羅玉琴,韋燕菊,林 琳,3,林馥茗,3,蘇 峰,孫威江,3
·農(nóng)產(chǎn)品加工工程·
基于GC-IMS技術(shù)的福建白茶產(chǎn)地判別
羅玉琴1,韋燕菊2,林 琳1,3,林馥茗2,3,蘇 峰4,孫威江1,3※
(1. 福建農(nóng)林大學園藝學院,福州 350002;2. 福建農(nóng)林大學安溪茶學院,泉州 362400;3. 福建省茶產(chǎn)業(yè)技術(shù)開發(fā)基地,福州 350002;4. 福建省種植業(yè)技術(shù)推廣總站,福州 350003)
為了實現(xiàn)福建省白茶產(chǎn)地的快速鑒別,采用氣相色譜-離子遷移譜(Gas Chromatography-Ion Mobility Spectrometry,GC-IMS)技術(shù)對福建不同產(chǎn)地白茶揮發(fā)性物質(zhì)進行檢測,結(jié)合化學計量學方法建立白茶產(chǎn)地判別模型。結(jié)果表明,福鼎、福安、政和、建陽和松溪各產(chǎn)地間白茶揮發(fā)性物質(zhì)含量存在差異,政和、建陽和松溪3地制成的白茶樣品相似度相對較高。GC-IMS譜圖數(shù)據(jù)和241種標記物質(zhì)數(shù)據(jù)均可用于白茶產(chǎn)地區(qū)分。GC-IMS譜圖數(shù)據(jù)建立的K近鄰線性判別分析(K-near Neighbor Linear Discriminant Analysis,LDA-KNN)、多層感知機線性判別分析(Multi-layer Perceptron Linear Discriminant Analysis,LDA-MLP)和支持向量機線性判別分析(Support Vector Machine Linear Discriminant Analysis,LDA-SVM)模型判別率分別為91.84%、93.88%和93.88%;標記物質(zhì)建立的Adaboost線性判別分析(LDA-Adaboost)、決策樹線性判別分析(LDA-Decison Tree)、LDA-KNN、LDA-MLP、隨機森林線性判別分析(LDA-Random Forest)和LDA-SVM模型判別率均為100%。結(jié)果表明基于標記物質(zhì)數(shù)據(jù)建立的6種模型能更有效對白茶產(chǎn)地進行區(qū)分。研究結(jié)果為福建白茶原產(chǎn)地保護提供技術(shù)支持。
判別分析方法;風味;氣相色譜離子遷移譜;白茶;揮發(fā)性物質(zhì)
白茶依據(jù)原料采摘標準不同,可分為白毫銀針、白牡丹、貢眉和壽眉[1]。白茶主產(chǎn)于福建閩東的福鼎、福安和閩北的政和、建陽、松溪等地。由于白茶的加工工藝基本一致,同一花色白茶外形相似,消費者依靠肉眼無法直接識別其產(chǎn)地。隨著白茶市場升溫,消費者越來越熱衷于購買核心茶區(qū),特別是福鼎產(chǎn)地的優(yōu)質(zhì)白茶,福鼎白茶供不應(yīng)求,不良商家以次充好、亂貼標簽造成市場紊亂,損害消費者和生產(chǎn)者權(quán)益[2]。因此亟需研發(fā)相應(yīng)的檢測手段來判別白茶產(chǎn)品產(chǎn)地,以規(guī)范白茶茶葉市場。
目前用于茶葉產(chǎn)地鑒別的檢測技術(shù)主要有高效/超高效液相色譜[3-7],核磁共振波譜[8],傅里葉變換近紅外、紅外光譜[3,9-12],礦物質(zhì)元素[13-14],元素[15-16]與穩(wěn)定同位素[17-18],質(zhì)子轉(zhuǎn)移反應(yīng)-飛行時間質(zhì)譜[19],電子鼻[20],氣相色譜離子遷移譜技術(shù)(Gas Chromatography-Ion Mobility Spectrometry,GC-IMS)[21]等。有研究表明礦物質(zhì)元素可以用于白茶產(chǎn)地判別,利用線性判別分析(Linear Discriminant Analysis,LDA)、支持向量機(Support Vector Machine,SVM)和K-最近鄰(K-nearest Neighbors,KNN)方法建立的白茶產(chǎn)地鑒別率分別達到98.44%、95.31%和100%[17]。該方法雖然產(chǎn)地鑒別效果好,但也存在操作復雜,檢測速度慢的缺點。氣相色譜離子遷移譜是一種快速、靈敏、無損的揮發(fā)性有機物檢測技術(shù),它兼具氣相色譜的高分離能力和離子遷移譜的高分辨、高靈敏度,能夠分離化合物的同分異構(gòu)體,與氣相色譜-質(zhì)譜(Gas Chromatography-Mass Spectrometry,GC-MS)相比,具有不需要樣品前處理,操作簡單的優(yōu)勢[22-23]。GC-IMS被廣泛應(yīng)用于食品如橄欖油[24-25]、火腿[26]、蜂蜜風味分析[27]和酒[28-29]、水蜜桃[30]、咖啡[31]等產(chǎn)地區(qū)分中。在茶葉領(lǐng)域多應(yīng)用于綠茶揮發(fā)性物質(zhì)定性、綠茶風味、香型分類以及烏龍茶產(chǎn)地鑒別[21,32-34]。林若川等[33]、劉亞芹等[34]采用氣相色譜-離子遷移譜技術(shù)檢測綠茶揮發(fā)性物質(zhì),結(jié)果表明不同種類綠茶揮發(fā)性物質(zhì)種類和含量存在差異,利用GC-IMS技術(shù)可以區(qū)分綠茶種類。Jin等[21]研究結(jié)果表明采用GC-IMS技術(shù)建立的閩北3個小產(chǎn)區(qū)大紅袍模型正判率優(yōu)于穩(wěn)定同位素產(chǎn)地判別模型?;诖耍狙芯坎捎肎C-IMS技術(shù)對福建5個不同產(chǎn)地白茶揮發(fā)性物質(zhì)進行檢測,結(jié)合化學計量學方法建立白茶產(chǎn)地判別模型,以期為白茶產(chǎn)地鑒別和原產(chǎn)地保護提供參考依據(jù)。
