮性能差異較大。本文將農(nóng)業(yè)廢棄物玉米芯用于制備質(zhì)量較輕、保溫性能較好且具有一定強(qiáng)度的生態(tài)混凝土,不僅能夠消納大量農(nóng)業(yè)固廢,以期解決玉米芯占地、焚燒帶來(lái)的環(huán)境問(wèn)題,而且將生態(tài)混凝土加工成結(jié)構(gòu)-保溫一體化的墻體材料用于農(nóng)村建筑的圍護(hù)結(jié)構(gòu),生產(chǎn)流程簡(jiǎn)單且無(wú)高耗能高污染的生產(chǎn)工藝,對(duì)節(jié)約資源、保護(hù)環(huán)境,推動(dòng)綠色建材在農(nóng)業(yè)農(nóng)村建設(shè)中的應(yīng)用提供學(xué)術(shù)支撐。
1)玉米芯:試驗(yàn)選用山東濱州產(chǎn)的玉米,將脫粒后的玉米芯進(jìn)行破碎處理,篩除直徑大于19 mm的芯塊,留取粒徑小于19 mm的玉米芯顆粒作為生態(tài)混凝土的粗骨料。
2)水泥:玉米芯中的纖維素和半纖維素在水泥砂漿環(huán)境中易堿性水解為低聚糖,這些糖分與水泥水化產(chǎn)物進(jìn)行反應(yīng),生成沉淀物包裹在水泥外圍[24-25],造成水泥緩凝,影響強(qiáng)度發(fā)展。因此試驗(yàn)選用快硬硫鋁酸鹽水泥,在玉米芯糖分析出前將其固結(jié),以降低玉米芯對(duì)水泥緩凝作用的影響。快硬硫鋁酸鹽水泥的凝結(jié)時(shí)間及強(qiáng)度指標(biāo)見(jiàn)表1。
表1 水泥的凝結(jié)時(shí)間及1~28 d強(qiáng)度指標(biāo)
3)再生砂:試驗(yàn)用細(xì)骨料選用青島某拆遷工程產(chǎn)生的廢棄混凝土制備的再生砂,性能滿足GB/T25176—2010《混凝土和砂漿用再生細(xì)骨料》中的II類再生細(xì)骨料性能要求,見(jiàn)表2。
表2 再生砂基本性能指標(biāo)
4)水:實(shí)驗(yàn)室自來(lái)水,符合JGJ3—2006《混凝土用水標(biāo)準(zhǔn)》規(guī)定。
將玉米芯的粉粒、小顆粒及大顆粒的質(zhì)量比設(shè)定為0∶1∶1.5、0.5∶1∶1.5、1∶1∶1.5摻入1 200 g水泥砂漿(膠砂比為1∶3)中,得到混凝土拌合物中玉米芯顆粒的體積分?jǐn)?shù)與其摻入質(zhì)量的關(guān)系曲線,如圖1所示。從圖中可以看出,生態(tài)混凝土中玉米芯顆粒的體積分?jǐn)?shù)與其摻入質(zhì)量基本呈線性關(guān)系,因?yàn)橛衩仔痉哿5拿芏容^小,所以玉米芯顆粒中粉粒含量越大,相同質(zhì)量的玉米芯顆粒在混凝土拌合物中的體積分?jǐn)?shù)就越大。
將不同級(jí)配的玉米芯顆粒按照設(shè)定的體積分?jǐn)?shù)摻入再生砂漿中,測(cè)量不同級(jí)配玉米芯骨料生態(tài)混凝土的強(qiáng)度,從而確定試驗(yàn)范圍內(nèi)玉米芯顆粒的最佳級(jí)配。試驗(yàn)設(shè)定膠砂比為1∶3,玉米芯顆粒體積分?jǐn)?shù)為40%,根據(jù)圖1確定各級(jí)配玉米芯顆粒的摻入質(zhì)量,表3為不同配比水泥性能試驗(yàn)結(jié)果。
表3 玉米芯骨料顆粒級(jí)配試驗(yàn)
由于玉米芯吸水性較強(qiáng),密度較小,玉米芯顆粒的粒徑又相對(duì)較大,試驗(yàn)前將玉米芯小顆粒及大顆粒在水中浸泡半小時(shí),讓其充分潤(rùn)濕,以避免玉米芯顆粒大量吸收再生砂漿中的自由水導(dǎo)致水泥無(wú)法正常水化;生態(tài)混凝土在自然養(yǎng)護(hù)時(shí),初始預(yù)濕時(shí)玉米芯顆粒中的水分在水泥水化過(guò)程中易遷移至水泥顆粒,有利于生態(tài)混凝土的內(nèi)養(yǎng)護(hù),可有效抑制混凝土的干縮開(kāi)裂。另外,玉米芯顆粒預(yù)濕后密度增加,將預(yù)濕后的玉米芯顆粒與水泥砂漿攪拌,可一定程度減少因兩者密度相差較大而在攪拌過(guò)程中產(chǎn)生的玉米芯顆粒上浮的問(wèn)題。
