• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edge effect and interface confinement modulated strain distribution and interface adhesion energy in graphene/Si system

    2021-05-19 09:02:52
    Communications in Theoretical Physics 2021年1期

    Guangdong University of Petrochemical Technology,Maoming 525000,China

    Abstract In order to clarify the edge and interface effect on the adhesion energy between graphene(Gr)and its substrate,a theoretical model is proposed to study the interaction and strain distribution of Gr/Si system in terms of continuum medium mechanics and nanothermodynamics.We find that the interface separation and adhesion energy are determined by the thickness of Gr and substrate.The disturbed interaction and redistributed strain in the Gr/Si system induced by the effect of surface and interface can make the interface adhesion energy decrease with increasing thickness of Gr and diminishing thickness of Si.Moreover,our results show that the smaller area of Gr is more likely to adhere to the substrate since the edge effect improves the active energy and strain energy.Our predictions can be expected to be a guide for designing high performance of Grbased electronic devices.

    Keywords:graphene,edge effect and interface confinement,strain distribution,adhesion energy

    1.Introduction

    Graphene(Gr)has attracted much attention in the past decade as it provides a real possibility for a high performance of batteries,nanoelectronic and optoelectronic devices,photovoltaic,energy storage,etc[1–4].Supported on a substrate,the tunable interaction between Gr and its substrate play a significant role on the interface adhesion energy of Gr/substrate system[5–7].Although much strategies both from experimentally[8–11]and theoretically[12–14]have been made to study the adhesion properties by controlling the thickness,size and substrate morphology,the interactions and contacts between Gr and substrate remain one of the significant challenges in the fundamental scientific owing to the influence of interface,edge and surface effects[15].

    Generally,the interface adhesion energy of Gr/substrate relates to its thickness and edge condition as well as the surface state of substrate.On the one hand,reducing the thickness of Gr can not only enhance the surface-to-volume ratio(SVR),but also make the strain redistribution in Gr/substrate system[16,17].On the other hand,the interface interactions between Gr and substrate are very sensitive to the surface of substrate.The surface state of substrate can modulate the long-range interaction of van der Waals interaction and short-range interactions of interface bonds as well as out of plane rippling behaviors,resulting in the change of interface adhesion energy[18–20].Moreover,the interface effect induced by the discrepancy of lattice constant between film and substrate has an important influence on interface interaction as well.For example,Huang et al[21,22]reported that the stress in the interface of film/substrate can induce the films wrinkles and the tunable interface adhesion and interface strain between films and substrate can be achieved by controlling the thickness of films or the sample of substrate.Even more than that,the interface effect can also disturb the orientation of π- and σ-orbital and simultaneously induce the in-plane and out-of-plane strain to be taken place,resulting in the change the mechanical properties of Gr such as Young’s modulus and Poisson’s ratio[23,24].Especially,as the unsaturated dangling bonds in the edge carbon atoms,the strong bonds would be formed in Gr/substrate system and the mechanical properties of the Gr depend on the edge Figure 1.(a)Schematic illustration of a Gr membrane on substrate,(b)Gr interacting with its substrate.chirality[25,26].In this case,when decreasing the area or size of Gr,the strain would be redistributed in the Gr/substrate systems due to the enhancement of SVR,resulting in the change of the interaction and adhesion energy in various edge chirality of Gr.

    In order to clarify the influence of edge effect and interface confinement on interface adhesion properties of Gr/substrate system,rectangular Gr and circular Gr is investigated in terms of continuum medium mechanics and nanothermodynamics.Our results show that surface,interface and edge effect can disturb the total energy of Gr/substrate system,resulting in change of interface separation and adhesion energy.The tunable strain transfer in Gr/substrate system is also studied by modulating size and thickness of Gr and substrate.

    2.Principle

    In order to evaluate the edge,surface and interface effect on the adhesion properties,a type Gr/Si system is deliberately considered in our model.We assume that a Gr membrane with areaAgand thicknesstfis covered on the surface of Si substrate,as shown in the inset of figure 1(a).Theoretically,the total free energyUtotalof the Gr/substrate system can be expressed as

    whereUtotalis the van der Waals interaction between Gr and substrate,anddenotes extra energy induced by the interaction between the edge of the carbon atoms and the substrate of the Si atoms[27],andare,respectively,strain energy of Gr and substrate.