從福建省福鼎市、福安市、政和縣、建陽縣和松溪五地采購共98份白牡丹白茶茶樣,除建陽縣部分白茶茶樣于2018年加工制成,其他白茶茶樣均于2019年加工而成。其中福鼎市30份、福安市28份、政和縣22份、建陽縣13份、松溪縣5份茶樣。
FlavourSpec?風味譜儀,德國G.A.S.公司;高速粉碎機,上海鼎廣機械設(shè)備有限公司;BSA124S 電子天平,德國Sartorius公司。
1.3.1 GC-IMS譜圖的采集
采用高速粉碎機將茶樣研磨成粉,置4 ℃冰箱備用。稱?。?.2000±0.0005) g茶樣,裝入20 mL磁蓋頂空瓶中。在孵化器中以80 ℃溫度、500 r/min振動孵化15 min,通過80 ℃注射器將200L樣品頂空自動注入GC-IMS設(shè)備中。配備氣相色譜柱FS-SE-54-CB-1進行色譜分離,以氮氣(純度99.99%)為載氣,程序運行流量:初始漂移氣體流速EPC1為150 mL/min,載氣流速EPC2為2 mL/min,運行10 min后EPC1維持150 mL/min,EPC2流量爬升至10 mL/min,運行至30 min 時EPC1為150 mL/min,EPC2為130 mL/min,在30 min 20 s時結(jié)束運行程序,每個樣品檢測2次。
1.3.2 數(shù)據(jù)分析
使用德國GAS公司的LAV2.2.1軟件對處理數(shù)據(jù),GCxIMS Library Search軟件鑒定茶樣中所含香氣揮發(fā)物,LAV軟件和GraphPad Prism8軟件分別生成樣品揮發(fā)性物質(zhì)指紋譜圖、樣品相似匹配度圖。利用Python軟件對白茶兩種GC-IMS數(shù)據(jù)進行主成分分析(Principal Component Analysis,PCA)、線性判別分析降維(LDA)。第一種數(shù)據(jù)類型為原始譜圖數(shù)據(jù):利用LAV軟件將原始數(shù)據(jù)導出轉(zhuǎn)換成*.CSV格式,每個樣品數(shù)據(jù)矩陣大小為4 615×4 500(保留時間0~1 799.46 s,遷移時間0~29.993 ms),截取包含大多數(shù)分析信息的數(shù)據(jù)矩陣2 039×991(保留時間105.00~900.00 s,遷移時間8.000~14.600 ms)。首先將每一行數(shù)據(jù)剪切轉(zhuǎn)置粘貼生成1×2 020 649大小的數(shù)據(jù)矩陣。然后,將全部樣品譜圖數(shù)據(jù)整合成一個數(shù)據(jù)集矩陣[24]。第二種數(shù)據(jù)類型為揮發(fā)性物質(zhì)峰強度值:在GC-IMS圖譜上共標記出241個揮發(fā)性物質(zhì),通過LAV定量插件自動獲取樣品的揮發(fā)性物質(zhì)峰強度值,每個樣品生成1×241大小的數(shù)據(jù)矩陣,整合全部樣品生成600×241數(shù)據(jù)集矩陣。
結(jié)合Adaboost算法、決策樹(Decision Tree)、K近鄰算法(KNN)、多層感知機(Multi-Layer Perceptron,MLP)、隨機森林算法(Random Forest)、隨機梯度下降(Stochastic Gradient Descent,SGD)和支持向量機(SVM)分類方法建立白茶產(chǎn)地判別模型。
圖1是采用LAV插件Reporter作的不同產(chǎn)地白茶GC-IMS三維譜圖,圖中每一個峰都代表一種揮發(fā)性香氣物質(zhì)。白色為譜圖背景色,顏色代表物質(zhì)的峰信號強度,深灰色表示峰信號強、物質(zhì)濃度較高,顏色越深則物質(zhì)濃度越高,淺灰色表示峰信號弱,物質(zhì)濃度較低。如圖1,不同產(chǎn)地白茶其揮發(fā)性香氣物質(zhì)組成是相同的,但在其物質(zhì)含量上存在差異。
通過LAV軟件在GC-IMS圖譜中共標記了241種揮發(fā)性香氣物質(zhì),根據(jù)氣相保留時間和離子遷移時間,利用GCxIMS Library Search軟件對物質(zhì)進行NIST數(shù)據(jù)庫匹配,共鑒定出41種揮發(fā)性物質(zhì)的單體和部分物質(zhì)的二聚體、三聚體。其中碳氫化合物1種,醇、醛類各14種,酮類3種,酯類2種,酸類4種,雜氧化合物1種,吡嗪類2種(表1)。
表1 白茶中部分揮發(fā)性物質(zhì)定性結(jié)果