玉米芯主要由三部分構(gòu)成,表層脫粒后的毛糙部分為鼓糠層,中間硬而有彈性的部位為木質(zhì)層,占玉米芯總質(zhì)量的60%,而最里端軟而潔白的部分為玉米芯的海綿絮層。玉米芯粉粒多為脫落的骨康層及打碎的海綿絮層,密度小且強(qiáng)度極低,而玉米芯小顆粒及中顆粒則為破碎的木質(zhì)層,密度大且有一定強(qiáng)度,因此,玉米芯顆粒中粉粒含量越少,混凝土強(qiáng)度越高。當(dāng)粉粒、小顆粒、大顆粒的質(zhì)量比為0∶1∶1.5(編號(hào)JP2)時(shí),骨料的級(jí)配較合理,混凝土的強(qiáng)度較高,因此,本文選取JP2即玉米芯小顆粒與大顆粒比例為1∶1.5進(jìn)行后續(xù)試驗(yàn)。
將玉米芯顆粒摻入再生砂漿中制備玉米芯骨料生態(tài)混凝土,通過(guò)改變膠凝材料與再生砂的質(zhì)量比(即膠砂比)及玉米芯顆粒的體積分?jǐn)?shù),研究生態(tài)混凝土的干密度、導(dǎo)熱系數(shù)及抗壓強(qiáng)度。試驗(yàn)設(shè)定膠砂比為1∶3、1∶3.5和1∶4,再生砂漿的用水量根據(jù)砂漿稠度試驗(yàn)確定;選用級(jí)配為JP2的玉米芯顆粒作為粗骨料,玉米芯體積分?jǐn)?shù)設(shè)定為30%~50%。生態(tài)混凝土基本性能試驗(yàn)的配合比見(jiàn)表4。
干密度是衡量生態(tài)混凝土性能的重要指標(biāo),圖3a為生態(tài)混凝土的干密度隨膠砂比及玉米芯顆粒體積分?jǐn)?shù)的變化曲線。從圖中能夠看出,由于玉米芯的堆積密度僅為140~180 kg/m3,因此玉米芯顆粒的體積分?jǐn)?shù)對(duì)混凝土干密度的影響較大,隨玉米芯顆粒體積分?jǐn)?shù)的增加,生態(tài)混凝土的干密度明顯降低,玉米芯體積分?jǐn)?shù)每增加5%,混凝土干密度減少約60~70 kg/m3;由于再生砂的密度與水泥非常接近,因此膠砂比對(duì)混凝土干密度的影響較小。試驗(yàn)范圍內(nèi)生態(tài)混凝土的干密度約為1 200~1 550 kg/m3,屬輕骨料混凝土范疇(800~1 900 kg/m3)。
表4 生態(tài)混凝土基本性能試驗(yàn)配合比
表5 生態(tài)混凝土基本性能試驗(yàn)
圖3b為試驗(yàn)得到的不同配合比生態(tài)混凝土的導(dǎo)熱系數(shù),從圖中能夠看出,由于玉米芯為多孔結(jié)構(gòu),具有優(yōu)越的保溫性能,因此隨玉米芯體積分?jǐn)?shù)的增加,生態(tài)混凝土的導(dǎo)熱系數(shù)逐漸減??;另外,混凝土的膠砂比不同導(dǎo)致混凝土密實(shí)程度不同,也會(huì)對(duì)生態(tài)混凝土的保溫性能產(chǎn)生一定影響,從圖3b能夠看出,再生砂在砂漿中含量越高,混凝土導(dǎo)熱系數(shù)越低,材料的保溫性越好。試驗(yàn)范圍內(nèi)生態(tài)混凝土的導(dǎo)熱系數(shù)為0.20~0.26 W/m·K,稍高于加氣混凝土0.19 W/m·K,但僅為普通輕骨料混凝土導(dǎo)熱系數(shù)的1/2~1/3,爐渣磚砌體的1/3,因此玉米芯骨料混凝土可為具有保溫性能的墻體材料的研究提供參考。
圖4為不同膠砂比及玉米芯體積分?jǐn)?shù)時(shí)生態(tài)混凝土3 d、7 d及28 d的抗壓強(qiáng)度曲線,從圖中能夠看出,混凝土各齡期的抗壓強(qiáng)度均隨玉米芯體積分?jǐn)?shù)的增加而顯著降低,玉米芯體積分?jǐn)?shù)每增加5%,28 d的強(qiáng)度損失約0.7 MPa,可見(jiàn)生態(tài)混凝土抗壓強(qiáng)度對(duì)玉米芯的體積分?jǐn)?shù)很敏感;膠砂比對(duì)混凝土抗壓強(qiáng)度也有一定影響,如圖,隨膠砂比變化,同齡期同玉米芯體積分?jǐn)?shù)的混凝土抗壓強(qiáng)度變化約15%~20%;另外,因?yàn)樵囼?yàn)使用快硬硫鋁酸鹽水泥,因此生態(tài)混凝土早期強(qiáng)度上升較快,以A40為例,3 d及7 d的強(qiáng)度已達(dá)到28 d強(qiáng)度的80%~90%。試驗(yàn)范圍內(nèi)生態(tài)混凝土28 d的抗壓強(qiáng)度為2.0~5.7 MPa,可為輕質(zhì)保溫墻體材料提供強(qiáng)度保證。
