• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edge effect and interface confinement modulated strain distribution and interface adhesion energy in graphene/Si system

    2021-05-19 09:02:52
    Communications in Theoretical Physics 2021年1期

    Guangdong University of Petrochemical Technology,Maoming 525000,China

    Abstract In order to clarify the edge and interface effect on the adhesion energy between graphene(Gr)and its substrate,a theoretical model is proposed to study the interaction and strain distribution of Gr/Si system in terms of continuum medium mechanics and nanothermodynamics.We find that the interface separation and adhesion energy are determined by the thickness of Gr and substrate.The disturbed interaction and redistributed strain in the Gr/Si system induced by the effect of surface and interface can make the interface adhesion energy decrease with increasing thickness of Gr and diminishing thickness of Si.Moreover,our results show that the smaller area of Gr is more likely to adhere to the substrate since the edge effect improves the active energy and strain energy.Our predictions can be expected to be a guide for designing high performance of Grbased electronic devices.

    Keywords:graphene,edge effect and interface confinement,strain distribution,adhesion energy

    1.Introduction

    Graphene(Gr)has attracted much attention in the past decade as it provides a real possibility for a high performance of batteries,nanoelectronic and optoelectronic devices,photovoltaic,energy storage,etc[1–4].Supported on a substrate,the tunable interaction between Gr and its substrate play a significant role on the interface adhesion energy of Gr/substrate system[5–7].Although much strategies both from experimentally[8–11]and theoretically[12–14]have been made to study the adhesion properties by controlling the thickness,size and substrate morphology,the interactions and contacts between Gr and substrate remain one of the significant challenges in the fundamental scientific owing to the influence of interface,edge and surface effects[15].

    Generally,the interface adhesion energy of Gr/substrate relates to its thickness and edge condition as well as the surface state of substrate.On the one hand,reducing the thickness of Gr can not only enhance the surface-to-volume ratio(SVR),but also make the strain redistribution in Gr/substrate system[16,17].On the other hand,the interface interactions between Gr and substrate are very sensitive to the surface of substrate.The surface state of substrate can modulate the long-range interaction of van der Waals interaction and short-range interactions of interface bonds as well as out of plane rippling behaviors,resulting in the change of interface adhesion energy[18–20].Moreover,the interface effect induced by the discrepancy of lattice constant between film and substrate has an important influence on interface interaction as well.For example,Huang et al[21,22]reported that the stress in the interface of film/substrate can induce the films wrinkles and the tunable interface adhesion and interface strain between films and substrate can be achieved by controlling the thickness of films or the sample of substrate.Even more than that,the interface effect can also disturb the orientation of π- and σ-orbital and simultaneously induce the in-plane and out-of-plane strain to be taken place,resulting in the change the mechanical properties of Gr such as Young’s modulus and Poisson’s ratio[23,24].Especially,as the unsaturated dangling bonds in the edge carbon atoms,the strong bonds would be formed in Gr/substrate system and the mechanical properties of the Gr depend on the edge Figure 1.(a)Schematic illustration of a Gr membrane on substrate,(b)Gr interacting with its substrate.chirality[25,26].In this case,when decreasing the area or size of Gr,the strain would be redistributed in the Gr/substrate systems due to the enhancement of SVR,resulting in the change of the interaction and adhesion energy in various edge chirality of Gr.

    In order to clarify the influence of edge effect and interface confinement on interface adhesion properties of Gr/substrate system,rectangular Gr and circular Gr is investigated in terms of continuum medium mechanics and nanothermodynamics.Our results show that surface,interface and edge effect can disturb the total energy of Gr/substrate system,resulting in change of interface separation and adhesion energy.The tunable strain transfer in Gr/substrate system is also studied by modulating size and thickness of Gr and substrate.

    2.Principle

    In order to evaluate the edge,surface and interface effect on the adhesion properties,a type Gr/Si system is deliberately considered in our model.We assume that a Gr membrane with areaAgand thicknesstfis covered on the surface of Si substrate,as shown in the inset of figure 1(a).Theoretically,the total free energyUtotalof the Gr/substrate system can be expressed as

    whereUtotalis the van der Waals interaction between Gr and substrate,anddenotes extra energy induced by the interaction between the edge of the carbon atoms and the substrate of the Si atoms[27],andare,respectively,strain energy of Gr and substrate.

