董靖川,郭健鑫,劉?喆,譚志蘭,王太勇
具有軸向動態(tài)約束的NURBS路徑進給速度規(guī)劃
董靖川,郭健鑫,劉?喆,譚志蘭,王太勇
(天津大學機械工程學院,天津 300354)
在傳統(tǒng)速度規(guī)劃方法中,軸向加速度約束通常是定值約束,不能充分發(fā)揮機床軸向加減速性能,影響加工效率.對此提出了一種新的考慮軸向加速度動態(tài)約束的進給速度規(guī)劃算法.首先,對NURBS曲線路徑進行弧長自適應(yīng)二分離散處理,獲得弧長參數(shù)和采樣點.之后,構(gòu)建切向速度、加速度、加加速度約束和軸向加速度動態(tài)約束的優(yōu)化模型,對采樣點的多約束模型進行兩次線性規(guī)劃求解,得到采樣點的優(yōu)化進給速度.通過兩次線性規(guī)劃和軸向轉(zhuǎn)矩參考處理,計算各軸在不同速度下的加速度上下極限動態(tài)約束,在提高加工效率同時沒有增加搜索最優(yōu)值的約束條件,具有較高計算效率.最后,對采樣點進行樣條擬合得到進給速度規(guī)劃曲線.與傳統(tǒng)定值約束規(guī)劃對比實驗的結(jié)果表明,所提算法犧牲最大輪廓誤差2.63%,使加工時間降低了16.34%,提高加工效率的同時并沒有犧牲較大精度,證明了算法的可行性和有效性.
NURBS曲線路徑;進給速度規(guī)劃;線性規(guī)劃;軸向動態(tài)約束
非均勻有理B樣條(non-uniform rational B-splines,NURBS)具有精確的形狀表達和控制能力,在計算機輔助設(shè)計和數(shù)據(jù)交換領(lǐng)域成為了標準[1].在數(shù)控加工領(lǐng)域,NURBS參數(shù)插補相比傳統(tǒng)的線性插補,提供更加平滑和連續(xù)的運動,提高進給速度和加工精度[2-3],并且還能減少CAD/CAM和數(shù)控系統(tǒng)之間數(shù)據(jù)傳輸負擔,已經(jīng)成為現(xiàn)代高檔機床的標志.
目前,帶前瞻和相應(yīng)約束的加減速控制規(guī)劃[4-6]是高效進給速度規(guī)劃的一種方式.Yeh等[7]和Xu等[8]基于弓高誤差和曲率進行自適應(yīng)進給速度規(guī)劃,算法能保證加工效率和加工精度,但沒有考慮機床的運動學性能.Heng等[9]等提出了一種基于梯形加減速連續(xù)平滑進給策略.劉獻禮等[10]提出了一種基于S型加減速尋回NURBS 插補實時算法.Dong等[5]提出一種具有前瞻規(guī)劃單元模塊的S型加減速連續(xù)平滑進給規(guī)劃算法.但基于切向速度方向的加減速規(guī)劃方式仍有以下不足:速度約束極限只在幾何(曲率)極值點處,沒有對其他位置進行約束,尤其是曲率大的區(qū)域;沒有考慮各軸的運動學約束,在機床實際使用中各軸動態(tài)參數(shù)往往不匹配,無法充分發(fā)揮機床的加工能力;速度函數(shù)嵌入數(shù)控系統(tǒng)當中,導(dǎo)致速度規(guī)劃曲線相對固定,速度規(guī)劃不夠靈活充分.
進給速度規(guī)劃問題可以看作是具有多運動約束條件下的最小循環(huán)時間問題[11-13],是一個值得研究且復(fù)雜的非線性優(yōu)化[14]問題.最優(yōu)規(guī)劃起初應(yīng)用在飛行器和機器人[15-16]軌跡規(guī)劃領(lǐng)域,之后有學者在數(shù)控加工領(lǐng)域引入了時間最優(yōu)速度規(guī)劃.Zhou等[17]建立了最小時間進給的線性數(shù)學模型,利用線性規(guī)劃算法(LP)求解,但未考慮軸加加速度約束;Liu等[18]對此進行了改進.Ye等[19]建立了時間最優(yōu)進給速度的非線性數(shù)學模型,并利用近似解來提高計算效率,進行多次LP求解.但在大部分文獻報道中軸向加速度約束都取為定值,文獻[20-21]指出了軸向動態(tài)特性,將軸向加速度約束設(shè)為定值,約束不夠精準.Zhang?等[20]考慮軸向動態(tài)特性引入構(gòu)建了驅(qū)動電壓約束,但同時也增加了搜索最優(yōu)值約束條件,無形中增大了算法的開銷且沒有考慮加加速度約束.
