吉亞迪 耿顯亞
摘 要:Wiener指數(shù)和Gutman指數(shù)是兩個(gè)重要的拓?fù)渲笜?biāo),常用以刻畫(huà)分子結(jié)構(gòu)特性.假定Ln表示由n個(gè)六邊形和2n個(gè)正方形構(gòu)成的線性結(jié)構(gòu)分子圖,借助圖的結(jié)構(gòu)特點(diǎn),確定Ln的Wiener指數(shù)和Gutman指數(shù).
關(guān)鍵詞:化學(xué)分子圖;Wiener指數(shù);Gutman指數(shù)
[中圖分類號(hào)]O157.6?? [文獻(xiàn)標(biāo)志碼]A
Research on Two Kinds of Algebraic Index of
Given Chemical Graph
JI Yadi,GENG Xianya
(School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan 232001,China)
Abstract:Wiener index and Gutman index are two important topological indexes,which are commonly used to describe the characteristics of molecular structure.It is assumed that the molecular graph of linear structure is composed of n hexagons and 2n squares.With the structural characteristics of the graph,the Wiener index and Gutman index of Ln are determined.
Key words:molecule diagrams;Wiener index;Gutman index
圖的拓?fù)渑c化學(xué)指標(biāo)對(duì)刻畫(huà)化學(xué)分子圖和建立分子結(jié)構(gòu)與特征之間的關(guān)系有著重要作用,被廣泛應(yīng)用于預(yù)測(cè)化合物的物理化學(xué)性質(zhì)和生物活性,是一個(gè)與化合物的物理化學(xué)性質(zhì)密切相關(guān)的拓?fù)渲笖?shù),因而被廣泛應(yīng)用于物理化學(xué)領(lǐng)域中.距離與度是代數(shù)圖論中十分重要的參數(shù)[1],它們不僅關(guān)系著圖的結(jié)構(gòu)特征和分子的化學(xué)性質(zhì),而且還延伸出很多基于距離的參數(shù),如半徑、平均距離、距離矩陣、偏心率等.[2-4]
參考文獻(xiàn)
[1]F.Buckley,F(xiàn).Harary.Distance in Graphs[M].Addison-Wesley:Reading,1989.56-83.
[2]X.Y.Geng,S.C.Li,M.Zhang.Extremal values on the eccentric distance sum of trees[J].Discr.Appl.Math,2013(161):2427-2439.
[3]H.Wiener.Structural determination of paraffin boiling points[J].Am.Chem.Soc,1947(69):17-20.
[4]S.C.Li,M.Zhang,G.H.Yu,L.H.Feng.On the extremal values of the eccentric distance sum of trees[J].Anal.Appl.Math,2012(390):99-112.
[5]H.Wang.The distances between internal vertices and leaves of a tree[J].Eur Comb,2014(41):79-99.
[6]H.Wiener.Structural determination of paraffin boiling points[J].Am.Chem.Soc,1947(69):17-20.
[7]Kennedy J W.,Quintas L V.Perfect mathchings in random hexagonal chain graphs[J].Matli.Cherri,1991(6):377-383.
[8]Lou Z Z.,Huang Q X.On the characteristic polynomial of a hexagonal system and its application[J].Math.Res.Appl,2014(34):265-277.
[9]S.Z.Wang,B.L.Liu.A method of calcutaing the edge-Szeged index of hexagonal chain[J].Math.Comput.Chem,2012(68):91-96.
[10]J.A.Bondy,R.Murty.Graph Theory[M].New York:Springer,2008.32-47.
[11]D.J.Klein,M.Randi′c.Resistance distance[J].Math.Chem,1993(12):81-95.
[12]肖傳奇.關(guān)于隨機(jī)四角鏈的若干結(jié)果[M].廈門(mén):集美大學(xué)出版社,2016.14-16.
[13]何春艷,周淑紅.常微分方程組穩(wěn)定的一個(gè)充分條件[J].牡丹江師范學(xué)院學(xué)報(bào):自然科學(xué)版,2007(4):1-2.
[14]朱曉杰,趙玉紅.多項(xiàng)式根的幾何性質(zhì)[J].牡丹江師范學(xué)院學(xué)報(bào):自然科學(xué)版,2006(1):1-2.
編輯:吳楠
收稿日期:2020-10-13
基金項(xiàng)目:安徽省自然科學(xué)基金項(xiàng)目(2008085MA01)
作者簡(jiǎn)介:吉亞迪(1997-),女,河南濮陽(yáng)人.碩士研究生,主要從事圖論及其應(yīng)用的研究;耿顯亞(1981-),男,安徽淮南人.教授,博士,主要從事圖論及其應(yīng)用的研究.
牡丹江師范學(xué)院學(xué)報(bào)(自然科學(xué)版)2021年2期