圖5為生態(tài)混凝土干密度、導(dǎo)熱系數(shù)及28 d強(qiáng)度之間的相關(guān)性曲線,從圖中能夠看出,生態(tài)混凝土各性能之間均存在一定關(guān)聯(lián),混凝土的導(dǎo)熱系數(shù)及28 d強(qiáng)度均隨材料干密度的增加呈上升趨勢(shì),如圖5a及5b,而導(dǎo)熱系數(shù)也基本與28 d強(qiáng)度正相關(guān),如圖5c,即隨著生態(tài)混凝土中玉米芯體積分?jǐn)?shù)的減少,混凝土的干密度逐漸增加,同時(shí)混凝土的強(qiáng)度增加但保溫性能減弱。生態(tài)混凝土的干密度為1 200 kg/m3時(shí),導(dǎo)熱系數(shù)為0.20 W/m·K,28 d強(qiáng)度為2.0 MPa;混凝土干密度為1 550 kg/m3時(shí),導(dǎo)熱系數(shù)為0.26 W/m·K,28 d強(qiáng)度為5.7 MPa。
本文探討玉米芯骨料的顆粒級(jí)配及不同配合比生態(tài)混凝土的基本性能,得到以下結(jié)論:
1)玉米芯破碎過(guò)程中,由于粒徑小于4.75 mm的粉粒自身強(qiáng)度極低,若將其摻入混凝土中會(huì)對(duì)混凝土的強(qiáng)度產(chǎn)生不利影響,因此試驗(yàn)中將粉粒篩除,將玉米芯小顆粒及大顆粒質(zhì)量比質(zhì)量比以1∶1.5混合作為粗骨料,生態(tài)混凝土強(qiáng)度較高,以確定玉米芯顆粒的最佳級(jí)配。
2)試驗(yàn)前將玉米芯顆粒在水中浸泡使其充分吸水,可避免玉米芯顆粒吸收拌合物中的自由水導(dǎo)致水泥無(wú)法正常水化,有效抑制混凝土的干縮開(kāi)裂;另外,由于預(yù)濕后的玉米芯顆粒密度增加,可一定程度減少玉米芯顆粒上浮的問(wèn)題。
3)試驗(yàn)探討了不同配合比生態(tài)混凝土的基本性能,再生砂漿中再生砂的含量對(duì)混凝土干密度影響不大,但對(duì)導(dǎo)熱系數(shù)及強(qiáng)度有一定影響,再生砂含量越高,導(dǎo)熱系數(shù)及強(qiáng)度越低;生態(tài)混凝土的干密度、導(dǎo)熱系數(shù)及強(qiáng)度對(duì)玉米芯顆粒體積分?jǐn)?shù)較敏感,隨玉米芯顆粒體積分?jǐn)?shù)增加,三者均呈明顯下降趨勢(shì);試驗(yàn)范圍內(nèi)生態(tài)混凝土的干密度約1 200~1 550 kg/m3,導(dǎo)熱系數(shù)約0.20~0.26 W/m.K,強(qiáng)度約2.0~5.7 MPa。
4)試驗(yàn)還探討了生態(tài)混凝土各基本性能的相關(guān)性,隨著生態(tài)混凝土中玉米芯體積分?jǐn)?shù)的減少,混凝土的干密度逐漸增加,同時(shí)混凝土的強(qiáng)度增加但保溫性能減弱。
玉米芯作為農(nóng)業(yè)固體廢棄物,具有輕質(zhì)、保溫、強(qiáng)度適中等建筑性能,對(duì)其進(jìn)行資源化利用,制備自保墻體材料用于農(nóng)業(yè)農(nóng)村建設(shè),可降低建造成本、保護(hù)環(huán)境。本文經(jīng)過(guò)試驗(yàn)研究得出一定結(jié)論,但生態(tài)混凝土的抗裂、韌性、抗沖擊等性能及微觀機(jī)理方面還有待進(jìn)一步研究,為玉米芯骨料生態(tài)混凝土墻體材料的開(kāi)發(fā)提供理論及試驗(yàn)依據(jù)。
[1]王紅彥,張軒銘,王道龍,等. 中國(guó)玉米芯資源量估算及其開(kāi)發(fā)利用[J]. 中國(guó)農(nóng)業(yè)資源與區(qū)劃,2016,37(1):1-8. Wang Hongyan, Zhang Xuanming, Wang Daolong, et al. Estimation and utilization of corncob resources in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(1): 1-8. (in Chinese with English Abstract)