針對以上問題,本文從時間最優(yōu)角度開發(fā)了一種具有軸向動態(tài)約束且兼顧算法效率的進給速度規(guī)劃算法.
在為伺服控制器生成指令位置前,應(yīng)首先在線或離線規(guī)劃與編程NURBS參數(shù)路徑相關(guān)聯(lián)的進給速度曲線.由于曲線參數(shù)和弧長之間的非線性關(guān)系,對于一般NURBS的參數(shù)曲線來說,不能求得弧長的解析解[2].數(shù)值方法可應(yīng)用于求解NURBS弧長,如梯形公式、Simpson公式和Gauss-Lobatto積分公式.考慮計算效率和計算精度采用Simpson方式.
基于弧長自適應(yīng)二分法的NURBS離散方法通過兩個弧長限制參數(shù),在獲得采樣點同時,較高精度計算出采樣點之間的弧長參數(shù).在式(4)約束下,給定合適值,可控制大曲率區(qū)域采樣點密集,但在直線或者曲率較小的區(qū)域,約束會失效.如圖1(a)所示,NURBS直線(長為84.86mm)僅在參數(shù)限制下獲得6個采樣點,嚴重影響計算精度,在參數(shù)共同限制下,可獲得217個采樣點保證了計算精度.加入式(5)約束,控制直線或者曲率較小的區(qū)域內(nèi)的采樣點密度.圖1(b)為蝴蝶形NURBS軌跡在和共同約束下獲得的采樣點情況,弧長為382.86mm,采樣點數(shù)目為1828.
得到每個采樣點的速度極限集合
數(shù)控機床的每個軸一般是由伺服電機連接滾珠絲杠傳動機構(gòu)驅(qū)動.伺服驅(qū)動系統(tǒng)中執(zhí)行器輸出轉(zhuǎn)矩必然受到限制.假設(shè)進給軸是理想的二階動態(tài)系統(tǒng),忽略電氣時間常數(shù)和庫倫摩擦的影響,進給軸轉(zhuǎn)矩動態(tài)平衡[21]滿足
由式(15)和(19),則考慮切向速度、加速度、加加速度約束和軸向加速度動態(tài)約束的進給速度優(yōu)化的數(shù)學模型表示為
采用線性規(guī)劃方式對多約束進給速度優(yōu)化的數(shù)學模型(20)求解.模型中(a)和(b)約束條件是線性的可直接應(yīng)用成熟的線性規(guī)劃算法求解.考慮算法效率,線性規(guī)劃求解算法采用內(nèi)點法.約束條件(c)和(d)不能直接應(yīng)用,需要線性化.本文采用兩次線性規(guī)劃求解模型,步驟如下.
提出的算法主要有3個部分:NURBS曲線預(yù)處理處理、兩次線性規(guī)劃、進給速度樣條擬合.主要工作包括:對NURBS曲線進行弧長自適應(yīng)二分獲取采樣點以及計算弧長參數(shù);構(gòu)建約束模型;數(shù)值計算模型中的所需參數(shù);對模型進行兩次線性規(guī)劃;對采樣點的進給速度樣條擬合.算法流程圖如圖2所示.
算法概述步驟如下.
圖2?進給速度規(guī)劃算法流程
實驗平臺如圖3所示,軸向進給機構(gòu)是由永磁同步伺服電機(PMSM)基于驅(qū)動滾珠絲杠副實現(xiàn)工作臺移動,伺服電機型號為三菱HC-UFS13,伺服驅(qū)動器為三菱MR-J2S-10A.控制器算法是在Matlab/ Simulink軟件中開發(fā)的,軸控制器模型如圖4所示,由外部的位置環(huán)和內(nèi)部的速度環(huán)組成,位置環(huán)是比例(P)型控制器,速度環(huán)是一個比例積分(PI)型控制器.實時控制部分采用Simulink Desktop Real-Time庫實現(xiàn),保證實時性能.計算機和定制接口板通過以太網(wǎng)UDP協(xié)議交換實時數(shù)據(jù).定制的接口板配備了ARM STM32F407ZGT6微控制處理器,用來連接實時控制計算機和伺服驅(qū)動器.將驅(qū)動器設(shè)置為轉(zhuǎn)矩控制模式,控制器產(chǎn)生轉(zhuǎn)矩模擬信號指令并采集反饋的電機編碼器信號,在控制器中實現(xiàn)閉環(huán)控制.