圖2是不同產(chǎn)地白茶的GC-IMS二維譜圖對比,以福鼎白茶譜圖做為參比,其他茶樣譜圖扣除參比。由圖2可知,福鼎白茶的大部分香氣物質(zhì)含量較其他4個產(chǎn)地白茶高,而松溪產(chǎn)地白茶只有少數(shù)的香氣物質(zhì)含量高于其他各產(chǎn)區(qū)地白茶(見圖2b)。圖2a中標注的紅色方框內(nèi)揮發(fā)性香氣物質(zhì)在福安、政和、建陽和松溪產(chǎn)地白茶中含量較高,而在福鼎白茶中含量相對較低;藍色方框內(nèi)揮發(fā)性香氣物質(zhì)在福鼎白茶中含量較高,而在其他4個產(chǎn)地中含量相對較低。
為了進一步比較不同產(chǎn)地白茶之間揮發(fā)性香氣物質(zhì)差異,以福鼎白茶(樣品編號1、2)、福安白茶(樣品編號1、2)、政和白茶(樣品編號1、2)、建陽白茶(樣品編號1、2)和松溪白茶(樣品編號1、2)為例,通過LAV-Gallery軟件生成GC-IMS指紋圖譜。由圖3a部分可知,不同產(chǎn)地白茶揮發(fā)性香氣物質(zhì)中2-乙基-6-甲基吡嗪和水楊酸甲酯含量差異不大。芳樟醇、青葉醇、己醛、苯甲醛、庚醛、2-庚酮、2-正戊基呋喃和檸檬烯在福鼎白茶中含量較高。氧化芳樟醇、2-苯基乙醇和6-甲基-5-庚烯-2-酮在福安白茶中含量較高。正辛醇、正己醇、癸醛、(E,E)-2,4-庚二烯醛、正辛醛、反-2-辛烯醛、反式-2-庚醛、糠醛、戊醛和辛酸在政和白茶中含量較高。在圖3b部分中,不同產(chǎn)地白茶共有53種高含量特征揮發(fā)性未知物質(zhì),其中福鼎白茶29種,福安白茶9種,政和白茶6種,建陽白茶2種,松溪白茶7種。未知物質(zhì)編號“88”和“89”未知香氣物質(zhì)在福鼎白茶和福安白茶中含量遠高于其他3個產(chǎn)地,而編號“78”在政和白茶和松溪白茶中含量遠高于福鼎、福安和建陽產(chǎn)地白茶。不同產(chǎn)地白茶各有其區(qū)別于其他產(chǎn)地白茶的高含量特征揮發(fā)性物質(zhì),可以用于白茶產(chǎn)地判別模型的建立。
基于圖3a中69種揮發(fā)性標記物質(zhì)含量對196份白茶樣品進行相似度分析,結(jié)果如圖4,顏色越深,相似度越高,顏色越淺,樣品差異性越大。同一產(chǎn)地樣品相似度大部分在80%~100%之間,少部分樣品相似度為66%~79%。不同產(chǎn)地樣品相似度大部分在64%~85%,極少部分組間樣品相似度為90%。組內(nèi)樣品相似度高,組間樣品差異性大。產(chǎn)自福鼎、福安的白茶與政和、建陽、松溪產(chǎn)地白茶樣品相似度較低,揮發(fā)性香氣物質(zhì)含量差異較大。而政和、建陽和松溪3個產(chǎn)地生產(chǎn)的白茶樣品相似度相對較高,揮發(fā)性香氣物質(zhì)含量差異較小。
PCA是一種無標簽的數(shù)據(jù)降維方法,將多個原始指標化為少數(shù)幾個新指標,并能最大限度保留樣本原始信息[35]。而LDA是一種有監(jiān)督的降維分類方法,能抓住樣品判別特征,判別樣品所屬類別[36]。采用PCA、LDA對196個樣品進行數(shù)據(jù)降維處理,由于松溪建陽產(chǎn)地樣品數(shù)量過少,將松溪建陽產(chǎn)地樣品歸為一類(圖 5)。圖5a、c為不同產(chǎn)地白茶數(shù)據(jù)PCA降維結(jié)果,其中篩選譜圖數(shù)據(jù)PC1、PC2累計貢獻率為36%,標記物質(zhì)PC1、PC2累計貢獻率為47%。各產(chǎn)地白茶分布存在交叉,基于標記物PCA產(chǎn)地區(qū)分效果優(yōu)于篩選譜圖數(shù)據(jù)的PCA產(chǎn)地區(qū)分。在圖5b、d中,不同產(chǎn)地白茶各有其自己的聚類群。福鼎白茶和福安白茶各自區(qū)分,政和白茶和建陽松溪白茶樣本相似度較高,區(qū)分效果較福鼎、福安白茶差。同PCA降維結(jié)果相同,基于標記物LDA產(chǎn)地區(qū)分效果優(yōu)于篩選譜圖數(shù)據(jù)的LDA產(chǎn)地區(qū)分。
鑒于LDA降維效果優(yōu)于PCA主成分分析,本文采用LDA對樣本數(shù)據(jù)進行降維,基于兩種類型數(shù)據(jù)結(jié)合不同分類方法建立白茶產(chǎn)地判別模型。隨機抽取196份不同產(chǎn)地白茶樣品的75%樣品作為訓練集,剩余25%樣本數(shù)作為測試集。將篩選的譜圖數(shù)據(jù)輸入LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest、LDA-SGD和LDA-SVM模型,各模型產(chǎn)地識別率分別為85.71%、85.71%、91.84%、93.88%、89.80%、79.59%和93.88% (表2)。LDA-Adaboost、LDA-Decision Tree、LDA-Random Forest和LDA-SGD模型產(chǎn)地判別率低,均低于90%,且LDA-Decision Tree、LDA-Random Forest模型存在數(shù)據(jù)過擬合問題。LDA-KNN、LDA-MLP和LDA-SVM模型受試者工作特征曲線(ROC)下的面積(AUC)分別為0.93、0.96、0.96,其產(chǎn)地模型性能好,產(chǎn)地判別率均高于90%,產(chǎn)地識別正確率高。結(jié)果表明選擇香氣譜圖數(shù)據(jù)可用于白茶產(chǎn)地的區(qū)分。