[2]吳憲玲,侯曉玉,王笑可,等. 玉米芯的綜合利用研究現(xiàn)狀[J],農(nóng)業(yè)科技與裝備,2019(6):59-60. Wu Xianling, Hou Xiaoyu, Wang Xiaoke, et al. Research progress on comprehensive utilization of corncob[J], Agricultural Science & Technology and Equipment, 2019(6): 59-60. (in Chinese with English Abstract)
[3]耿欣,諸葛詳占,彭冉,等. 生物質(zhì)廢棄物資源化利用研究進(jìn)展[J],低碳世界,2019,9(6):24-25.
[4]黃群藝,宋茜. 秸稈的建筑性能及其應(yīng)用探析[J]. 四川建筑,2017,37(6):213-216.
[5]陳登,宋旭艷,姜正平,等. 秸稈與粉煤灰復(fù)摻對(duì)混凝土性能的影響[J],混凝土與水泥制品,2020 (4):100-103. Chen Deng, Song Xuyan, Jiang Zhengping, et al. Effects of combined admixture of straw and fly ash on the properties of concrete[J]. China Concrete and Cement Products, 2020(4): 100-103. (in Chinese with English Abstract)
[6]程嵐. 雙摻秸稈灰鋼渣綠色混凝土配合比設(shè)計(jì)及性能研究[D]. 張家口:河北建筑工程學(xué)院,2019. Cheng Lan. Design and Performance Study of Green Concrete with Double Straw Ash and Steel Slag[D]. Zhangjiakou: Hebei University of Architecture, 2019. (in Chinese with English Abstract)
[7]許鵬,王正君,魏凌傲,等. 玉米秸稈灰生態(tài)多孔混凝土抗凍性能試驗(yàn)研究[J]. 水利科學(xué)與寒區(qū)工程,2018,1(8):6-10. Xu Peng, Wang Zhengjun, Wei Lin'gao, et al. Experimental study on freeze-thaw performance of eco-porous concrete with corn straw ash[J]. Hydro Science and Cold Zone Engineering, 2018, 1(8): 6-10. (in Chinese with English Abstract)
[8]戢嬌. 新型農(nóng)作物秸稈復(fù)合墻體的應(yīng)用研究[D]. 西安:西安科技大學(xué),2015. Ji Jiao. Application of New Crop Straw Composite wall[D]. Xi’an: Xi’an University of Science and Technology, 2015. (in Chinese with English Abstract)
[9]De Sensale G R. Effect of rice husk ash on mechanical behavior and durability of high-performance concrete[J]. Second International Conference on Engineering Materials, 2001(1): 521-532.
[10]Jauberthiea R, Rendella F, Tambab S, et al. Origin of the pozzolanic effect of rice husks[J]. Construction and Building Materials, 2000(14): 419-423.