    In general,the van der Waals(vdWs)interaction between a carbon atom and the substrate atom can be expressed by Lennard-Jones potential:wheredis the distance between two atoms,C1andC2are the constants for the attractive and repulsive interaction.It is noteworthy that the vdWs interaction of Gr/substrate system is predominantly stored on the first layer of Gr and substrate which contributes almost 99% of the total energy[12].Therefore,the total interaction potential between substrate and Gr membrane can be obtained by integrating all the atoms of first layer of Gr and substrate:whereρsandρgare the number of atoms per unit area of a monolayer graphene and the number of atoms per unit volume of the substrate,andVsis the substrate volume.Consequently,the interfacial potential energy can be expressed as

    d0andΓ0are the interface separation under the equilibrium state and the intrinsic adhesion energy per unit area in the bulk case.

    In addition,as the abrupt termination of the bonding network in the edge of Gr,a high density of defects and dangling bonds would be left in the boundary[25,27].Therefore,the extra bonds of C–Si will be produced,as shown in figure 1(b).Generally,the energy,,induced by the extra energy of C–Si in the edge of Gr,as shown in figure 1.Lahiri et al[27]and Kozlov et al[28]reported that Pauli repulsion equilibrates vdW attraction with donation/back-donation being negligible when the distance of Grsubstrate close to 0.3 nm and the energy is still dominated by the vdW contribution.Thus,the energy,,can be approximately given by the vdWs interaction of C–Si as the distance of Gr–Si is about 0.3 nm[8,29],i.e.

    Moreover,consider a Gr membrane attached on the surface of Si substrate,the mismatch strain would be taken place as the discrepancy of lattice constant between Gr and substrate.The strain of radial and tangential areandwhereuandrare the radial displacements and radial coordinate.Moreover,according to the linear elastic constitutive model and the equilibrium of forces requires,withandwhereis the in-plane stiffness of the 2D material,+σand?σare for the thin flim and substrate within the flim portion,respectively,and theσvanishes for the substrate outside the film.Yf(Ys),tf(ts)andvf(vs)denote the Young’s modulus,thickness and Poisson’s ratio,is the shear stress,κis the curvature of the system,εmpresents the axisymmetric misfit strain distribution[30,31].Therefore,we have

    Additionally,the approach of atomistic-bond-relaxation suggests that the nanostructures can be considered as a shell-core configuration[6,13,32].The internal atoms in core remain have the intrinsic properties,whereas the bond length of the external atoms in shell would shrink spontaneously and the bond energy at equilibrium atomic separation will rise in absolute energy as reduction of the atomic coordination number(CN).Therefore,the strain induced by the surface effect can be deduced as,Moreover,consider the high coordination imperfection of atoms located at the edges of nanostructure,the average strain induced by the edge effect can be given by,for Gr andfor substrate[32].Therefore,considering the discrepancy state of the surface,edge and core atoms,the total strain of the Gr and Si substrate can be obtained

    hi(hedge)andεi(εedge)are,respectively,the bond length and lattice strain of in surface and edge atoms,and the lattice strain satisfyis the bond contraction coefficient,the ratio of edge atoms to total atoms of the substrate is zero,ziandzbare effective CNs in the ith atomic layer and that of bulk case,respectively.Therefore,according to the continuum mechanics principle,the strain energy per unit area stored in graphene membranes can be given by

    3.Results and discussion

    In order to clarify the relationship between adhesion properties and edge effect in Gr/Si substrate system,we consider that the edge carbon atoms that have unsaturated dangling bonds form strong bonds with the Si atoms[27]and the substrate is flat and infinite in the in-plane direction so that the ripple,edge buckling,and steps effect are ignored.Note that the necessary parameters are listed in table 1 and the interface adhesion energy can be calculated byΓ=?Utotal[12].

    Figure 2 shows the transfer of total strain from Gr to Si substrate with change the thickness of Gr and substrate.The tensile strain in graphene membranes and the compressive strain in substrate are,respectively,increasing and decaying as the thickness of substrate increases or films thickness decreases,whereas the width of graphene exhibit a slight effect on the total strain of Gr and substrate unless the width(radius)of rectangular(circular)Gr less than 1 nm.This result can be attributed to the change of elastic properties as well as surface and edge effect,which leads to the bonds become stronger and reestablish a new self-equilibrium state in Gr/substrate system.As a result,the strain will be redistributed in Gr and substrate.Geandier and co-workers[34]measured that strain transfer from a polymer substrate to the adherent thin films can be obtained by using synchrotron XRD techniqueat a low strain regime.Moreover,He et al[35,36]and Schadler et al[37,38]also reported that the strain in thin films are plotted as a function of the applied strains to the substrate,suggest elastic stress and strain transfer behaviors can be achieved in films/substrate system.Noted that we consider the stress and strain are uniformly distributed in Gr membrane and substrate.Those results may deviate from the experimental measurements and simulations which shows the different strains in various positions and layers of Gr[18,21,39].In our case,the uniformly distribution strain in Gr and substrate is suitability for calculating the interfacial adhesion energy,Γ,due to the total free energy of the nanosystem is not change.