同譜圖數(shù)據(jù)模型一致,以3∶1的比例將196份白茶樣品分為訓練樣和測試樣。將241種標記揮發(fā)性物質(zhì)的峰強度值輸入LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest、LDA-SGD和LDA-SVM模型,7種模型的產(chǎn)地識別率分別為100%、100%、100%、100%、100%、79.59%和100%(表2)。LDA-SGD模型產(chǎn)地判別率低,政和、松溪建陽產(chǎn)地白茶未被完全分隔開。LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest和LDA-SVM模型ROC曲線下的面積(AUC)均為1.0,產(chǎn)地判別率均為100%。其產(chǎn)地模型性能好,產(chǎn)地識別正確率高。綜上,采用標記物質(zhì)峰強度值對白茶產(chǎn)地進行分類是可行的,且基于標記物質(zhì)建立的產(chǎn)地模型正判率高于基于篩選譜圖數(shù)據(jù)建立的產(chǎn)地判別模型。
表2 白茶產(chǎn)地模型判別結(jié)果
注:AUC為受試者工作特征曲線下的面積,AUC值越大,模型性能越好。
Note: AUC is the area under the receiver operating characteristic curve, the higher the AUC value was, the better the model performed.
本研究采用GC-IMS技術(shù)對不同產(chǎn)地白茶揮發(fā)性香氣物質(zhì)進行檢測,共鑒定出41種香氣物質(zhì),白茶香氣成分主要以醇類、醛類化合物為主。許紹香[37]、王力等[38]研究結(jié)果也表明白茶香氣主要以醇類、醛類化合物為主。通過不同產(chǎn)地白茶GC-IMS對比圖譜和揮發(fā)性香氣物質(zhì)指紋圖譜,初步確定福鼎白茶、政和白茶中高含量特征揮發(fā)性香氣物質(zhì)種類較福安、建陽、松溪產(chǎn)地白茶多。芳樟醇、2-庚酮、己醛三聚體、青葉醇等具有花果香、藥香、青草氣的揮發(fā)性物質(zhì)在福鼎白茶樣品中含量較高,正己醇二聚體、癸醛、正辛醛、反-2-辛烯醛、糠醛等在政和白茶樣品中含量較高。其中正己醇、癸醛、正辛醛、反-2-辛烯醛分別呈花香和松香、甜香、果香、果仁香和青氣、烘炒香[39-40]。具有花果香、甜香、木香的氧化芳樟醇在福安白茶中含量較高。不同產(chǎn)地白茶揮發(fā)性香氣物質(zhì)含量存在差異,這可能與茶樹品種、加工工藝有關(guān)[41-42]。
已有研究表明利用GC-IMS技術(shù)能準確確定綠茶茶樣的產(chǎn)地,基于GC-IMS的KNN模型對武夷山大紅袍、安溪鐵觀音產(chǎn)地判別率分別為95.2%和97.8%[21,32,34]。本研究基于兩種數(shù)據(jù)類型結(jié)合7種分類方法建立的白茶產(chǎn)地判別模型均能在一定程度上區(qū)分白茶產(chǎn)地,但不同模型具有不同的判別效果。在篩選譜圖數(shù)據(jù)模型中LDA-KNN、LDA-MLP和LDA-SVM判別率分別為91.84%、93.88%和93.88%,產(chǎn)地識別率均>90%。而在標記物質(zhì)模型中LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest和LDA-SVM判別率均為100%。基于標記物質(zhì)的白茶產(chǎn)地判別模型效果優(yōu)于篩選譜圖數(shù)據(jù)模型,Contreras等[24]基于兩種GC-IMS數(shù)據(jù)類型構(gòu)建橄欖油分類模型也進一步證明,使用標記物質(zhì)對橄欖油進行分類準確率更高。
此外,對比兩種GC-IMS數(shù)據(jù)模型中的誤判樣本發(fā)現(xiàn),多數(shù)誤判發(fā)生在政和白茶與松溪建陽白茶之間,在篩選譜圖數(shù)據(jù)LDA-Adaboost模型中1份松溪建陽白茶被誤判為福安白茶,而在標記物質(zhì)LDA-SGD模型中10份松溪建陽白茶被誤判為政和白茶。追溯白茶產(chǎn)區(qū)分布發(fā)現(xiàn)福鼎、福安屬于閩東茶區(qū),政和、建陽和松溪相接壤,同屬于閩北茶區(qū)[1]。福鼎、福安產(chǎn)地白茶識別率高,與政和、建陽和松溪產(chǎn)地白茶相互區(qū)分,可能與閩東、閩北地區(qū)地理氣候環(huán)境和主栽茶樹品種不同有關(guān)。政和、建陽、松溪產(chǎn)地白茶誤判率高可能與地理位置比鄰,制茶工藝相關(guān)。后期可通過增加產(chǎn)地樣本數(shù)量,進一步研究3個產(chǎn)地白茶的差異性,提高模型性能。