圖3?實驗平臺
圖4?軸控制器模型
為了驗證算法的可行性和有效性,選取3階蝴蝶形狀NURBS參數(shù)曲線路徑作為實例進行實驗驗證,如圖5所示,曲線有低曲率區(qū)和高曲率區(qū),曲線變化相對復(fù)雜.實驗參數(shù)預(yù)置如表1所示,表中各軸慣性質(zhì)量和黏性摩擦通過系統(tǒng)辨識獲得.規(guī)劃結(jié)果通過NURBS插補生成時間-位置序列,將其作為伺服指令輸入進行實驗驗證,下個插補點通過式(22)計算.
圖5?蝴蝶形NURBS軌跡
表1?實驗參數(shù)
Tab.1?Test parameters
圖6(a)~(c)分別為C1和C2的進給速度、切向加速度和切向加加速度規(guī)劃曲線,可以看出切向的運動學被約束在極限之內(nèi).圖6(d)和圖6(e)分別為C1、C2的軸加速度和軸加速度規(guī)劃曲線,其中C2各軸的加速度基本被約束在相應(yīng)動態(tài)約束極限內(nèi),與C1相比,C2動態(tài)約束規(guī)劃在低速下可規(guī)劃相對更大的加速度值.圖7為實驗C1、C2各軸的實際速度和加速度曲線,可以看出在曲線極值處C2實際速度和加速度值比C1的值更大,證明了本文所提的具有軸向動態(tài)約束的規(guī)劃算法的有效性.
弧長數(shù)值積分誤差限制參數(shù)和弧長微段限制參數(shù),兩者參數(shù)數(shù)值選取越小,獲得采樣點數(shù)目越多,計算精度會提高,但也會帶來較大計算開銷.圖8為不同采樣點規(guī)劃圖像,可以看出合理的采樣點數(shù)目可以較好表達出速度變化,并且最終規(guī)劃的時間誤差在2%之內(nèi),綜合考慮計算精度和計算效率,選取本文的兩者參數(shù)(數(shù)據(jù)點為1828,規(guī)劃時間為6.51s).
圖9(a)為C1和C2的運動過程振動信號,并統(tǒng)計其均方根值(root mean square,RMS),其中C1為0.0116,C2為0.0129.圖9(b)為C1和C2的實際運動軌跡,圖9(c)為C1和C2的實際運動軌跡和參考軌跡之間輪廓誤差,表2為統(tǒng)計C1和C2的輪廓誤差的最大值(maximum,MAX)和RMS值.其中,實驗C1加工時間為7.784s,C2的加工時間為6.512s,與C1傳統(tǒng)定值約束相比,所提算法輪廓誤差MAX升高2.63%,RMS升高5.57%,加工時間降低16.34%,提高了加工效率同時并沒有犧牲較大的精度.實驗C2算法在2.2GHz CPU的PC機上運行,規(guī)劃蝴蝶形軌跡,采樣點數(shù)目為1828,算法計算時間約為2.20s,遠小于實際加工時間,為在線規(guī)劃提供了可能性.
表2?C1和C2輪廓誤差對比統(tǒng)計
圖9?C1和C2的精度對比
本文針對NURBS參數(shù)曲線路徑,為充分發(fā)揮機床軸向加減速性能,提出一種新的具有軸向動態(tài)約束的進給速度規(guī)劃算法.通過實驗分析和驗證得出以下結(jié)論.
(1) 在預(yù)處理階段,對NURBS加工路徑進行弧長自適應(yīng)二分離散處理,通過弧長限制參數(shù),在離散化過程同時,獲得較高精度弧長參數(shù).