    In general,the van der Waals(vdWs)interaction between a carbon atom and the substrate atom can be expressed by Lennard-Jones potential:wheredis the distance between two atoms,C1andC2are the constants for the attractive and repulsive interaction.It is noteworthy that the vdWs interaction of Gr/substrate system is predominantly stored on the first layer of Gr and substrate which contributes almost 99% of the total energy[12].Therefore,the total interaction potential between substrate and Gr membrane can be obtained by integrating all the atoms of first layer of Gr and substrate:whereρsandρgare the number of atoms per unit area of a monolayer graphene and the number of atoms per unit volume of the substrate,andVsis the substrate volume.Consequently,the interfacial potential energy can be expressed as

    d0andΓ0are the interface separation under the equilibrium state and the intrinsic adhesion energy per unit area in the bulk case.

    In addition,as the abrupt termination of the bonding network in the edge of Gr,a high density of defects and dangling bonds would be left in the boundary[25,27].Therefore,the extra bonds of C–Si will be produced,as shown in figure 1(b).Generally,the energy,,induced by the extra energy of C–Si in the edge of Gr,as shown in figure 1.Lahiri et al[27]and Kozlov et al[28]reported that Pauli repulsion equilibrates vdW attraction with donation/back-donation being negligible when the distance of Grsubstrate close to 0.3 nm and the energy is still dominated by the vdW contribution.Thus,the energy,,can be approximately given by the vdWs interaction of C–Si as the distance of Gr–Si is about 0.3 nm[8,29],i.e.

    Moreover,consider a Gr membrane attached on the surface of Si substrate,the mismatch strain would be taken place as the discrepancy of lattice constant between Gr and substrate.The strain of radial and tangential areandwhereuandrare the radial displacements and radial coordinate.Moreover,according to the linear elastic constitutive model and the equilibrium of forces requires,withandwhereis the in-plane stiffness of the 2D material,+σand?σare for the thin flim and substrate within the flim portion,respectively,and theσvanishes for the substrate outside the film.Yf(Ys),tf(ts)andvf(vs)denote the Young’s modulus,thickness and Poisson’s ratio,is the shear stress,κis the curvature of the system,εmpresents the axisymmetric misfit strain distribution[30,31].Therefore,we have

    Additionally,the approach of atomistic-bond-relaxation suggests that the nanostructures can be considered as a shell-core configuration[6,13,32].The internal atoms in core remain have the intrinsic properties,whereas the bond length of the external atoms in shell would shrink spontaneously and the bond energy at equilibrium atomic separation will rise in absolute energy as reduction of the atomic coordination number(CN).Therefore,the strain induced by the surface effect can be deduced as,Moreover,consider the high coordination imperfection of atoms located at the edges of nanostructure,the average strain induced by the edge effect can be given by,for Gr andfor substrate[32].Therefore,considering the discrepancy state of the surface,edge and core atoms,the total strain of the Gr and Si substrate can be obtained

    hi(hedge)andεi(εedge)are,respectively,the bond length and lattice strain of in surface and edge atoms,and the lattice strain satisfyis the bond contraction coefficient,the ratio of edge atoms to total atoms of the substrate is zero,ziandzbare effective CNs in the ith atomic layer and that of bulk case,respectively.Therefore,according to the continuum mechanics principle,the strain energy per unit area stored in graphene membranes can be given by

    3.Results and discussion

    In order to clarify the relationship between adhesion properties and edge effect in Gr/Si substrate system,we consider that the edge carbon atoms that have unsaturated dangling bonds form strong bonds with the Si atoms[27]and the substrate is flat and infinite in the in-plane direction so that the ripple,edge buckling,and steps effect are ignored.Note that the necessary parameters are listed in table 1 and the interface adhesion energy can be calculated byΓ=?Utotal[12].

    Figure 2 shows the transfer of total strain from Gr to Si substrate with change the thickness of Gr and substrate.The tensile strain in graphene membranes and the compressive strain in substrate are,respectively,increasing and decaying as the thickness of substrate increases or films thickness decreases,whereas the width of graphene exhibit a slight effect on the total strain of Gr and substrate unless the width(radius)of rectangular(circular)Gr less than 1 nm.This result can be attributed to the change of elastic properties as well as surface and edge effect,which leads to the bonds become stronger and reestablish a new self-equilibrium state in Gr/substrate system.As a result,the strain will be redistributed in Gr and substrate.Geandier and co-workers[34]measured that strain transfer from a polymer substrate to the adherent thin films can be obtained by using synchrotron XRD techniqueat a low strain regime.Moreover,He et al[35,36]and Schadler et al[37,38]also reported that the strain in thin films are plotted as a function of the applied strains to the substrate,suggest elastic stress and strain transfer behaviors can be achieved in films/substrate system.Noted that we consider the stress and strain are uniformly distributed in Gr membrane and substrate.Those results may deviate from the experimental measurements and simulations which shows the different strains in various positions and layers of Gr[18,21,39].In our case,the uniformly distribution strain in Gr and substrate is suitability for calculating the interfacial adhesion energy,Γ,due to the total free energy of the nanosystem is not change.

