• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interplay of parallel electric field and trapped electrons in kappa-Maxwellian auroral plasma for EMEC instability

    2021-05-19 09:02:40NazeerQureshiandShen
    Communications in Theoretical Physics 2021年1期

    M Nazeer,M N S Qureshi and C Shen

    1 Department of Physics,GC University,Lahore(54000),Pakistan

    2 Shenzhen Graduate School,HIT Campus,University Town of Shenzhen,Shenzhen 518055,China

    Abstract In this paper,propagation characteristics of electromagnetic electron cyclotron(EMEC)waves based on kappa-Maxwellian distribution have been investigated to invoke the interplay of the electric field parallel to the Earth’s magnetic field and auroral trapped electrons.The dispersion relation for EMEC waves in kappa-Maxwellian distributed plasma has been derived using the contribution of the parallel electric field and trapped electron speed.Numerical results show that the presence of the electric field has a stimulating effect on growth rate,which is more pronounced at low values of wave number.It is also observed that as the threshold value of trapped electron speed is surpassed,it dominates the effect of the parallel electric field and EMEC instability is enhanced significantly.The electric field acts as another source of free energy,and growth can be obtained even in the absence of trapped electron drift speed and for very small values of temperature anisotropy.Thus the present study reveals the interplay of the parallel electric field and trapped electron speed on the excitation of EMEC waves in the auroral region.

    Keywords:EMEC waves,kappa-Maxwellian distribution,trapped electrons,parallel electric field in aurora

    1.Introduction

    An electric field associated with magnetospheric wave phenomena was first suggested by Alfven and Falthammar[1]on the basis of theoretical arguments,and has been an important feature of auroral plasma over the past couple of decades.Numerous observations from magnetospheric plasma reveal that such an electric field predominantly occurs along the Earth’s magnetic field[2–6].Auroral observations by the Viking satellite have shown that the time duration of electric fields are a few tens of seconds and their values are from a few to 20 mV m?1[7].Based on the observations of the electric field associated with electrostatic shocks and double layers from the auroral zone,Temerin and Mozer[8]inferred that the average peak value of parallel electric fields is 25 mV m?1.However,observations from the auroral region also reveal that electric fields are found with amplitudes more than 100 mV m?1,but these electric fields are restricted to relatively small regions[9,10].Mozer and Kletzing[11]reported the direct observations of large amplitude electric fields of more than 100 mV m?1from the upward current auroral region.From the upward current auroral region,the direct observations of parallel electric fields pointed out the localization of these fields almost up to 10 Debye lengths[12].Furthermore,Schriver and Ashour-Abdulla[13]reported that large- and small-scale electric fields exist in the auroral region.Shi et al[14]studied the nonlinear electrostatic waves in the context of auroral plasma and suggested that bipolar electric field solitary structures could be the result of nonlinear evolution of such electrostatic waves.Therefore,the existence of an electric field parallel to the magnetic field in the auroral region has now been well established.

    Figure 1.Normalized growth rate versus normalized wave number for different values ofEo=0,40 60,80 mV m?1 and v0/c=0 with other parameters ne/n=0.9,β=0.15,θ‖/c=θ⊥/c=0.1,ωpe/Ω e=0.8andκ=4.

    The presence of an electric field and electrodynamical coupling of the ionosphere and magnetosphere have a significant effect on the regional electrodynamics and transportation of charged particles.One of the commonly observed electromagnetic waves in the magnetosphere is electromagnetic electron cyclotron(EMEC)waves.The electron temperature anisotropy and streaming electrons are supposed to be the cause of excitation of these waves[15].Whistler waves are the low-frequency branch of the full spectrum of EMEC waves that have been observed extensively in terrestrial foreshock,magnetosheath and magnetosphere[16].The presence of the electric field may affect the morphological characteristics of whistler waves generated by the wave particle interaction.By employing the bi-Maxwellian distribution,Misra and Singh[17]found out how EMEC waves are amplified by electric fields in weakly ionized Maxwellian plasma,but this work was restricted to a small value of temperature anisotropy.In the auroral region,for large values of temperature anisotropies,Renuka and Viswanathan[18]investigated the EMEC instability in a plasma which consists of a nonthermal cold component and Maxwellian hot component.It is worth noting that we employ kappa-Maxwellian distribution function,whereas in[17,18]bi-Maxwellian was used.Excitation of whistler waves has also been studied in low-altitude auroral plasma,comprising cold and trapped energetic electrons withne

    In this paper,using linear kinetic theory,EMEC instability has been studied to explore the interplay of trapped electron speed and parallel electric field in the context ofκMdistributed auroral plasma.The growth rate for EMEC instability has been derived using theκM-distribution for arbitrary values of trapped electron density and various altitudes.A theoretical model and the derivation of dispersion relation for EMEC waves inκM-plasma are presented in section 2.In section 3,we present the numerical solution and effect on the growth rate studied by changing the different plasma parameters.Finally,we present our conclusions in section 4.