本研究結(jié)果表明不同產(chǎn)地白茶揮發(fā)性香氣物質(zhì)組成是相同的,但在其物質(zhì)含量上存在差異。產(chǎn)自福鼎、福安白茶的香氣組分含量與政和、建陽、松溪差異較大,而政和、建陽和松溪3地白茶香氣組分含量較相似?;诤Y選譜圖數(shù)據(jù)和標記物質(zhì)數(shù)據(jù)構(gòu)建的模型進行白茶產(chǎn)地判別是可行的,標記物質(zhì)數(shù)據(jù)構(gòu)建的LDA-Adaboost、LDA-Decision Tree、LDA-KNN、LDA-MLP、LDA-Random Forest和LDA-SVM模型正判率均為100%,而篩選譜圖數(shù)據(jù)構(gòu)建的LDA-KNN、LDA-MLP和LDA-SVM模型判別率在91%~94%之間,說明使用標記物質(zhì)數(shù)據(jù)建立產(chǎn)地判別模型能獲得更高的正判率。
[1] 危賽明. 白茶的產(chǎn)區(qū)和品質(zhì)特征[J]. 中國茶葉加工,2019,(3):77-78.
[2] 耳東. 呼之欲出的“福建白茶”[J]. 茶道,2018(9):29-31.
[3] 胡燕,齊桂年. 我國不同產(chǎn)地黑茶的FTIR指紋圖譜分析[J]. 核農(nóng)學報,2014,28(4):684-691. Hu Yan, Qi Guinian. Study on the FTIR fingerprinting of dark teas from different regions in China[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(4): 684-691. (in Chinese with English abstract)
[4] 邱曉紅,張丹丹,陳靜,等. 基于HPLC和模式識別方法的福建水仙茶產(chǎn)地判別分析[J]. 福建農(nóng)林大學學報:自然科學版,2017,46(3):260-264. Qiu Xiaohong, Zhang Dandan, Chen Jin, et al. Discriminant analysis of Fujian Shuixian tea based on HPLC and pattern recognition method[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2017, 46(3): 260-264. (in Chinese with English abstract)
[5] 成浩,王麗鴛,周健,等. 基于化學指紋圖譜的扁形茶產(chǎn)地判別分析研究[J]. 茶葉科學,2008,28(2):83-88. Cheng Hao, Wang Liyuan, Zhou Jian, et al. Discriminant classification of production area of flatten-shaped green tea based on multiple chemical fingerprint[J]. Journal of Tea Science, 2008, 28(2): 83-88. (in Chinese with English abstract)
[6] 范方媛,徐鵬程,李春霖,等. 基于HPLC多元指紋圖譜的龍井茶產(chǎn)地判別研究[J]. 中國食品學報,2019,19(10):278-285. Fan Fangyuan, Xu Pengcheng, Li Chunlin, et al. Studies on geographical discrimination of Longjing teas based on multiple HPLC fingerprints[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(10): 278-285. (in Chinese with English abstract)
[7] Navratilova K, Hrbek V, Kratky F, et al. Green tea: Authentication of geographic origin based on UHPLC-HRMS fingerprints[J]. Journal of Food Composition and Analysis, 2019, 78: 121-128.
[8] Meng W, Xu X, Cheng K, et al. Geographical origin discrimination of Oolong Tea (TieGuanYin, Camellia sinensis (L. ) O. Kuntze) using proton nuclear magnetic resonance spectroscopy and near-infrared spectroscopy[J]. Food Analytical Methods, 2017, 10(11): 3508-3522.