    In order to study the elastic strain and its energy affect on the interface properties.Figure 3 demonstrates interface the equilibrium state in two types of Gr/substrate systems,including rectangular Gr/Si and circular Gr/Si.Clearly,the equilibrium state and the minimum of total energy of those two types of systems have obvious shift with the thickness of Gr.Meanwhile,the thickness dependence of a relative change of interface separation is shown in the inset of figures 3(a)and(b).The variation of interface separation of those two systems decays monotonically with decreasing number of Gr layers,whereas it has slightly increases when reduction the size of Gr.This result is expected since the elastic strain and strain energy increases dramatically with decreasing thickness and size.Moreover,according to the theory of Sun[33]and Ouyang et al[32],the changed physical properties in nanostructures can be attributed to the generation of strain and strain energy as the position of atoms deviate from the intrinsic state.Those results suggest that the elastic properties are insensitive to the size of Gr membrane.Zhao et al[40]and Han et al[26]reported that the size effect on Young’s modulus and Poisson’s ratio can be negligible when the diagonal length and width of Gr nanoribbon beyond 10 nm and 2 nm,respectively.

    Furthermore,in order to explore the influence of edge effect and interface confinement on the adhesion properties.Thickness- and size-dependent interface adhesion energy are shown in figure 4.Evidently,the adhesion energy increases with decaying thickness and size of Gr membrane at first,and then it become a constant when thickness and the size of Gr lager than 5 layers and 2 nm,respectively.Our predictions are consistent with Koenig’s[8]and Gao’s[29]measurements,and these results can be attributed to the difference of elastic properties and strain energy in graphene membranes[13,41].Moreover,to clarify the significant of edge on interface adhesion properties,figure 4(b)shows the interface adhesion energy of zigzag edge Gr compared with that of armchair edge Gr,and we haveΓzig> Γarmat fixed layer and width of Gr.This result can be ascribed to the difference edge state and mechanical properties between those two systems.Moreover,compared with figure 4(a),the adhesion energy of rectangular Gr is less than that of radius Gr.This result can be explained to the lower edge state and strain energy as well as the difference self-equilibrium state.

    Table 1.Input parameters for calculations.r0,a,h0,E,v and YB are the interface equilibrium distance,in-plane lattice constant,bond length,binding energy per unit area,Poisson’s ratio and Young’s modulus,respectively.

    Figure 2.The total strain as a function of width of Gr and thickness of Si in(a)Gr and(b)Si.

    Figure 3.The total free energy as a function of number of layers and interfacial separation of Gr in(a)rectangular Gr with R=2,5,10 nm and(b)circular Gr with W=2,5,10 nm.The inset of(a)and(b)show the relationship between the critical interface separation and the membrane thickness under various R and W,respectively.

    Figure 4.Interface adhesion energy as a function of number of layers and size in(a)circular Gr membranes,and(b)Gr zigzag and armchair Gr nanoribbons.

    Figure 5 shows the relationship between interface adhesion energy and thickness of substrate or area of single layer Gr.As plotted in figure 5(a),the interface adhesion energy decreases with diminishing thickness of substrate,whereas its increases with decreasing size of Gr.This result suggests that the Gr membranes are more likely to adhere to the thicker substrate.This trend is attributed to the change of vdW interaction,and strain energy.In fact,decrease the thickness of substrate and area of Gr can not only decay the interaction potential between Gr and substrate,but also make the strain redistributed in the system.Figure 5(b)exhibits the interface adhesion energy of zigzag edge Gr compared with that of armchair edge Gr at various thickness of substrate and area of single layer Gr.The results are similar to figure 4(b)withΓzig> Γarmat fixed layer and size of Gr,and the increase trend of adhesion energy of rectangular Gr is slightly less than that of circular Gr.Moreover,according to the calculation,the adhesion energy between single layer Gr and silicene is~0.3 J m?2,which is lower than that of Koening’s[8]and Gao’s[29]results,0.45 J m?2,suggest the total energy of Gr/substrate can be disturbed by edge and interface confinement.For instance,the parameters of Lennard-Jones potential areε=7.236 meV andσ=0.3258 nm in our calculation,which are lower than Rappe’s results withε=8.908 meV andσ=0.3326 nm[42].The discrepancy between our results and Rappe’s result suggests that:(i)the ripple effect of Gr play an important role on the interfacial adhesion energy of Gr/Si;(ii)the interfacial adhesion energy of Gr/SiO2(or Gr/Si)may larger than Koenig’s[8]and Gao’s[29]results,0.45 J m?2.