(2) 在規(guī)劃階段,提出一種新的考慮軸向動態(tài)約束算法解決方案.在具有一般運動學約束條件(切向速度、加速度、加加速度)的基礎(chǔ)上,通過兩次線性規(guī)劃和轉(zhuǎn)矩參考處理,在沒有增加搜索最優(yōu)值的條件下引入軸向加速度動態(tài)約束.該方案有效利用了進給電機的潛力,提高加工效率同時具有較高計算效率.
[1] Piegl L,Tiller W. The NURBS Book[M]. New York:Springer,1997.
[2] Min Liu,Huang Yu,Yin Ling,et al. Development and implementation of a NURBS interpolator with smooth feedrate scheduling for CNC machine tools[J]. International Journal of Machine Tools and Manufacture,2014,87:1-15.
[3] 何改云,陶?浩,王太勇,等. 連續(xù)時間周期化的NURBS曲線插補及其速度規(guī)劃[J]. 天津大學學報:自然科學與工程技術(shù)版,2018,51(8):844-853.
He Gaiyun,Tao Hao,Wang Taiyong,et al. Continuous to periodic time NURBS curve interpolation and its speed planning[J]. Journal of Tianjin University:Science and Technology,2018,51(8):844-853(in Chinese).
[4] 羅福源,游有鵬,尹?涓. NURBS曲線S形加減速雙向?qū)?yōu)插補算法研究[J]. 機械工程學報,2012,48(5):147-156.
Luo Fuyuan,You Youpeng,Yin Juan. Research on the algorithm of NURBS curve bidirectional optimization Interpolation with S-type acceleration and deceleration control[J]. Chinese Journal of Mechanical Engineering,2012,48(5):147-156(in Chinese).
[5] Dong Jingchuan,Wang Taiyong,Li Bo,et al. Smooth feedrate planning for continuous short line tool path with contour error constraint[J]. International Journal of Machine Tools and Manufacture,2014,76:1-12.
[6] 李?浩,吳文江,韓文業(yè),等. 基于自適應(yīng)前瞻和預(yù)測校正的實時柔性加減速控制算法[J]. 中國機械工程,2019,30(6):690-699.
Li Hao,Wu Wenjiang,Han Wenye,et al. Real-time flexible acceleration and deceleration control algorithm based on adaptive look-ahead and predictor-corrector method[J]. China Mechanical Engineering,2019,30(6):690-699(in Chinese).
[7] Yeh S S,Hsu P L. Adaptive-feedrate interpolation for parametric curves with a confined chord error[J]. Computer-Aided Design,2002,34(3):229-237.
[8] Xu Zhiming,Chen Jincheng,F(xiàn)eng Zhengjin. Performance evaluation of a real-time interpolation algorithm for NURBS curves[J]. International Journal of Advanced Manufacturing Technology,2002,20(4):270-276.
[9] Heng M,Erkorkmaz K. Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability[J]. International Journal of Machine Tools and Manufacture,2010,50(3):281-293.
[10] 劉獻禮,周肖陽,李茂月,等. NURBS曲線S形加減速尋回實時插補算法[J]. 機械工程學報,2017,53(3):183-192.
Liu Xianli,Zhou Xiaoyang,Li Maoyue,et al. The real-time algorithm of NURBS curve retriever interpolation with S-type acceleration and deceleration control [J]. Chinese Journal of Mechanical Engineering,2017,53(3):183-192(in Chinese).
[11] Zhang Q,Li S R. Efficient computation of smooth minimum time trajectory for CNC machining[J]. The International Journal of Advanced Manufacturing Technology,2013,68(1):683-692.
[12] Guo Jianxin,Zhang Qiang,Gao Xiaoshan,et al. Time optimal feedrate generation with confined tracking error based on linear programming[J]. Journal of Systems Science and Complexity,2015,28(1):80-95.
[13] 浦玉學,舒鵬飛,蔣?祺,等. 工業(yè)機器人時間-能量最優(yōu)軌跡規(guī)劃[J]. 計算機工程與應(yīng)用,2019,55(22):86-90.
Pu Yuxue,Shu Pengfei,Jiang Qi,et al. Time-energy optimum trajectory planning for industrial robot[J]. Computer Engineering and Applications,2019,55(22):86-90(in Chinese).