    2.Model formulism

    In this paper,we assume uniform,collisionless and anisotropic plasma comprising cold ionospheric background electrons and trapped energetic(hot)electrons in the presence of a parallel electric field which is a salient feature of auroral plasma.These energetic trapped electrons exhibit a bump along the perpendicular axis in velocity space[20].Moreover,we consider ion population as immobile providing neutralizing background; therefore,ion dynamics is completely neglected.TheκM-distribution function is considered as a model distribution for trapped energetic electrons in whichκ-distribution is used to model the parallel accelerated motion and perpendicular motion is modeled by Maxwellian distribution.Thus the distribution function for trapped electrons is written as[39]

    where

    Hereneis the energetic electron andnis the total electron density,v0is the mean energetic trapped electrons drift speed in the perpendicular direction defined aswherewithErfc()is the complementary error function,and are the modified parallel and perpendicular electron temperatures,respectively.Here we note that the parallel thermal velocity shown in equation(3)is modified due to the presence of the parallel electric field,and has the form

    whereE0is the parallel electric field and(Nazeer et al 2018).Alternatively,is modified due to the presence of the parallel electric field[40,41],as given below

    Equations(5)and(6)represent the modified parallel thermal velocity and parallel temperature in the presence of the parallel electric field,respectively.For a system that comprises cold and trapped energetic electrons,the dispersion relation for EMEC waves propagating parallel to the ambient magnetic field forκM-distributed plasma can be written as

    are the modified plasma dispersion functions expressed through Gauss hypergeometric function corresponding to kappa andκM-distributions,respectively[25,32]with argumentIn the limiting form,i.e.κ→∞,both the modified dispersion functions reduce to plasma dispersion functionZ(ξ)[42].

    After some manipulation,equation(7)can also be written as

    where

    WhenEo=0,the dispersion relation(8)can be reduced to equation(6)of Nazeer et al[39]Also whenEo=0andvo=0,the dispersion relation(8)reduces to equation(33)obtained by Cattaert et al[33]for theκM-plasma.

    The real frequency and growth rate can be obtained by solving the above dispersion relation(8)using the large argument of dispersion functions and taking only the lowest order terms havingEoin the imaginary part.We also assume that cold background electrons are isotropic and only cold electrons contribute to real frequency[20,27,39]; the expression of real frequency can be written as

    From the above equation,we can see that the real frequency is not only independent of the parallel electric field,but also independent of the energetic electrons[17,20,27,43].Therefore,in the following section we will not plot the real frequency and restrict our analysis to growth rate only.Since the energetic electrons are responsible for the growth,therefore,the growth rate can be calculated as

    WhenEo=0,the above expression reduces to the expression obtained by Nazeer et al[39]The expression given above reveals that the instability will be significant if the following conditions are fulfilled.

    The above conditions govern the upper and lower bounds for the instability,respectively.The above conditions also show that there is no influence ofκ-index on the threshold frequency while the maximum unstable frequency strongly depends uponκ-index[29].

    3.Numerical results

    Numerical solution of the complete dispersion relation(equation(8))for the EMEC waves is presented in this section by considering different values of the parametersEo,θ‖/c,v0/candne/ncfor auroral plasma[20,35,44].Figure 1 depicts the plots of growth rateγ/Ωeversus wave numberck/Ωefor different values ofEo=0,40 60,andv0/c=0 with other parametersne/n=0.9,β=0.15,θ‖/c=θ⊥/c=0.1,ωpe/Ωe=0.8andκ=4.We can note that the parallel electric field(Eo>0)has a stimulating effectv0/c=0.This is due to the fact that the parallel electric field on the growth rate,and growth can be obtained even for serves as another independent source of free energy and can accelerate the electrons along the magnetic field up to such energies that can excite the wave.Generally growth can be obtained whenv0/chas a value greater than the threshold value,since it enhances the resultant temperature anisotropy,which is the source of instability for EMEC waves.However,the present study reveals that growth can be obtained even whenv0/c=0 when there is some nonzero background electric field present in the system as an additional source of energy.