    4.Conclusion

    In summary,interface adhesion of rectangular Gr/Si substrate and circular Gr/Si substrate nanosystems are studied based on continuum medium mechanics and nanothermodynamics.Our results demonstrate that the surface,interface and edge effect determine the equilibrium state and interface separation distance of Gr/Si substrate nanosystem,which have a significant influence on its strain distribution.As a result,strain transfer between Gr and substrate can be modulated by controlling width and thickness of Gr and substrate.Moreover,we find the adhesion energy decreases with decreasing width and thickness of Gr and substrate,suggesting that the thinner Gr membrane is more likely to adhere on a thicker substrate.

    Figure 5.Interface adhesional energy as a function of size and thickness of Si in(a)circular Gr,and(b)Gr zigzag and armchair Gr nanoribbons.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Guangdong Province(Grant Nos.2019A1515010916 and 2018A030307028),the Featured Innovation Project of Guangdong Education Department(2018KTSCX150),the Maoming Natural Science Foundation of Guangdong,China,(Grant No.2019018001)and the Guangdong Province Major Foundation of Fundamental Research(Grant No.517042).

    美女扒开内裤让男人捅视频| 亚洲色图综合在线观看| 国产成人系列免费观看| 亚洲自偷自拍图片 自拍| av片东京热男人的天堂| 欧美精品高潮呻吟av久久| 黄片播放在线免费| 麻豆av在线久日| 久久久久久人人人人人| 99久久综合精品五月天人人| 国产欧美日韩精品亚洲av| 亚洲欧美日韩另类电影网站| 夫妻午夜视频| 久久人妻福利社区极品人妻图片| 99国产极品粉嫩在线观看| svipshipincom国产片| 国产成人精品无人区| 国产精品综合久久久久久久免费 | 免费久久久久久久精品成人欧美视频| 午夜免费观看网址| 高清欧美精品videossex| 日韩一卡2卡3卡4卡2021年| 国产免费现黄频在线看| 日韩免费高清中文字幕av| 精品国产一区二区久久| 天堂动漫精品| 国产精品98久久久久久宅男小说| av一本久久久久| 午夜福利在线观看吧| 午夜影院日韩av| 欧美国产精品va在线观看不卡| 国产成人免费观看mmmm| 欧美日韩av久久| 亚洲七黄色美女视频| av中文乱码字幕在线| 一级毛片高清免费大全| 国产单亲对白刺激| 99久久精品国产亚洲精品| 日韩人妻精品一区2区三区| 成人免费观看视频高清| 久久天堂一区二区三区四区| 欧美黑人精品巨大| 久久狼人影院| 女人被躁到高潮嗷嗷叫费观| 免费日韩欧美在线观看| 黄色怎么调成土黄色| 亚洲国产精品sss在线观看 | 999久久久精品免费观看国产| 99久久国产精品久久久| 黄色视频,在线免费观看| 