    In order to study the elastic strain and its energy affect on the interface properties.Figure 3 demonstrates interface the equilibrium state in two types of Gr/substrate systems,including rectangular Gr/Si and circular Gr/Si.Clearly,the equilibrium state and the minimum of total energy of those two types of systems have obvious shift with the thickness of Gr.Meanwhile,the thickness dependence of a relative change of interface separation is shown in the inset of figures 3(a)and(b).The variation of interface separation of those two systems decays monotonically with decreasing number of Gr layers,whereas it has slightly increases when reduction the size of Gr.This result is expected since the elastic strain and strain energy increases dramatically with decreasing thickness and size.Moreover,according to the theory of Sun[33]and Ouyang et al[32],the changed physical properties in nanostructures can be attributed to the generation of strain and strain energy as the position of atoms deviate from the intrinsic state.Those results suggest that the elastic properties are insensitive to the size of Gr membrane.Zhao et al[40]and Han et al[26]reported that the size effect on Young’s modulus and Poisson’s ratio can be negligible when the diagonal length and width of Gr nanoribbon beyond 10 nm and 2 nm,respectively.

    Furthermore,in order to explore the influence of edge effect and interface confinement on the adhesion properties.Thickness- and size-dependent interface adhesion energy are shown in figure 4.Evidently,the adhesion energy increases with decaying thickness and size of Gr membrane at first,and then it become a constant when thickness and the size of Gr lager than 5 layers and 2 nm,respectively.Our predictions are consistent with Koenig’s[8]and Gao’s[29]measurements,and these results can be attributed to the difference of elastic properties and strain energy in graphene membranes[13,41].Moreover,to clarify the significant of edge on interface adhesion properties,figure 4(b)shows the interface adhesion energy of zigzag edge Gr compared with that of armchair edge Gr,and we haveΓzig> Γarmat fixed layer and width of Gr.This result can be ascribed to the difference edge state and mechanical properties between those two systems.Moreover,compared with figure 4(a),the adhesion energy of rectangular Gr is less than that of radius Gr.This result can be explained to the lower edge state and strain energy as well as the difference self-equilibrium state.

    Table 1.Input parameters for calculations.r0,a,h0,E,v and YB are the interface equilibrium distance,in-plane lattice constant,bond length,binding energy per unit area,Poisson’s ratio and Young’s modulus,respectively.

    Figure 2.The total strain as a function of width of Gr and thickness of Si in(a)Gr and(b)Si.

    Figure 3.The total free energy as a function of number of layers and interfacial separation of Gr in(a)rectangular Gr with R=2,5,10 nm and(b)circular Gr with W=2,5,10 nm.The inset of(a)and(b)show the relationship between the critical interface separation and the membrane thickness under various R and W,respectively.

    Figure 4.Interface adhesion energy as a function of number of layers and size in(a)circular Gr membranes,and(b)Gr zigzag and armchair Gr nanoribbons.

    Figure 5 shows the relationship between interface adhesion energy and thickness of substrate or area of single layer Gr.As plotted in figure 5(a),the interface adhesion energy decreases with diminishing thickness of substrate,whereas its increases with decreasing size of Gr.This result suggests that the Gr membranes are more likely to adhere to the thicker substrate.This trend is attributed to the change of vdW interaction,and strain energy.In fact,decrease the thickness of substrate and area of Gr can not only decay the interaction potential between Gr and substrate,but also make the strain redistributed in the system.Figure 5(b)exhibits the interface adhesion energy of zigzag edge Gr compared with that of armchair edge Gr at various thickness of substrate and area of single layer Gr.The results are similar to figure 4(b)withΓzig> Γarmat fixed layer and size of Gr,and the increase trend of adhesion energy of rectangular Gr is slightly less than that of circular Gr.Moreover,according to the calculation,the adhesion energy between single layer Gr and silicene is~0.3 J m?2,which is lower than that of Koening’s[8]and Gao’s[29]results,0.45 J m?2,suggest the total energy of Gr/substrate can be disturbed by edge and interface confinement.For instance,the parameters of Lennard-Jones potential areε=7.236 meV andσ=0.3258 nm in our calculation,which are lower than Rappe’s results withε=8.908 meV andσ=0.3326 nm[42].The discrepancy between our results and Rappe’s result suggests that:(i)the ripple effect of Gr play an important role on the interfacial adhesion energy of Gr/Si;(ii)the interfacial adhesion energy of Gr/SiO2(or Gr/Si)may larger than Koenig’s[8]and Gao’s[29]results,0.45 J m?2.