[11]Liou T H. Preparation and characterization of nan-structured silica from rice husk[J]. Materials Science and Engineering A, 2004, 364(1/2): 313-323.
[12]楊一凡,何智海. 原狀稻殼灰及磨細(xì)灰對(duì)水泥膠砂強(qiáng)度和微觀結(jié)構(gòu)的影響[J]. 混凝土與水泥制品,2019(10):92-96. Yang Yifan, He Zhihai. Effect of undisturbed rice husk ash and ground ash on strength and microstructure of cement mortar[J]. China Concrete and Cement Products, 2019(10): 92-96. (in Chinese with English Abstract)
[13]蔣浩. 摻加稻殼灰的混凝土性能研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2019. Jiang Hao. Study on the Properties of Concrete Mixed with Rice Husk Ash[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese with English Abstract)
[14]張繼華,董云,蔣洋,等. 稻殼灰與高嶺土摻料對(duì)再生細(xì)骨料混凝土性能的影響[J]. 科學(xué)技術(shù)與工程,2018,18(13):294-298. Zhang Jihua, Dong Yun, Jiang Yang, et al. Effects of rice husk ash and kaolin admixture on the performance of recycled fine aggregate concrete[J]. Science Technology and Engineering, 2018, 18(13): 294-298. (in Chinese with English Abstract)
[15]王家旺,楊曉峰,劉國(guó)明,等. 優(yōu)化預(yù)處理及脫毒工藝以制備玉米芯半纖維素水解液[J]. 中國(guó)農(nóng)學(xué)通報(bào),2020,36(20):28-35. Wang Jiawang, Yang Xiaofeng, Liu Guoming, et al. Corncob hemicellulose hydrolysate: Optimized pretreatment and detoxification process[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 28-35. (in Chinese with English Abstract)
[16]王紹慶,李志合,易維明,等,活化赤泥催化熱解玉米芯木質(zhì)素制備高值單酚[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(13):203-211. Wang Shaoqing, Li Zhihe, Yi Weiming, et al. Catalytic pyrolysis of maize cob lignin over activated red mud catalyst for value-added mono-phenol production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 203-211. (in Chinese with English Abstract)
[17]Minal V, Parteek M, Dilbag S, et al. Recent developments in heterogeneous catalytic routes for the sustainable production of succinic acid from biomass resources[J]. ChemSusChem, 2020, 13(16): 4026-4034
[18]范博文,張俊瑩,趙長(zhǎng)江,等. 不同玉米芯基質(zhì)預(yù)處理方式對(duì)猴頭菌生長(zhǎng)的影響[J]. 黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),2020,32(4):8-14. Fan Bowen, Zhang Junying, Zhao Changjiang, et al. Effects of different corncob pretreatment methods on the growth of hericium erinaceus[J]. Journal of Heilongjiang Bayi Agricultural University, 2020, 32(4): 8-14. (in Chinese with English Abstract)
[19]房曉燕,王獻(xiàn)杰,張相松,等. 辣椒稈玉米芯復(fù)合基質(zhì)栽培平菇配方試驗(yàn)[J]. 食用菌,2020,42(4):36-39.
[20]何香凝,劉娜,安曉萍,等. 發(fā)酵玉米芯在反芻動(dòng)物中的研究進(jìn)展[J],飼料研究,2019(12):102-104. He Xiangning, Liu Na, An Xiaoping, et al. Research progress of fermented corn cob in ruminants feeding[J]. Feed Research, 2019(12): 102-104. (in Chinese with English Abstract)
[21]Minkwan Ju, Kyoungsoo Park, Won-Jun Park. Mechanical behavior of recycled fine aggregate concrete with high slump property in normal- and high-strength[J]. International Journal of Concrete Structures and Materials, 2019, 13(1): 1-13.