[9] 梁珣. 典型相關(guān)分析算法及其在茶葉產(chǎn)地識別中的應(yīng)用[D]. 杭州:中國計量大學,2017. Liang Xun. Canonical Correlation Analysis Algorithm and Its Application on Tea Origin Recognition[D]. Hangzhou: China Jiliang University, 2017. (in Chinese with English abstract)
[10] 占茉莉,李勇,魏益民,等. 應(yīng)用FT-IR光譜指紋分析和模式識別技術(shù)溯源茶葉產(chǎn)地的研究[J]. 核農(nóng)學報,2008,22(6):829-833. Zhan Moli, Li Yong, Wei Yimin, et al. Determination of the geographical origin of tea by ft-irspectroscopy analysis and pattern recognition technique[J]. Journal of Nuclear Agricultural Sciences, 2008, 22(6): 829-833. (in Chinese with English abstract)
[11] 于英杰,孫威江. 近紅外光譜及高光譜技術(shù)在茶葉上的應(yīng)用[J]. 亞熱帶農(nóng)業(yè)研究,2014,10(4):269-273. Yu Yingjie, Sun Weijiang. Advances in application of near-infrared spectroscopy and hyperspectral technology to tea[J]. Subtropical Agriculture Research, 2014, 10(4): 269-273. (in Chinese with English abstract)
[12] 李余進,李超,李家華,等. 基于近紅外光譜的普洱茶產(chǎn)地識別研究[J]. 湖北農(nóng)業(yè)科學,2020,59(5):138-141. Li Yujin, Li Chao, Li Jiahua, et al. Identification of Pu'er tea origin based on near infrared spectroscopy[J]. Hubei Agricultural Sciences, 2020, 59(5): 138-141. (in Chinese with English abstract)
[13] 宋向飛. 基于礦質(zhì)元素指紋圖譜技術(shù)的碧螺春茶產(chǎn)地溯源研究[D]. 南京:南京農(nóng)業(yè)大學,2018. Song Xiangfei. Study on the Geographical Origin of Biluochun Tea Based on Mineral Element Fingerprinting Technology[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract)
[14] 王潔,石元值,張群峰,等. 基于礦物元素指紋的龍井茶產(chǎn)地溯源[J]. 核農(nóng)學報,2017,31(3):547-558. Wang Jie, Shi Yuanzhi, Zhang Qunfeng, et al. Geographical origin discriminant of Longjing tea based on mineral element fingerprints[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(3): 547-558. (in Chinese with English abstract)
[15] 姚清華,顏孫安,張炳鈴,等. 基于稀土元素指紋分析的鐵觀音原產(chǎn)地溯源技術(shù)[J]. 食品安全質(zhì)量檢測學報,2018,9(2):265-269. Yao Qinghua, Yan Sunan, Zhang Bingling, et al. The origin traceability technology of Tieguanyin based on the fingerprint analysis of rare earth elements[J]. Journal of Food Safety & Quality, 2018, 9(2): 265-269. (in Chinese with English abstract)
[16] 楊純,顏鴻飛,呂小園,等. 元素指紋圖譜用于安化黑茶的原產(chǎn)地判別[J]. 食品科學,2020,41(16):286-291. Yang Chun, Yan Hongfei, Lu Xiaoyuan, et al. Geographical origin discrimination of Anhua dark tea by elemental fingerprint[J]. Food Science, 2020, 41(16): 286-291. (in Chinese with English abstract)
[17] Ye X H, Jin S, Wang D H, et al. Identification of the origin of white tea based on mineral element content[J]. Food Analytical Methods, 2017, 10(1): 191-199.
[18] 童成英,何守陽,丁虎. 茶葉產(chǎn)地與品質(zhì)的元素、同位素鑒別技術(shù)研究進展[J]. 生態(tài)學雜志,2018,37(5):1574-1583. Tong Chengying, He Shouyang, Ding Hu. Research progress of element and isotope identification technology for the origin and quality of tea[J]. Chinese Journal of Ecology, 2018, 37(5): 1574-1583. (in Chinese with English abstract)
[19] Zhang D, Wu W, Qiu X, et al. Rapid and direct identification of the origin of white tea with proton transfer reaction time-of-flight mass spectrometry[J/OL]. Rapid Communications in Mass Spectrometry, 2020, 34(20): e8830. [2020-12-25]https://doi.org/10.1002/rcm.8830
[20] 馬會杰,蔣賓,潘玉蘭,等. 電子鼻對不同產(chǎn)地名優(yōu)綠茶和紅茶香氣特征的判別研究[J]. 食品安全與檢測,2019,44(1):336-344. Ma Huijie, Jiang Bin, Pan Yulan, et al. Identification of aroma characteristics of famous green tea and black tea from various regions by electronic nose[J]. Food Science and Technology, 2019, 44(1): 336-344. (in Chinese with English abstract)
[21] Jin J, Zhao M, Zhang N, et al. Stable isotope signatures versus gas chromatography-ion mobility spectrometry to determine the geographical origin of Fujian Oolong tea (Camellia sinensis) samples[J]. European Food Research and Technology, 2020, 246(5): 955-964.
[22] 陳鑫郁,賀金娜,陳通,等. 氣相色譜離子遷移譜聯(lián)用技術(shù)在食用植物油品質(zhì)檢測中的應(yīng)用[J]. 食品安全質(zhì)量檢測學報,2018,9(2):396-401. Chen Xinyu, He Jinna, Chen Tong, et al. Application of gas chromatography-ion mobility spectrometry in quality determination of edible vegetable oil[J]. Journal of Food Safety & Quality, 2018, 9(2): 396-401. (in Chinese with English abstract)
[23] 陳彥憬,于建娜,敬國興,等. 氣相色譜-離子遷移譜技術(shù)在農(nóng)業(yè)領(lǐng)域的應(yīng)用[J]. 分析試驗室,2020,39(12):1480-1488. Chen Yanjing, Yu Jianna, Jing Guoxing, et al. Application of gas chromatography-ion mobility spectrometry in agriculture[J]. Chinese Journal of Analysis Laboratory, 2020, 39(12): 1480-1488. (in Chinese with English abstract)
[24] Contreras M, Jurado-campos N, Arce L, et al. A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS[J]. Food Chemistry, 2019, 288: 315-324.
[25] Gerhardt N, Schwolow S, Rohn S, et al. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, kNN, and SVM[J]. Food Chemistry, 2019, 278: 720-728.