    4.Conclusion

    In summary,interface adhesion of rectangular Gr/Si substrate and circular Gr/Si substrate nanosystems are studied based on continuum medium mechanics and nanothermodynamics.Our results demonstrate that the surface,interface and edge effect determine the equilibrium state and interface separation distance of Gr/Si substrate nanosystem,which have a significant influence on its strain distribution.As a result,strain transfer between Gr and substrate can be modulated by controlling width and thickness of Gr and substrate.Moreover,we find the adhesion energy decreases with decreasing width and thickness of Gr and substrate,suggesting that the thinner Gr membrane is more likely to adhere on a thicker substrate.

    Figure 5.Interface adhesional energy as a function of size and thickness of Si in(a)circular Gr,and(b)Gr zigzag and armchair Gr nanoribbons.

    Acknowledgments

    This work was supported by the Natural Science Foundation of Guangdong Province(Grant Nos.2019A1515010916 and 2018A030307028),the Featured Innovation Project of Guangdong Education Department(2018KTSCX150),the Maoming Natural Science Foundation of Guangdong,China,(Grant No.2019018001)and the Guangdong Province Major Foundation of Fundamental Research(Grant No.517042).

    欧美人与善性xxx| 亚洲四区av| 日日干狠狠操夜夜爽| 青春草视频在线免费观看| 一个人免费在线观看电影| 日本wwww免费看| 国产一区二区三区综合在线观看 | 我要看日韩黄色一级片| 国产乱人视频| 91精品一卡2卡3卡4卡| 麻豆成人午夜福利视频| 91aial.com中文字幕在线观看| 精品久久久久久久人妻蜜臀av| 女的被弄到高潮叫床怎么办| 两个人视频免费观看高清| 日韩人妻高清精品专区| 男女那种视频在线观看| 最近的中文字幕免费完整| 国国产精品蜜臀av免费| 免费av不卡在线播放| 婷婷色av中文字幕| 亚洲综合精品二区| 国产亚洲91精品色在线| 国产黄片美女视频| 非洲黑人性xxxx精品又粗又长| 一区二区三区免费毛片| 亚洲国产av新网站| 日韩,欧美,国产一区二区三区| 天堂俺去俺来也www色官网 | 欧美成人a在线观看| freevideosex欧美| 熟妇人妻久久中文字幕3abv| 国产在视频线在精品| av在线播放精品| 亚洲av国产av综合av卡| av福利片在线观看| 久久久a久久爽久久v久久| 91久久精品国产一区二区成人| 久久99精品国语久久久| 国产精品久久久久久久电影| 蜜桃久久精品国产亚洲av| 一级二级三级毛片免费看| 