    In figure 2,growth rateγ/Ωeis plotted against the wave numberck/Ωefor different values ofEo=0(black),20(blue),40(red),80(orange)in mV m?1whenn n e=0.9,v0/c=0.25,ωpe/Ωe=0.8,κ=5,θ‖/c=θ⊥/c=0.1 andβ=0.2.In figure 2,enhancement of growth rate with the increase in the value of parallel electric field at low values of wave number is evident.We can also note that the range of wave number for which instability occurs also increases with increments in the value ofE.oFigure 3 is plotted for normalized growth rateγ/Ωeagainst the normalized wave numberck/Ωefor different values ofκ=4(black),5(blue),7(red),9(green)whenEo=10 mVm?1,ne/n=0.9,θ‖/c=θ⊥/c=0.1,v0/c=0.24,ωpe/Ωe=0.8andβ=0.1.We can see that there is an enhancement in the growth rate with the increase in the kappa value.We can also note that the range of wave number for which instability occurs also increases with the increase in the kappa.

    Figure 2.Normalized growth rate versus normalized wave number for different values of electric field Eo=0(black),20(blue),40(red),

    Figure 3.Normalized growth rate versus normalized wave number for different values of electric field κ =4(black),5(blue),7(red),9(green)whereωpe/Ωe=0.8,Eo=10 mV/m,ne/n=0.9,θ‖/c=θ⊥/c=0.1,v0/c =0.24 and β=0.1.

    The variation in maximum growth rateγ/Ωeagainst normalized plasma frequencyωpe/Ωehas been shown in figure 4 for different values ofEo=0,10,20,30,40 mV m?1andθ‖/c=θ⊥/c=0.1,ne/n=0.7,v0/c=0.2,,κ=2.In figure 4,it can be seen that when we increase the normalized plasma frequency for a fixed value ofEo,the maximu m growth rate increases initially,but after reaching a certain value growth becomes constant for further increase in the plasma frequency.Moreover,we can see that if we fix the(γ/Ωe)against the trapped electron drift speedv0/cfor varvalue of plasma frequency and increase the value of electric field,the growth rate also increases.

    Figure 5 shows the plots for maximum growth rate ious values ofEo=20,40 60,80 mV m?1and for fixed values ofn n e=0.9,β=0.1,ωpe/Ωe=0.8,κ=5 andθ‖/c=θ⊥/c=0.1.It can be seen that the effect of parallel electric field on the maximum growth rate is more pronounced at the smaller values of trapped electron speed.When we increase the drift speed,maximum growth remains constant initially but it remains higher for larger values of electric field for a fixed value of drift speed.We can also note that there is almost no effect of drift speed on the maximum growth until it reaches a certain threshold value.After reaching that threshold value,trapped electron drift speed dominates the instability and the effect of electric field on the instability reduces,but maximum growth rate increases at a much faster rate with the increase in the drift speed beyond the threshold.

    Figure 4.Normalized growth rate versus normalized plasma frequencyωpe/Ωefor various values of Eo=0,10,20,30,40 mV m?1 with other parameters ne/n=0.7,v0/c =0.2,θ‖/c=θ⊥/c=0.1,ωpe/Ωe=0.8andκ=2.

    Figure 5.Maximum growth rate versus normalized trapped electron speed for various values of Eo=0,40 60,80 mV m?1 and n ne/=0.9,β=0.1,ωpe/Ωe=0.8,θ‖/c=θ⊥/c=0.1,κ=5.