在线视频色国产色| 9191精品国产免费久久| 99久久综合精品五月天人人| 日韩欧美一区二区三区在线观看 | 母亲3免费完整高清在线观看| 亚洲色图av天堂| 欧美另类亚洲清纯唯美| 久久九九热精品免费| 又紧又爽又黄一区二区| 亚洲视频免费观看视频| 一本大道久久a久久精品| 国产有黄有色有爽视频| 亚洲免费av在线视频| 国产精品1区2区在线观看. | 午夜亚洲福利在线播放| 亚洲欧美日韩高清在线视频| 久久人人爽av亚洲精品天堂| 老司机午夜福利在线观看视频| 亚洲七黄色美女视频| 十八禁网站免费在线| 午夜两性在线视频| 9色porny在线观看| 9色porny在线观看| 丰满迷人的少妇在线观看| av超薄肉色丝袜交足视频| 国产主播在线观看一区二区| 中文字幕av电影在线播放| 操出白浆在线播放| 午夜福利免费观看在线| 久久久国产欧美日韩av| 国产精品98久久久久久宅男小说| aaaaa片日本免费| 免费在线观看完整版高清| 在线观看免费视频日本深夜| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看黄色视频的| 999精品在线视频| 中文字幕最新亚洲高清| 欧美在线一区亚洲| 午夜福利,免费看| 亚洲国产欧美日韩在线播放| 50天的宝宝边吃奶边哭怎么回事| 麻豆av在线久日| 国产一区二区三区综合在线观看| 国产99白浆流出| 久久午夜综合久久蜜桃| 嫁个100分男人电影在线观看| 黄片小视频在线播放| 老汉色∧v一级毛片| 少妇猛男粗大的猛烈进出视频| 99热网站在线观看| 久久精品91无色码中文字幕| 欧美老熟妇乱子伦牲交| 极品少妇高潮喷水抽搐| 18禁观看日本| 亚洲专区国产一区二区| 看免费av毛片| 免费久久久久久久精品成人欧美视频| 最近最新中文字幕大全免费视频| 亚洲国产看品久久| 午夜精品国产一区二区电影| 麻豆成人av在线观看| 脱女人内裤的视频| 国产成人欧美在线观看 | 欧美激情 高清一区二区三区| 久久久精品区二区三区| 老司机深夜福利视频在线观看| 两个人看的免费小视频| 国产高清国产精品国产三级| 久久久久久久精品吃奶| 天堂√8在线中文| 又紧又爽又黄一区二区| 亚洲中文日韩欧美视频| 99久久精品国产亚洲精品| 亚洲五月婷婷丁香| 99国产精品一区二区蜜桃av | a级毛片黄视频| 人人澡人人妻人| 国产欧美日韩综合在线一区二区| 亚洲欧美一区二区三区黑人| 日韩三级视频一区二区三区| 国产又色又爽无遮挡免费看| 久久久久久免费高清国产稀缺| 一级毛片精品| 色尼玛亚洲综合影院| 精品第一国产精品| aaaaa片日本免费| 久久天堂一区二区三区四区| a级片在线免费高清观看视频| 99在线人妻在线中文字幕 | 在线av久久热| 国产成人啪精品午夜网站| 人妻丰满熟妇av一区二区三区 | 好看av亚洲va欧美ⅴa在| 色播在线永久视频| 亚洲自偷自拍图片 自拍| 欧美激情久久久久久爽电影 | 欧美日韩亚洲综合一区二区三区_| 丝袜美腿诱惑在线| 日本a在线网址| 国产av又大| 99热网站在线观看| 丰满人妻熟妇乱又伦精品不卡| 高清av免费在线| 国产单亲对白刺激| 欧美日韩亚洲国产一区二区在线观看 | 他把我摸到了高潮在线观看| 欧美黑人精品巨大| 丰满的人妻完整版| 捣出白浆h1v1| 中文字幕另类日韩欧美亚洲嫩草| 亚洲五月天丁香| 18禁黄网站禁片午夜丰满| 国产单亲对白刺激| av天堂久久9| 不卡av一区二区三区| 国产精品国产高清国产av | 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品一卡2卡三卡4卡5卡| 建设人人有责人人尽责人人享有的| 少妇粗大呻吟视频| 日韩欧美国产一区二区入口| 精品视频人人做人人爽| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全免费视频| 90打野战视频偷拍视频| 日本a在线网址| 欧美日韩视频精品一区| 在线av久久热| 国产高清videossex| 99国产精品99久久久久| 一本大道久久a久久精品| 国产无遮挡羞羞视频在线观看| 男女午夜视频在线观看| 18禁国产床啪视频网站| 深夜精品福利| 亚洲av第一区精品v没综合| 国产成人影院久久av| 高清毛片免费观看视频网站 | 久久精品国产清高在天天线| 在线天堂中文资源库| 