亚洲乱码一区二区免费版| 肉色欧美久久久久久久蜜桃 | 熟女人妻精品中文字幕| 一级毛片我不卡| 丰满人妻一区二区三区视频av| 看十八女毛片水多多多| 精品一区二区三卡| 成人亚洲精品av一区二区| 美女xxoo啪啪120秒动态图| 日韩欧美精品v在线| 国产爱豆传媒在线观看| 天堂网av新在线| 国产在视频线精品| 国产精品精品国产色婷婷| 最近最新中文字幕免费大全7| 精品酒店卫生间| 国产在线一区二区三区精| 成年免费大片在线观看| 国产精品精品国产色婷婷| 2022亚洲国产成人精品| 国产精品久久久久久久电影| 波多野结衣巨乳人妻| 婷婷色综合www| 国产伦精品一区二区三区视频9| 两个人的视频大全免费| 成人午夜精彩视频在线观看| 乱系列少妇在线播放| 少妇猛男粗大的猛烈进出视频 | 日韩一本色道免费dvd| 久久久久久久久中文| 国产综合懂色| 亚洲精品国产av成人精品| 久久久久久久久久黄片| 久久99热这里只有精品18| 夜夜看夜夜爽夜夜摸| 久久久成人免费电影| 免费观看av网站的网址| 国产精品久久久久久久电影| 一级黄片播放器| 亚洲精品自拍成人| 国产毛片a区久久久久| 熟妇人妻不卡中文字幕| 一本一本综合久久| 亚洲国产最新在线播放| av免费在线看不卡| 蜜臀久久99精品久久宅男| 国产高潮美女av| 国产午夜精品一二区理论片| 亚洲av不卡在线观看| 国产精品国产三级国产专区5o| 久久久精品欧美日韩精品| 日本午夜av视频| 精华霜和精华液先用哪个| 国产精品.久久久| 国产成人a区在线观看| 国产在视频线在精品| 久久久色成人| 美女xxoo啪啪120秒动态图| 最近视频中文字幕2019在线8| 亚洲乱码一区二区免费版| av天堂中文字幕网| 久久久久久久久久人人人人人人| 真实男女啪啪啪动态图| 97精品久久久久久久久久精品| 国产人妻一区二区三区在| 久久久久久久午夜电影| 久久久久精品久久久久真实原创| 亚洲伊人久久精品综合| 成年女人看的毛片在线观看| 免费av观看视频| 成人欧美大片| 麻豆乱淫一区二区| 性插视频无遮挡在线免费观看| 国精品久久久久久国模美| 九九久久精品国产亚洲av麻豆| 肉色欧美久久久久久久蜜桃 | 免费黄频网站在线观看国产| 国产精品嫩草影院av在线观看| 毛片一级片免费看久久久久| 国产亚洲最大av| 深夜a级毛片| 亚洲自拍偷在线| 国产精品久久久久久久电影| 免费看不卡的av| kizo精华| 亚洲精品一区蜜桃| 一级黄片播放器| 成年免费大片在线观看| av卡一久久| 麻豆国产97在线/欧美| 一级毛片电影观看| 看非洲黑人一级黄片| 一区二区三区高清视频在线| 国内精品美女久久久久久| 日韩成人伦理影院| 久久久精品免费免费高清| 尤物成人国产欧美一区二区三区| 人妻少妇偷人精品九色| 免费黄色在线免费观看| 一个人观看的视频www高清免费观看| av又黄又爽大尺度在线免费看| 欧美精品国产亚洲| 人人妻人人澡欧美一区二区| 免费观看在线日韩| ponron亚洲| 99久久九九国产精品国产免费| 亚洲,欧美,日韩| 午夜免费男女啪啪视频观看| 中文字幕免费在线视频6| 久久草成人影院| 日韩 亚洲 欧美在线| 少妇猛男粗大的猛烈进出视频 | 免费电影在线观看免费观看| av在线观看视频网站免费| 精品久久久久久电影网| 神马国产精品三级电影在线观看| 99视频精品全部免费 在线| 最近中文字幕2019免费版| 97超碰精品成人国产| kizo精华| 国产成人a区在线观看| 3wmmmm亚洲av在线观看| 亚洲av福利一区| 亚洲综合色惰| 国产精品综合久久久久久久免费| 麻豆久久精品国产亚洲av| 国产男女超爽视频在线观看| 午夜免费观看性视频| 日韩成人伦理影院| 亚洲人成网站高清观看| 欧美成人精品欧美一级黄| 乱码一卡2卡4卡精品| 国产精品一二三区在线看| 干丝袜人妻中文字幕| 亚洲国产色片| 丰满少妇做爰视频| 99热6这里只有精品| 一级毛片我不卡| av卡一久久| 亚洲婷婷狠狠爱综合网| 国产高清国产精品国产三级 | 日韩一区二区视频免费看| 99久久人妻综合| 亚洲人成网站在线播| 99久久人妻综合| 亚洲成人一二三区av| 高清毛片免费看| 色视频www国产| a级毛色黄片| 国产精品伦人一区二区| 日韩 亚洲 欧美在线| 