    Figure 6 illustrates the variation in maximum growth rate(γ/Ωe)versus normalized energetic trapped electron density for different values ofEo=20,40 60,80 mV m?1,while the other parameters areκ=4,ωpe/Ωe=0.8,β=0.1,v0/c=0.25,θ‖/c=θ⊥/c=0.1.From figure 6,it can be noted that the maximum growth rate increases with theincrease in energetic trapped electron density,but remains higher for larger values of electric field for the fixed value of trapped electron density.Figure 7 is plotted for maximum growth rate(γ/Ωe)versus temperature anisotropyfor different values ofEo=20,40 60,80 mV m?1with fixed parametersne/n=0.9,κ=4,β=0.1,θ‖/c=θ⊥/c=0.1,ωpe/Ωe=0.8.From figure 7,we can note that when we increase temperature anisotropy,maximum growth remains constant initially but is kept higher for larger values of electric field.We can also note that there is almost no effect of trapped electron drift speed on the maximum growth until it reaches a certain threshold value,which is more pronounced for smaller values of electric field.After reaching that threshold value,temperature anisotropy dominates the instability and the effect of electric field on the instability reduces.Furthermore,it is also noted that beyond thethreshold when we increase the temperature anisotropy the maximum growth rate increases significantly.

    Figure 6.Maximum growth rate versus normalized energetic trapped electron density for different values of Eo=20,40 60,80 mV m?1 and β=0.1,v0/c =0.25,ωpe/Ω e=0.8,κ=4,θ‖/c=θ⊥/c=0.1.

    Figure 7.Maximum growth rate versus temperature anisotropy for different values ofEo=20,40 60,80 mV m?1 with n ne/=0.9,θ‖/c=θ⊥/c=0.1,ωpe/Ω e=0.8,β=0.1 andκ=4.

    Figure 8.Maximum growth rate versusθ⊥/cfor different values ofEo=20,40,60,80 mV m?1 with ne/n=0.9,θ‖/c=0.1,β=0.1,v0/c =0.25,ωpe/Ωe=0.8andκ=4.

    Figure 8 gives the variation in maximum growth rate(γ/Ωe)versus perpendicular thermal velocity for various values ofEo=20,40 60,80 mV m?1with other parametersn

    e/n=0.9,θ‖/c=0.1,β=0.1,v0/c=0.25,ωpe/Ωe=0.8 andκ=4.The curves given in figure 8 reveal that when we increase the perpendicular thermal velocity,the maximum growth rate increases monotonically; however,if we fix the value of perpendicular thermal velocity,growth rate shows higher values for a larger electric field.

    4.Summary and conclusion

    In this paper,the influence of parallel electric field and trapped electron speed and their interplay have been investigated by employing kappa-Maxwellian distribution for auroral trapped electrons on the propagation characteristics of EMEC waves.The general dispersion relation in terms of modified dispersion functionZκM(ξ)bearing the effects of parallel electric field and trapped electron speed has been derived for the first time by employing kappa-Maxwellian distribution function.The analytical expressions for real frequency and growth rate are then derived and the full dispersion relation is investigated numerically.It is well known that in a drifting plasma the EMEC wave only grows when electron drift speed has values larger than a certain threshold value[39].However,in the present case our numerical results show that the EMEC wave grows well before the drift speed reaches a threshold value,and has a significant growth rate even for smaller values of parallel electric field.After the drift speed surpasses the threshold value,it dominates the EMEC instability and there is a significant increase in the growth rate.It is concluded that the parallel electric field has a stimulating effect on the growth rate at smaller values of wave number.It is also found that the presence of the electric field provides another source for free energy,and growth can be obtained even in the absence of trapped electron speed and for very small values of temperature anisotropy.In the present study the values of plasma-βand the ratioωpe/Ωehave been chosen so that they correspond to a wide range of auroral altitude(Fennell et al 1981).Moreover,with the increase in plasma frequency and perpendicular thermal velocity,the growth rate also increases,but it remains higher for larger values of electric field for the same values of plasma frequency and perpendicular thermal velocity.Thus the present study reveals the interplay of parallel electric field and trapped electron speed on the excitation of EMEC waves in the auroral region.

    Acknowledgments

    This research was supported by the GC University grant No.241/ORIC/19 dated 27-08-2019 and National Natural Science Foundation of China Grant No.41874190.