亚洲性夜色夜夜综合| a级毛片在线看网站| av福利片在线| 国产精品久久电影中文字幕 | 激情视频va一区二区三区| 日韩欧美国产一区二区入口| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产清高在天天线| 露出奶头的视频| 久久精品亚洲av国产电影网| 女警被强在线播放| 久久ye,这里只有精品| 好看av亚洲va欧美ⅴa在| 婷婷成人精品国产| 亚洲美女黄片视频| 黄色女人牲交| 成年人免费黄色播放视频| 老鸭窝网址在线观看| e午夜精品久久久久久久| xxx96com| 欧美国产精品va在线观看不卡| 亚洲精品国产区一区二| 国产又色又爽无遮挡免费看| av有码第一页| 亚洲aⅴ乱码一区二区在线播放 | 女人高潮潮喷娇喘18禁视频| 亚洲,欧美精品.| 51午夜福利影视在线观看| 精品熟女少妇八av免费久了| 久久午夜综合久久蜜桃| 99国产精品一区二区三区| 欧美 日韩 精品 国产| 国产高清激情床上av| 一个人免费在线观看的高清视频| 久久亚洲真实| 操美女的视频在线观看| av天堂久久9| 国产免费男女视频| 不卡一级毛片| 久久亚洲精品不卡| 亚洲性夜色夜夜综合| 成人黄色视频免费在线看| 国产成人av教育| 国产片内射在线| 成人永久免费在线观看视频| 日韩中文字幕欧美一区二区| 亚洲精品在线观看二区| 欧美老熟妇乱子伦牲交| 黑丝袜美女国产一区| 国产精品偷伦视频观看了| 久久久国产一区二区| 国产1区2区3区精品| 麻豆乱淫一区二区| 天天影视国产精品| 国产免费现黄频在线看| 桃红色精品国产亚洲av| 少妇的丰满在线观看| 国产免费男女视频| 欧美在线黄色| 黄色视频,在线免费观看| 成年人黄色毛片网站| 91麻豆av在线| 国产成+人综合+亚洲专区| 中文字幕精品免费在线观看视频| 国产精品免费视频内射| 天天躁狠狠躁夜夜躁狠狠躁| 国产三级黄色录像| 久久九九热精品免费| 熟女少妇亚洲综合色aaa.| 99久久99久久久精品蜜桃| 精品国产超薄肉色丝袜足j| 天天影视国产精品| 久久精品人人爽人人爽视色| 亚洲人成电影观看| 首页视频小说图片口味搜索| 黄色毛片三级朝国网站| 久久香蕉精品热| 99re在线观看精品视频| 国产精品自产拍在线观看55亚洲 | 在线十欧美十亚洲十日本专区| 国产深夜福利视频在线观看| 国产欧美亚洲国产| 午夜激情av网站| 国产一区二区三区视频了| 欧美午夜高清在线| 人成视频在线观看免费观看| 亚洲第一欧美日韩一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 麻豆国产av国片精品| 91精品国产国语对白视频| 欧美日韩黄片免| 久久国产精品男人的天堂亚洲| 丝袜美腿诱惑在线| 亚洲欧美激情综合另类| 中文字幕高清在线视频| 女人被躁到高潮嗷嗷叫费观| 精品人妻熟女毛片av久久网站| 又大又爽又粗| 精品第一国产精品| 亚洲三区欧美一区| 国产一卡二卡三卡精品| 亚洲黑人精品在线| 精品久久蜜臀av无| 欧美精品啪啪一区二区三区| 精品亚洲成a人片在线观看| 国产免费现黄频在线看| 女警被强在线播放| 免费一级毛片在线播放高清视频 | 国产极品粉嫩免费观看在线| 黄色怎么调成土黄色| 国产高清视频在线播放一区| 天堂√8在线中文| 国产欧美日韩综合在线一区二区| 中文字幕av电影在线播放| 老汉色∧v一级毛片| 99精品欧美一区二区三区四区| tocl精华| 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久av网站| 亚洲色图 男人天堂 中文字幕| 怎么达到女性高潮| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久网| 精品一区二区三区四区五区乱码| 一级毛片高清免费大全| 自线自在国产av| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 91精品国产国语对白视频| 国产在线一区二区三区精| 久久中文字幕人妻熟女| 欧美丝袜亚洲另类 | 在线观看免费日韩欧美大片| 伦理电影免费视频| 国产精品一区二区精品视频观看| 国产xxxxx性猛交| 国产成人精品久久二区二区91| 法律面前人人平等表现在哪些方面| 色老头精品视频在线观看| 欧美午夜高清在线| 