高清毛片免费看| 色视频www国产| 国产片特级美女逼逼视频| 简卡轻食公司| 亚洲欧美清纯卡通| 99热这里只有是精品在线观看| 亚洲最大成人手机在线| 一区二区三区免费毛片| 男人和女人高潮做爰伦理| 成人午夜高清在线视频| 国产视频首页在线观看| av一本久久久久| 777米奇影视久久| 午夜亚洲福利在线播放| 一级毛片电影观看| a级毛片免费高清观看在线播放| 精品久久国产蜜桃| 国产一区亚洲一区在线观看| 少妇裸体淫交视频免费看高清| 国产亚洲午夜精品一区二区久久 | 国产国拍精品亚洲av在线观看| 国产精品久久久久久精品电影| 亚州av有码| 精品久久久久久电影网| 国产成人91sexporn| 高清av免费在线| 在线免费观看的www视频| 欧美zozozo另类| 99九九线精品视频在线观看视频| 色播亚洲综合网| 亚洲精品久久午夜乱码| 少妇裸体淫交视频免费看高清| 午夜免费激情av| 嫩草影院入口| 午夜爱爱视频在线播放| 国内精品宾馆在线| 成人性生交大片免费视频hd| 非洲黑人性xxxx精品又粗又长| 三级毛片av免费| 国产在线一区二区三区精| 中文字幕亚洲精品专区| 国产伦在线观看视频一区| kizo精华| 亚洲经典国产精华液单| 欧美激情久久久久久爽电影| 久久久久国产网址| 国产精品一区二区性色av| 欧美三级亚洲精品| 亚洲伊人久久精品综合| 久久99热这里只有精品18| 一区二区三区四区激情视频| 日本爱情动作片www.在线观看| 国产亚洲av嫩草精品影院| 插阴视频在线观看视频| 99久国产av精品国产电影| 最近2019中文字幕mv第一页| 亚洲国产精品成人久久小说| 国产大屁股一区二区在线视频| 午夜久久久久精精品| 黄色配什么色好看| 欧美激情久久久久久爽电影| 永久网站在线| 91久久精品电影网| 国产精品无大码| 看非洲黑人一级黄片| 草草在线视频免费看| 国产亚洲午夜精品一区二区久久 | 少妇猛男粗大的猛烈进出视频 | 亚洲av成人av| 97热精品久久久久久| 综合色丁香网| 欧美zozozo另类| videossex国产| 高清欧美精品videossex| 国产精品伦人一区二区| 女的被弄到高潮叫床怎么办| 久久久久久久久中文| 91精品一卡2卡3卡4卡| 我的老师免费观看完整版| 我的老师免费观看完整版| 国产av在哪里看| 国产成人精品一,二区| 国产美女午夜福利| 99热这里只有精品一区| 直男gayav资源| 一个人看的www免费观看视频| av天堂中文字幕网| 国产一区二区在线观看日韩| 久久这里只有精品中国| 偷拍熟女少妇极品色| 免费观看性生交大片5| 欧美成人一区二区免费高清观看| 午夜福利视频1000在线观看| 国语对白做爰xxxⅹ性视频网站| 18禁动态无遮挡网站| 尤物成人国产欧美一区二区三区| 亚洲最大成人中文| 久久久久久久久久人人人人人人| 男人舔女人下体高潮全视频| 亚洲国产av新网站| av在线播放精品| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 天堂网av新在线| 最近中文字幕2019免费版| 午夜福利网站1000一区二区三区| 国产真实伦视频高清在线观看| 热99在线观看视频| 精品久久国产蜜桃| 两个人视频免费观看高清| 美女cb高潮喷水在线观看| 亚洲精品中文字幕在线视频 | 成人特级av手机在线观看| 久久99热这里只频精品6学生| 欧美xxxx性猛交bbbb| 99久国产av精品| 亚洲精品一二三| 成人亚洲精品一区在线观看 | 午夜亚洲福利在线播放| 一区二区三区免费毛片| 成年av动漫网址| 国产成人精品一,二区| 日本免费在线观看一区| 午夜福利高清视频| 国产精品爽爽va在线观看网站| 日日干狠狠操夜夜爽| 欧美成人精品欧美一级黄| 久久久a久久爽久久v久久| 精品不卡国产一区二区三区| 久久久亚洲精品成人影院| 激情五月婷婷亚洲| 在线观看免费高清a一片| 久久精品国产鲁丝片午夜精品| 成人欧美大片| 神马国产精品三级电影在线观看| av国产免费在线观看| 亚洲国产精品成人综合色| 国产精品一区www在线观看| 啦啦啦韩国在线观看视频| 国产精品99久久久久久久久| 中文欧美无线码| 国产 亚洲一区二区三区 | 两个人视频免费观看高清| 