    可以在线观看毛片的网站| 亚洲中文字幕日韩| 国产高潮美女av| 日韩成人在线观看一区二区三区| www.999成人在线观看| 亚洲国产精品成人综合色| 简卡轻食公司| 色综合欧美亚洲国产小说| 可以在线观看毛片的网站| 欧美日韩综合久久久久久 | 日韩大尺度精品在线看网址| 国产黄片美女视频| 亚洲精品成人久久久久久| 长腿黑丝高跟| 日本一二三区视频观看| 尤物成人国产欧美一区二区三区| 国产免费男女视频| 人人妻人人澡欧美一区二区| 听说在线观看完整版免费高清| 美女cb高潮喷水在线观看| 国产精品久久电影中文字幕| 亚洲最大成人中文| 日本与韩国留学比较| 国产成人福利小说| av女优亚洲男人天堂| 国产av一区在线观看免费| 久久精品国产亚洲av涩爱 | 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av天美| 91九色精品人成在线观看| 老熟妇仑乱视频hdxx| 美女黄网站色视频| 久久午夜亚洲精品久久| 淫妇啪啪啪对白视频| 欧美激情久久久久久爽电影| 久久精品夜夜夜夜夜久久蜜豆| 国内毛片毛片毛片毛片毛片| 一级av片app| 在线国产一区二区在线| 99国产极品粉嫩在线观看| 有码 亚洲区| 午夜精品在线福利| 啦啦啦韩国在线观看视频| 三级男女做爰猛烈吃奶摸视频| www日本黄色视频网| 国产精品自产拍在线观看55亚洲| 美女 人体艺术 gogo| 天堂网av新在线| 国产精品久久久久久久电影| АⅤ资源中文在线天堂| 免费观看的影片在线观看| 国产精品永久免费网站| 黄色日韩在线| 久久中文看片网| 久久午夜福利片| 精品99又大又爽又粗少妇毛片 | 日韩人妻高清精品专区| 国产私拍福利视频在线观看| 在现免费观看毛片| 日日夜夜操网爽| 久久精品91蜜桃| 久久婷婷人人爽人人干人人爱| а√天堂www在线а√下载| 精品人妻熟女av久视频| 亚洲成人久久爱视频| 女人十人毛片免费观看3o分钟| 99久久九九国产精品国产免费| 欧美日本视频| 真人做人爱边吃奶动态| 韩国av一区二区三区四区| 久久久久久久亚洲中文字幕 | 白带黄色成豆腐渣| 特级一级黄色大片| 中文字幕高清在线视频| 美女黄网站色视频| 人人妻,人人澡人人爽秒播| 亚洲国产精品999在线| 人人妻人人澡欧美一区二区| 在线a可以看的网站| 久久国产精品人妻蜜桃| 夜夜躁狠狠躁天天躁| 免费在线观看亚洲国产| 国产人妻一区二区三区在| 热99re8久久精品国产| 亚洲av一区综合| 啪啪无遮挡十八禁网站| 久久精品综合一区二区三区| 老鸭窝网址在线观看| 一进一出抽搐动态| 中文字幕免费在线视频6| 天堂网av新在线| 色5月婷婷丁香| 久久香蕉精品热| 成年女人看的毛片在线观看| 亚洲av成人av| 美女高潮的动态| 国产成+人综合+亚洲专区| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 性欧美人与动物交配| 日韩欧美在线乱码| 国产精品亚洲av一区麻豆| 亚洲 国产 在线| 中文亚洲av片在线观看爽| 又紧又爽又黄一区二区| 国产亚洲精品av在线| 午夜福利视频1000在线观看| 国产成人aa在线观看| 美女 人体艺术 gogo| 亚洲精品久久国产高清桃花| 在线看三级毛片| 国产aⅴ精品一区二区三区波| 欧美潮喷喷水| 免费无遮挡裸体视频| 婷婷精品国产亚洲av在线| 他把我摸到了高潮在线观看| 噜噜噜噜噜久久久久久91| 久久性视频一级片| 国产精品伦人一区二区| 成熟少妇高潮喷水视频| 亚洲国产高清在线一区二区三| www.999成人在线观看| 成人av在线播放网站| 亚洲午夜理论影院| 国产精品久久久久久精品电影| 久久性视频一级片| 中文字幕av在线有码专区| 色在线成人网| 一本久久中文字幕| 日日夜夜操网爽| 免费看a级黄色片| 嫩草影院新地址| 丰满人妻熟妇乱又伦精品不卡| 小说图片视频综合网站| 舔av片在线| 日本黄色片子视频| av福利片在线观看| 变态另类丝袜制服| 国产成人欧美在线观看| 欧美最新免费一区二区三区 | 1024手机看黄色片| netflix在线观看网站| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久成人av| 