这个男人来自地球电影免费观看| av天堂久久9| 老司机靠b影院| 国产午夜精品久久久久久| 香蕉国产在线看| 国产亚洲欧美精品永久| 午夜91福利影院| 成年动漫av网址| 亚洲欧美一区二区三区黑人| 国产单亲对白刺激| 9191精品国产免费久久| 嫩草影视91久久| 狠狠婷婷综合久久久久久88av| 亚洲成a人片在线一区二区| 老司机深夜福利视频在线观看| 精品视频人人做人人爽| 免费看十八禁软件| 国产人伦9x9x在线观看| 水蜜桃什么品种好| 91麻豆精品激情在线观看国产 | 大香蕉久久网| 中文字幕人妻熟女乱码| 一区二区三区国产精品乱码| 久久人人97超碰香蕉20202| 国产亚洲欧美在线一区二区| 日本一区二区免费在线视频| 国产精品电影一区二区三区 | 另类亚洲欧美激情| 国产精品久久久人人做人人爽| 男人舔女人的私密视频| 麻豆成人av在线观看| 亚洲色图综合在线观看| 欧美中文综合在线视频| 日日夜夜操网爽| 超色免费av| 脱女人内裤的视频| 搡老岳熟女国产| 欧美日韩视频精品一区| 国产免费男女视频| 亚洲成av片中文字幕在线观看| 首页视频小说图片口味搜索| 天堂俺去俺来也www色官网| 丝袜美腿诱惑在线| 黄片播放在线免费| 国产又爽黄色视频| 午夜精品久久久久久毛片777| 精品福利观看| 天天添夜夜摸| 最近最新中文字幕大全电影3 | 天天影视国产精品| 操出白浆在线播放| 黄色成人免费大全| 黑丝袜美女国产一区| 亚洲在线自拍视频| 国产高清激情床上av| 亚洲一区高清亚洲精品| 老汉色∧v一级毛片| 麻豆av在线久日| 久久久久国产精品人妻aⅴ院 | 真人做人爱边吃奶动态| 极品教师在线免费播放| 高清欧美精品videossex| 亚洲欧美一区二区三区黑人| 黄色成人免费大全| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼 | 高清欧美精品videossex| 狠狠狠狠99中文字幕| 曰老女人黄片| 欧美亚洲 丝袜 人妻 在线| 久久久久久免费高清国产稀缺| 波多野结衣一区麻豆| ponron亚洲| 日本wwww免费看| 亚洲成人免费av在线播放| 午夜老司机福利片| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口| 精品久久蜜臀av无| 精品国产美女av久久久久小说| xxx96com| videosex国产| 亚洲va日本ⅴa欧美va伊人久久| 99国产精品一区二区蜜桃av | 亚洲人成电影免费在线| videos熟女内射| 色综合欧美亚洲国产小说| 久久精品国产亚洲av香蕉五月 | 国产精品自产拍在线观看55亚洲 | 欧美日韩成人在线一区二区| 一进一出抽搐gif免费好疼 | 亚洲va日本ⅴa欧美va伊人久久| 人成视频在线观看免费观看| 成人特级黄色片久久久久久久| 国产精华一区二区三区| 欧美+亚洲+日韩+国产| 欧美黄色淫秽网站| 80岁老熟妇乱子伦牲交| 精品少妇久久久久久888优播| 亚洲av日韩精品久久久久久密| av电影中文网址| cao死你这个sao货| 妹子高潮喷水视频| 日本vs欧美在线观看视频| 国产又爽黄色视频| 最近最新中文字幕大全电影3 | 午夜日韩欧美国产| 91成年电影在线观看| 久久精品亚洲精品国产色婷小说| 久久久久久久久久久久大奶| 婷婷成人精品国产| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| 法律面前人人平等表现在哪些方面| 18禁国产床啪视频网站| 91精品国产国语对白视频| 叶爱在线成人免费视频播放| 国产精品99久久99久久久不卡| 国产色视频综合| www.自偷自拍.com| 老司机福利观看| 国产91精品成人一区二区三区| 亚洲色图综合在线观看| 91av网站免费观看| 女同久久另类99精品国产91| 99香蕉大伊视频| 99国产极品粉嫩在线观看| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 午夜91福利影院| 交换朋友夫妻互换小说| 激情视频va一区二区三区| 国产国语露脸激情在线看| 欧美精品高潮呻吟av久久| 黄色丝袜av网址大全| 91精品三级在线观看| 韩国av一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放 | 捣出白浆h1v1| 中文字幕精品免费在线观看视频| 99riav亚洲国产免费| 999久久久国产精品视频| 狂野欧美激情性xxxx| 久久天堂一区二区三区四区| 一区二区三区国产精品乱码| 天天操日日干夜夜撸| 亚洲成人免费电影在线观看| 免费在线观看亚洲国产| 亚洲国产看品久久| 免费在线观看日本一区| 天堂中文最新版在线下载| 国产亚洲精品久久久久久毛片 | 亚洲成国产人片在线观看| 一a级毛片在线观看| 黄片播放在线免费| 日韩欧美免费精品| 黄网站色视频无遮挡免费观看| 国产精品秋霞免费鲁丝片| 一a级毛片在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产有黄有色有爽视频| 麻豆乱淫一区二区| 日本vs欧美在线观看视频| 人妻 亚洲 视频| 窝窝影院91人妻| 日韩欧美免费精品| 丰满饥渴人妻一区二区三| 99久久精品国产亚洲精品| av视频免费观看在线观看| 久久 成人 亚洲| 大型av网站在线播放| 999精品在线视频| 国产单亲对白刺激| 日本精品一区二区三区蜜桃| 一本大道久久a久久精品| 黄片大片在线免费观看| videos熟女内射| 国产人伦9x9x在线观看| 国产精品自产拍在线观看55亚洲 | 女警被强在线播放| 国产高清激情床上av| 日日摸夜夜添夜夜添小说| 在线看a的网站| 久久婷婷成人综合色麻豆| 可以免费在线观看a视频的电影网站| 国产91精品成人一区二区三区| 亚洲国产欧美网| 国产精品久久视频播放| 国产精品影院久久| 国产人伦9x9x在线观看| 天天添夜夜摸| 黄网站色视频无遮挡免费观看| 99久久精品国产亚洲精品| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频| 国产黄色免费在线视频| 新久久久久国产一级毛片| 欧美大码av| 大陆偷拍与自拍| 久热爱精品视频在线9| 久久这里只有精品19| 在线观看免费视频网站a站| 亚洲精品久久午夜乱码| 久久久久久久精品吃奶| 18禁观看日本| 国产1区2区3区精品| 夜夜爽天天搞| 三上悠亚av全集在线观看| 免费久久久久久久精品成人欧美视频| 岛国毛片在线播放| 色老头精品视频在线观看| 欧美日韩一级在线毛片| 久久精品aⅴ一区二区三区四区| 美女福利国产在线| 这个男人来自地球电影免费观看| 国产日韩欧美亚洲二区| 黄片播放在线免费| 久久99一区二区三区| 三上悠亚av全集在线观看| 国产精品 欧美亚洲| 一个人免费在线观看的高清视频| 国产视频一区二区在线看| 国产97色在线日韩免费| 天堂动漫精品| 激情在线观看视频在线高清 | 一a级毛片在线观看| 久久 成人 亚洲| 久久天躁狠狠躁夜夜2o2o| 精品人妻1区二区| 国产在线精品亚洲第一网站| 天堂中文最新版在线下载| 成人av一区二区三区在线看| 日韩欧美在线二视频 | 成年版毛片免费区| 欧美人与性动交α欧美精品济南到| 在线观看一区二区三区激情| 国产激情欧美一区二区| 国产精品久久视频播放| 亚洲美女黄片视频| xxxhd国产人妻xxx| 最近最新免费中文字幕在线| 国产亚洲精品第一综合不卡| 人人妻人人添人人爽欧美一区卜| 精品福利永久在线观看| 亚洲少妇的诱惑av| 亚洲欧美日韩高清在线视频| 欧美精品人与动牲交sv欧美| 十八禁高潮呻吟视频| 国产成人av激情在线播放| 欧美在线一区亚洲| 悠悠久久av| 国产激情久久老熟女| 国产精品自产拍在线观看55亚洲 | 18禁裸乳无遮挡动漫免费视频| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av | 日韩欧美一区视频在线观看| 看黄色毛片网站| 亚洲av熟女| 99久久人妻综合| 最新美女视频免费是黄的| 男女免费视频国产| 久久久久久久国产电影| 欧美大码av| 满18在线观看网站| 亚洲精品在线观看二区| 亚洲欧美日韩高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 老熟妇仑乱视频hdxx| 成人国语在线视频| 日本黄色日本黄色录像| 又紧又爽又黄一区二区| 老司机午夜福利在线观看视频| 久久久久久久午夜电影 | 精品乱码久久久久久99久播| 女性被躁到高潮视频| 很黄的视频免费| 亚洲av成人av| 麻豆成人av在线观看| 777米奇影视久久|