男人和女人高潮做爰伦理| 亚洲三级黄色毛片| 国产成人精品福利久久| 亚洲美女视频黄频| 日韩强制内射视频| 熟女人妻精品中文字幕| 午夜福利成人在线免费观看| 人妻一区二区av| 日本免费在线观看一区| 丰满人妻一区二区三区视频av| 偷拍熟女少妇极品色| 99热这里只有是精品在线观看| 国产 一区 欧美 日韩| 国产黄片美女视频| 亚洲精品久久久久久婷婷小说| 精品久久久久久久久av| 久久韩国三级中文字幕| 蜜桃亚洲精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 精品国产露脸久久av麻豆 | 乱人视频在线观看| 久久国内精品自在自线图片| 伊人久久国产一区二区| 国产精品99久久久久久久久| 男女边摸边吃奶| 日日撸夜夜添| 六月丁香七月| 色视频www国产| 一级毛片aaaaaa免费看小| 人人妻人人澡人人爽人人夜夜 | 一级片'在线观看视频| 18禁在线无遮挡免费观看视频| 国产精品久久久久久av不卡| 国产一级毛片在线| 国产一区二区三区综合在线观看 | 日本与韩国留学比较| 偷拍熟女少妇极品色| 国产淫片久久久久久久久| 尾随美女入室| 日韩欧美 国产精品| 亚洲欧洲日产国产| 国模一区二区三区四区视频| 国产91av在线免费观看| 国产伦在线观看视频一区| ponron亚洲| 色吧在线观看| 毛片一级片免费看久久久久| 久久精品夜色国产| 亚洲在线自拍视频| 99视频精品全部免费 在线| 亚洲精品日韩av片在线观看| 18禁在线播放成人免费| 人妻少妇偷人精品九色| 亚洲在久久综合| 日日啪夜夜撸| 国精品久久久久久国模美| 国产精品一二三区在线看| 国产精品人妻久久久久久| 国产免费一级a男人的天堂| 亚洲综合色惰| 国产精品久久视频播放| 欧美极品一区二区三区四区| 国产成人精品福利久久| 国产真实伦视频高清在线观看| 啦啦啦中文免费视频观看日本| 秋霞在线观看毛片| 国产成人精品福利久久| 精品人妻视频免费看| 六月丁香七月| 久久久久久久国产电影| 久久鲁丝午夜福利片| 亚洲精品成人久久久久久| 深爱激情五月婷婷| 亚洲精品中文字幕在线视频 | 欧美日韩亚洲高清精品| 国产伦在线观看视频一区| 亚洲欧美精品专区久久| 一级毛片久久久久久久久女| 狂野欧美白嫩少妇大欣赏| 久久亚洲国产成人精品v| 亚洲精品自拍成人| 好男人视频免费观看在线| 免费黄网站久久成人精品| 99久久九九国产精品国产免费| 免费观看a级毛片全部| 视频中文字幕在线观看| 国产精品久久久久久久久免| 91狼人影院| 日韩大片免费观看网站| 久久久久九九精品影院| 午夜视频国产福利| 亚洲激情五月婷婷啪啪| 激情五月婷婷亚洲| 建设人人有责人人尽责人人享有的 | 又爽又黄无遮挡网站| 国产亚洲精品av在线| 男女下面进入的视频免费午夜| 亚洲aⅴ乱码一区二区在线播放| 欧美成人精品欧美一级黄| 日本熟妇午夜| 成人国产麻豆网| 好男人在线观看高清免费视频| 一级爰片在线观看| 少妇人妻一区二区三区视频| 一级毛片久久久久久久久女| 成人二区视频| 网址你懂的国产日韩在线| 亚洲国产av新网站| 亚洲欧美一区二区三区国产| 看黄色毛片网站| 精华霜和精华液先用哪个| 一二三四中文在线观看免费高清| 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 久久久久久久久久黄片| 一级av片app| 亚洲性久久影院| 99久久精品热视频| 大香蕉97超碰在线| 国产探花在线观看一区二区| 只有这里有精品99| 国产高清有码在线观看视频| 能在线免费看毛片的网站| 久久久久久久大尺度免费视频| 国产毛片a区久久久久| 一级a做视频免费观看| 韩国av在线不卡| 看十八女毛片水多多多| 一级毛片 在线播放| 中文乱码字字幕精品一区二区三区 | 尾随美女入室| 亚洲国产av新网站| 日韩亚洲欧美综合| 九草在线视频观看| 美女国产视频在线观看| 国产精品熟女久久久久浪| 国产精品人妻久久久久久| 亚洲精品日韩av片在线观看| 水蜜桃什么品种好| 国产伦一二天堂av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 熟女人妻精品中文字幕| 免费av不卡在线播放| 