[14] Zhang Qiang,Li Shurong,Guo Jianxin,et al. Time-optimal path tracking for robots under dynamics constraints based on convex optimization[J]. Robotica,2016,34(9):2116-2139.
[15] 羅?翔,沈?潔,毛玉良,等. 存在驅(qū)動飽和約束下的機器人時間最優(yōu)實時運動規(guī)劃研究[J]. 機器人,2001(1):26-30.
Luo Xiang,Shen Jie,Mao Yuliang,et al. Real-time motion planning research of robots due to the limited actuation power[J]. Robotics,2001(1):26-30(in Chinese).
[16] 徐海黎,解祥榮,莊?健,等. 工業(yè)機器人的最優(yōu)時間與最優(yōu)能量軌跡規(guī)劃[J]. 機械工程學報,2010,46(9):19-25.
Xu Haili,Xie Xiangrong,Zhuang Jian,et al. Global time-energy optimal planning of industrial robot trajectories[J]. Chinese Journal of Mechanical Engineering,2010,46(9):19-25(in Chinese).
[17] Zhou Jianfeng,Sun Yuwen,Guo Dongming. Adaptive feedrate interpolation with multiconstraints for five-axis parametric toolpath[J]. The International Journal of Advanced Manufacturing Technology,2014,71(9/10/11/12):1873-1882.
[18] Liu Huan,Liu Qiang,Yuan Songmei. Adaptive feedrate planning on parametric tool path with geometric and kinematic constraints for CNC machining[J]. The International Journal of Advanced Manufacturing Technology,2017,90(5/6/7/8):1889-1896.
[19] Ye Peiqing,Zhang Yong,Xiao Jianxin,et al. A novel feedrate planning and interpolating method for parametric toolpath in Frenet-Serret frame[J]. The International Journal of Advanced Manufacturing Technology,2019,101(5):1915-1925.
[20] Zhang Yong,Ye Peiqing,Zhao Mingyong,et al. Dynamic feedrate optimization for parametric toolpath with data-based tracking error prediction[J]. Mechanical Systems and Signal Processing,2019,120:221-233.
[21] Dong J,Stori J A. Optimal feed-rate scheduling for high-speed contouring[J]. J Manuf Sci E:T ASME,2007,129(1):63-76.
[22] Mathews J H,F(xiàn)ink K D. Numerical Methods Using MATLAB[M]. Upper Saddle River:Prentice Hall,1999.
Feedrate Planning of a NURBS Path with Dynamic Axial Constraints
Dong Jingchuan,Guo Jianxin,Liu Zhe,Tan Zhilan,Wang Taiyong
(School of Mechanical Engineering,Tianjin University,Tianjin 300354,China)
In conventional feedrate planning,the axial acceleration constraint is usually a fixed value constraint,which cannot efficiently use the acceleration capacity of the axes of the machine tools and affects the machining effeciency. A new feedrate planning algorithm considering the dynamic constraint of axial acceleration is proposed. First,the non-uniform rational B-splines curve path is processed by adaptive dichotomous discretization to acquire the arc length parameters and sampling points. Then the optimizing model is constructed with the tangential velocity,acceleration,jerk,and dynamic axial acceleration constraints. A two-stage linear programing is applied to the multi-constraint optimizing model on the sampling points to find the points’ optimal velocity. The dynamic constraints of the upper and lower limits of the acceleration of each axis at different velocities are obtained through the two-stage linear programing and the reference axial torque,which improves the processing efficiency without increasing the constraint condition of searching the optimal value,thus ensuring high computation efficiency. Finally,the sample points are fitted with a spline to obtain the feedrate planning curve. In a comparative experiment with the conventional fixed constraint planning,the proposed algorithm sacrifices 2.63% of the maximum contour error,reduces the processing time by 16.34%,and improves the processing efficiency without sacrificing much precision,which proves the feasibility and effectiveness of the algorithm.
NURBS path;feedrate planning;linear programing;dynamic axial constraint
TP273
A
0493-2137(2021)09-0890-09
10.11784/tdxbz202006045
2020-06-16;
2020-09-24.
董靖川(1983—??),男,博士,高級工程師,jcdong@tju.edu.cn.
郭健鑫,jxguo@tju.edu.cn.
國家自然科學基金資助項目(51605328).
Supported by the National Natural Science Foundation of China(No. 51605328).
(責任編輯:王曉燕)