[26] Arroyo-manzanares N, Martín-gómez A, Jurado-campos N, et al. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace – gas chromatography–ion mobility spectrometry[J]. Food Chemistry, 2018, 246: 65-73.
[27] Wang X, Yang S, He J, et al. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry[J]. Food Research International, 2019, 119: 960-967.
[28] Garrido-delgado R, Arce L, Guaman Av, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]. Talanta, 2011, 84(2): 471-479.
[29] 祁興普,陳通,劉萍,等. 基于氣相離子遷移譜黃酒產(chǎn)地識別的研究[J]. 食品工業(yè)科技,2019,40(22):273-281. Qi Xingpu, Chen Tong, Liu Ping, et al. Origin identification of yellow wine based on gas chromatography-ion mobility spectrometry[J]. Science and Technology of Food Industry, 2019, 40(22): 273-281. (in Chinese with English abstract)
[30] 于懷智,姜濱,孫傳虎,等. 頂空氣相離子遷移譜技術(shù)對不同產(chǎn)地水蜜桃的氣味指紋分析[J]. 食品與發(fā)酵工業(yè),2020,46(16):231-235. Yu Huaizhi, Jiang Bin, Sun Chuanhu, et al. Analysis of nectarine odor fingerprints based on headspace-gas chromatography-ion mobility spectroscopy[J]. Food and Fermentation Industries, 2020, 46(16): 231-235. (in Chinese with English abstract)
[31] 弘子姍,譚超,苗玥,等. 基于頂空氣相色譜-離子遷移譜的不同產(chǎn)地咖啡揮發(fā)性有機物指紋圖譜分析[J]. 食品科學,2020,41(8):243-249. Hong Zishan, Tan Chao, Miao Yue, et al. Fingerprint analysis of volatile organic compounds in coffees from different geographical origins by headspace-gas chromatography-ion mobility spectrometry[J]. Food Science, 2020, 41(8): 243-249. (in Chinese with English abstract)
[32] 霍羽佳,任芳,陳碩. 氣相離子遷移譜(GC-IMS):基于揮發(fā)性化合物指紋信息的茶葉質(zhì)量評估新技術(shù)[C]. 青島:第八屆食品質(zhì)量安全技術(shù)論壇,2017. Huo Yujia, Ren Fang, Chen Shuo. Quality assessment of tea based on volatile compounds fingerprint using GC-IMS analysis[C]. Qingdao: The 8th Forum on food quality and safety technology, 2017. (in Chinese with English abstract)
[33] 林若川,鄧榕,許麗蓉. 基于GC-IMS技術(shù)的綠茶風味鑒別方法可行性的研究[J]. 廣東化工,2017,44(23):19-21. Lin Ruochuan, Deng Rong, Xu Lirong. Feasibility study of green tea flavor identification based on GC-IMS technology[J]. Guangdong Chemical Industry, 2017, 44(23): 19-21. (in Chinese with English abstract)
[34] 劉亞芹,王輝,黃建琴,等. GC-IMS在綠茶揮發(fā)性物質(zhì)定性分析中的應(yīng)[J]. 中國茶葉加工,2020(1):55-59. Liu Yaqin, Wang Hui, Huang Jianqin, et al. Application of GC-IMS in qualitative analysis of volatile compounds in green tea[J]. China Tea Processing 2020(1): 55-59. (in Chinese with English abstract)
[35] 吳景社,康紹忠,王景雷,等. 基于主成分分析和模糊聚類方法的全國節(jié)水灌溉分區(qū)研究[J]. 農(nóng)業(yè)工程學報,2004,20(4):64-68. Wu Jingshe, Kang Shaozhong, Wang Jinglei, et al. Zoning of water-saving irrigation in China using principal components analysis and fuzzy-C-means[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2004, 20(4): 64-68. (in Chinese with English abstract)
[36] 王曉慧. 線性判別分析與主成分分析及其相關(guān)研究評述[J]. 中山大學研究生學刊:自然科學、醫(yī)學版,2007,28(4):50-61. Wang Xiaohui. A summary of LDA, PCA and relative work[J]. Journal of the Graduates Sun Yat-Sen University: Natural Sciences、Medicine, 2007, 28(4): 50-61. (in Chinese with English abstract)
[37] 許紹香. 白牡丹工藝優(yōu)化與香氣分析研究[D]. 北京:中國農(nóng)業(yè)科學院,2012. Xu Shaoxiang. Technology Optimization of Baimudan and Its Aroma Analysis[D]. Beijing: Chinese Academy of Agricultural Sciences(CAAS), 2012. (in Chinese with English abstract)
[38] 王力,蔡良綏,林智,等. 頂空固相微萃取-氣質(zhì)聯(lián)用法分析白茶的香氣成分[J]. 茶葉科學,2010,30(2):115-123. Wanf Li, Cai Liangsui, Lin Zhi, et al. Analysis of aroma compounds in white tea using headspace solid-phase micro-extraction and GC-MS[J]. Journal of Tea Science, 2010, 30(2): 115-123. (in Chinese with English abstract)
[39] 陳維,曾斌,苗愛清,等. 基于化學計量學分析堆青時間對白茶香氣的影響[J]. 現(xiàn)代食品科技,2018,34(5):241-250. Chen Wei, Zeng Bin, Miao Aiqing, et al. Effect of pile-up processing duration on the white tea aroma analyzed by chemometrics approaches[J]. Modern Food Science and Technology, 2018, 34(5): 241-250. (in Chinese with English abstract)
[40] 陳志達. 白茶風味品質(zhì)的物質(zhì)基礎(chǔ)與量化評價研究[D]. 杭州:浙江大學,2019. Chen Zhida. Research on the Material Basis and Quantitative evaluation of the Flavor Quality of White Tea[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract)
[41] 黃赟. 福建白茶化學成分與感官品質(zhì)研究初報[D]. 福州:福建農(nóng)林大學,2013. Huang Yun. Studies on Chemical Components and Sensory Qualities of Fujian White Teas[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese with English abstract)