[22]郭遠(yuǎn)新,李秋義,岳公冰,等. 考慮粗骨料品質(zhì)和取代率的再生混凝土抗壓強(qiáng)度計(jì)算[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2018,39(4):153-159. Guo Yuanxin, Li Qiuyi, Yue Gongbing, et al. Calculation of compressive strength of recycled concrete based on coarse aggregate quality and replacement rate[J]. Journal of Building Structures, 2018, 39(4): 153- 159. (in Chinese with English Abstract)
[23]肖建莊,張凱建,胡博,等. 基于可靠度分析的再生混凝土材料分項(xiàng)系數(shù)[J]. 工程力學(xué),2017,34(6):82-91. Xiao Jianzhuang, Zhang Kaijian, Hu Bo, et al. Reliability-based study on partial coefficient of recycled aggregate concrete[J]. Engineering Mechanics, 2017, 34(6): 82-91. (in Chinese with English Abstract)
[24]沈衛(wèi)國(guó),周明凱. 蔗糖對(duì)水泥水化過(guò)程影響機(jī)理研究[J],建筑材料學(xué)報(bào),2007,10(5):566-572. Shen Weiguo, Zhou Mingkai. Influence mechanism of sucrose on hydration process of portland cement[J]. Journal of Building Materials, 2007, 10(5): 566-572. (in Chinese with English Abstract)
[25]張勝標(biāo),李偉峰,馬素花,等. 麥芽糖對(duì)硅酸鹽水泥性能及水化過(guò)程的影響[J]. 混凝土,2013,289(11):7-10. Zhang Shengbiao, Li Weifeng, Ma Suhua, et al. Influence of maltose on performance and hydration of portland cement[J]. Concrete, 2013, 289(11): 7-10. (in Chinese with English Abstract)
Preparation and properties of ecological concrete with maize-cob aggregate
Ji Xiaoshan, Li Qiuyi, Liu Juan※
(,,266109,)
52 million tons of maize cobs are produced behind a huge annual output of maize each year in China. A maize cob was normally estimated as 21% of a whole maize. Previous maize cobs are generally discarded or burned as fuel, wasting natural biomass resources, while seriously polluting the environment. Currently, most maize cobs with a low utilization rate are used in the field of feeding, fungus planting, and chemical industry. Actually, maize cobs can serve as insulation materials or non-load-bearing structures, due to the high toughness, moderate strength, sound and heat insulation from the naturally porous structure. But only a few studies were focused on the utilization of maize cobs in construction. Waste concrete after crushing and screening can be an alternative way to prepare recycled aggregates with maize cobs in rural areas. In this study, a light and heat-preservation ecological concrete was fabricated, where maize cobs were broken into particles to serve as coarse aggregates in recycled mortar. The particle gradation of maize-cob aggregate was analyzed under various cement-sand ratios and maize-cob volume contents. A field test was also conducted to evaluate the performances of ecological concrete. The results show that the ecological concrete behaved a high strength with the reasonable particle gradation, when the mass ratio for the small and large particles of maize cob was 1∶1.5. There was little influence of cement-sand ratio on the dry density of ecological concrete. But the recycled sand contributed to the decrease of thermal conductivity and strength. The dry density, thermal conductivity, and strength of ecological concrete decreased obviously with the increase of maize-cob volume content. In the field test, the dry density of ecological concrete was 1 200-1 550 kg/m3, while the thermal conductivity was 0.20-0.26 W/m·K, and the 28d strength was 2.0-5.7 MPa. The thermal conductivity was positively correlated with the 28 d strength of ecological concrete, while both increased as the dry density increased. Ecological concrete with maize-cob aggregate can be expected to replace traditional building material in agricultural and rural construction, due to its light weight, thermal insulation, and high strength. The utilization of maize cobs in ecological concrete can alleviate agricultural wastes occupies and incineration pollution. The treatment of maize cob and recycled sand can also promote the recycling use of solid wastes in agriculture and construction in rural areas.
ecological concrete; composite materials; maize cob; recycled cement mortar; particle gradation
冀曉珊,李秋義,劉娟. 玉米芯骨料生態(tài)混凝土的制備及性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(6):289-294.doi:10.11975/j.issn.1002-6819.2021.06.035 http://www.tcsae.org
Ji Xiaoshan, Li Qiuyi, Liu Juan. Preparation and properties of ecological concrete with maize-cob aggregate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 289-294. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.035 http://www.tcsae.org
2020-11-09
2021-02-28
國(guó)家自然科學(xué)基金面上項(xiàng)目(51878366,52078261);山東省自然科學(xué)基金重大基礎(chǔ)研究項(xiàng)目(ZR2017ZC0737);青島市科技惠民示范引導(dǎo)專項(xiàng)(20-3-4-10-nsh)
冀曉珊,研究方向?yàn)樯鷳B(tài)混凝土性能及利用。Email:1500076992@qq.com
劉娟,講師,研究方向?yàn)檗r(nóng)業(yè)固體廢棄物資源化利用和開(kāi)發(fā)。Email:349604216@qq.com
10.11975/j.issn.1002-6819.2021.06.035
TU528
A
1002-6819(2021)-06-0289-06