亚洲av男天堂| 非洲黑人性xxxx精品又粗又长| 亚洲色图av天堂| 偷拍熟女少妇极品色| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 欧美成人一区二区免费高清观看| 日韩电影二区| 免费播放大片免费观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 男插女下体视频免费在线播放| 九草在线视频观看| 97超视频在线观看视频| 国产中年淑女户外野战色| 内射极品少妇av片p| 久久99热这里只有精品18| 极品教师在线视频| 高清午夜精品一区二区三区| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版 | 亚洲欧美清纯卡通| 91狼人影院| 色吧在线观看| a级毛色黄片| 国产乱人视频| 欧美激情在线99| 亚洲av成人精品一区久久| 亚洲精品日韩av片在线观看| 午夜免费激情av| 欧美人与善性xxx| 亚洲av福利一区| 男人狂女人下面高潮的视频| 中文天堂在线官网| 丝袜美腿在线中文| 美女被艹到高潮喷水动态| 爱豆传媒免费全集在线观看| 麻豆av噜噜一区二区三区| 国产av码专区亚洲av| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 亚洲av中文av极速乱| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| 床上黄色一级片| 狠狠精品人妻久久久久久综合| 成人毛片60女人毛片免费| 国产免费视频播放在线视频 | 色综合亚洲欧美另类图片| 韩国av在线不卡| 国产熟女欧美一区二区| 日韩av在线大香蕉| 赤兔流量卡办理| 美女黄网站色视频| 精品人妻一区二区三区麻豆| 日产精品乱码卡一卡2卡三| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 99久久人妻综合| 看非洲黑人一级黄片| 国产黄色视频一区二区在线观看| av福利片在线观看| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 国产精品国产三级专区第一集| 国产av国产精品国产| 成人午夜精彩视频在线观看| 亚洲精品视频女| 色播亚洲综合网| 日韩成人伦理影院| 一级a做视频免费观看| 精品人妻一区二区三区麻豆| 亚洲国产精品sss在线观看| 99热6这里只有精品| 国产精品一区二区性色av| 性插视频无遮挡在线免费观看| 日韩国内少妇激情av| 欧美另类一区| 精品久久久噜噜| 久久久久久久久久黄片| 久久精品国产鲁丝片午夜精品| 黄片无遮挡物在线观看| 少妇人妻精品综合一区二区| 午夜福利网站1000一区二区三区| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看| 搡老乐熟女国产| 美女被艹到高潮喷水动态| 国产成人精品婷婷| 日本一本二区三区精品| 99久久精品热视频| 亚洲精品国产av蜜桃| 日韩欧美精品v在线| 亚洲精品第二区| 男的添女的下面高潮视频| 日韩亚洲欧美综合| 在线天堂最新版资源| av国产久精品久网站免费入址| 少妇高潮的动态图| 一个人免费在线观看电影| 国产亚洲精品av在线| 青春草亚洲视频在线观看| 80岁老熟妇乱子伦牲交| 久久久国产一区二区| a级一级毛片免费在线观看| xxx大片免费视频| 观看免费一级毛片| 亚州av有码| 国产成人精品一,二区| 我的女老师完整版在线观看| 久久精品国产亚洲av天美| 精品一区二区免费观看| 中文字幕免费在线视频6| 日本色播在线视频| 久久久久久久久久久丰满| 日韩伦理黄色片| 成人亚洲精品av一区二区| 国产不卡一卡二| 国产91av在线免费观看| 少妇被粗大猛烈的视频| 极品教师在线视频| 国产精品久久久久久精品电影| 九九爱精品视频在线观看| 男女下面进入的视频免费午夜| 直男gayav资源| 亚洲国产精品专区欧美| 亚洲精品一区蜜桃| 亚洲国产av新网站| 最近最新中文字幕大全电影3| 精品一区二区免费观看| 久久精品国产亚洲av天美| 97超视频在线观看视频| 国产色爽女视频免费观看|