[42] 王麗麗,張應(yīng)根,楊軍國,等. 頂空固相微萃取/氣相色譜:質(zhì)譜聯(lián)用法分析綠茶和白茶香氣物質(zhì)[J]. 茶葉學報,2017,58(1):1-7. Wang Lili, Zhang Yinggen, Yang Junguo, et al. Analysis of aroma components in green and white teas using headspace solidPhase microextraction coupled with gas chromatography-mass spectrometry[J]. Acta Tea Sinica, 2017, 58(1): 1-7. (in Chinese with English abstract)
Origin discrimination of Fujian white tea using gas chromatography-ion mobility spectrometry
Luo Yuqin1, Wei Yanju2, Lin lin1,3, Lin Fuming2,3, Su Feng4, Sun Weijiang1,3※
(1.,,350002,;2.,,362400,;3.,350002,;4.350003,)
White tea is one of the six categories of tea. Fresh leaf picking, withering and drying are the three basic processing technology of white tea, which are relatively simple. White tea originated in Fujian Province, mainly produced in Fuding City, Zhenghe County, Jianyang county and Songxi County. Aroma is one of the important factors that determine the quality of tea. The main aroma components of Yunnan Yueyue white tea and Fujian Baihao Yinzhen tea were reported, but the differences of volatile aroma components of white tea from different main producing areas in Fujian Province were not clear. Gas Chromatography Ion Mobility Spectrometry (GC-IMS) is a new gas phase separation and detection technology in recent years, which has high resolution of gas chromatography and low detection limit of ion mobility spectrometry. In order to reveal the different volatile aroma components of white tea from different areas in Fujian Province, and to realize the rapid identification of white tea producing areas, GC-IMS technology was used to detect the volatile components of white tea from different areas in Fujian Province. Meanwhile, Linear Discriminant Analysis (LDA) was carried out to reduce the dimension of aroma data, and established a discrimination model of white tea producing areas combined with chemometrics method. The results showed that the contents of volatile compounds in white tea among the producing areas of Fuding, Fu’an, Zhenghe, Jianyang and Songxi were different. The white tea samples of Zhenghe, Jianyang and Songxi had higher similarity, and lower content of volatile aroma substances. Both GC-IMS spectrum data and 241 kinds of labeled aroma compounds data could be used to distinguish the origin of white tea, and LDA based on marker material data was better than it based on GC-IMS spectrum data. The discriminant rates of K Near Neighbor Linear Discriminant Analysis (LDA-KNN), Multi-Layer Perceptron Linear Discriminant Analysis (LDA-MLP) and Support Vector Machine Linear Discriminant Analysis (LDA-SVM) model based on the GC-IMS spectrum data were 91.84%,93.88% and 93.88%, respectively. By comparing the three patterns of misjudgment samples, it was found that the origin misjudgment occurred between Zhenghe white tea and Songxi Jianyang white tea, which was related to the small difference of volatile aroma components and high similarity of samples. The results showed that the discriminant rates of Adaboost Linear Discriminant Analysis (LDA-Adaboost), Decision Tree Linear Discriminant Analysis (LDA-Decison Tree), LDA-KNN, LDA-MLP, Random Forest Linear Discriminant Analysis (LDA-Random Forest) and LDA-SVM were 100%. The positive discrimination rate of the origin model based on the marker substance was higher than that based on the GC-IMS spectrum data. All six discriminant models based on the labelled substances data could effectively distinguish the origin of white tea. The results of this study can provide technical support for the origin protection of Fujian white tea.
discriminant analysis; flavors; gas chromatography ion mobility spectroscopy; white tea; volatile matter
羅玉琴,韋燕菊,林琳,等. 基于GC-IMS技術(shù)的福建白茶產(chǎn)地判別[J]. 農(nóng)業(yè)工程學報,2021,37(6):264-273.doi:10.11975/j.issn.1002-6819.2021.06.032 http://www.tcsae.org
Luo Yuqin, Wei Yanju, Lin lin, et al. Origin discrimination of Fujian white tea using gas chromatography-ion mobility spectrometry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 264-273. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.032 http://www.tcsae.org
2020-10-27
2020-12-30
省級科技項目(2020N3014);福建農(nóng)林大學茶產(chǎn)業(yè)鏈科技創(chuàng)新與服務(wù)體系建設(shè)項目(K1520005A04)聯(lián)合資助
羅玉琴,研究方向為茶葉品質(zhì)與檢測。Email:756445997@qq.com
孫威江,教授。研究方向為茶葉品質(zhì)與標準化。Email:swj8103@126.com。
10.11975/j.issn.1002-6819.2021.06.032
S37
A
1002-6819(2021)-06-0264-10