日韩欧美 国产精品| 欧美性猛交黑人性爽| 一级作爱视频免费观看| 伊人久久精品亚洲午夜| 男女做爰动态图高潮gif福利片| 成人午夜高清在线视频| 亚洲精品乱码久久久v下载方式| 国产又黄又爽又无遮挡在线| 人妻夜夜爽99麻豆av| 丰满乱子伦码专区| 色尼玛亚洲综合影院| 三级国产精品欧美在线观看| 美女高潮喷水抽搐中文字幕| 国产精品久久久久久久久免 | 女同久久另类99精品国产91| 美女大奶头视频| 精品久久久久久久末码| 男女那种视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 俺也久久电影网| 美女高潮的动态| av天堂中文字幕网| 日本精品一区二区三区蜜桃| 久久久国产成人精品二区| 亚洲中文日韩欧美视频| 日本与韩国留学比较| 亚洲最大成人av| 色播亚洲综合网| 欧美国产日韩亚洲一区| 婷婷亚洲欧美| 91麻豆精品激情在线观看国产| 久久久久国内视频| 免费黄网站久久成人精品 | 琪琪午夜伦伦电影理论片6080| 一区二区三区四区激情视频 | 性欧美人与动物交配| 十八禁国产超污无遮挡网站| 久久精品91蜜桃| 天堂√8在线中文| 午夜精品久久久久久毛片777| 午夜久久久久精精品| 小说图片视频综合网站| 宅男免费午夜| 亚洲欧美精品综合久久99| 特级一级黄色大片| 美女大奶头视频| 一个人免费在线观看电影| 国产成人av教育| a级一级毛片免费在线观看| 91字幕亚洲| 亚洲精品粉嫩美女一区| x7x7x7水蜜桃| 国产在线男女| 丰满人妻一区二区三区视频av| 亚洲精品久久国产高清桃花| 国产中年淑女户外野战色| 9191精品国产免费久久| 少妇被粗大猛烈的视频| 中文字幕精品亚洲无线码一区| 中文字幕久久专区| 成人国产一区最新在线观看| 国产一区二区三区在线臀色熟女| 老司机福利观看| 看十八女毛片水多多多| 婷婷色综合大香蕉| 夜夜爽天天搞| 国产又黄又爽又无遮挡在线| 亚洲人成网站在线播放欧美日韩| 琪琪午夜伦伦电影理论片6080| 欧美成人免费av一区二区三区| 黄色一级大片看看| 搡女人真爽免费视频火全软件 | 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 久久久久久久久久成人| 亚洲国产精品999在线| 欧美成狂野欧美在线观看| 天堂网av新在线| 久久精品91蜜桃| 国产精品三级大全| 日本黄色片子视频| 一级黄色大片毛片| 国产91精品成人一区二区三区| 麻豆av噜噜一区二区三区| 精品国内亚洲2022精品成人| 村上凉子中文字幕在线| 亚洲精品影视一区二区三区av| 午夜福利成人在线免费观看| 国内精品一区二区在线观看| 无遮挡黄片免费观看| av视频在线观看入口| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲一级av第二区| 国产三级黄色录像| 美女高潮的动态| 我的老师免费观看完整版| 成人特级av手机在线观看| 日本撒尿小便嘘嘘汇集6| 免费看光身美女| 男女下面进入的视频免费午夜| 男女之事视频高清在线观看| 日韩欧美在线乱码| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 宅男免费午夜| 51国产日韩欧美| 亚洲人成网站在线播放欧美日韩| 两个人视频免费观看高清| 校园春色视频在线观看| av在线观看视频网站免费| 狠狠狠狠99中文字幕| 精品久久久久久成人av| 男人舔奶头视频| 少妇裸体淫交视频免费看高清| 99热这里只有是精品50| 91午夜精品亚洲一区二区三区 | 日韩中字成人| x7x7x7水蜜桃| 精品一区二区三区人妻视频| 欧美一区二区亚洲| 麻豆一二三区av精品| 九九久久精品国产亚洲av麻豆| 毛片女人毛片| 亚洲无线观看免费| 国产一区二区亚洲精品在线观看| 久久国产精品人妻蜜桃| 此物有八面人人有两片| 国产成人影院久久av| 国产午夜精品论理片| 亚洲美女黄片视频| 亚洲成av人片免费观看| 欧美最新免费一区二区三区 | 亚洲成av人片免费观看| 少妇的逼水好多| 男女下面进入的视频免费午夜| 国产精品久久久久久人妻精品电影| 美女被艹到高潮喷水动态| 久久人人精品亚洲av| 男女之事视频高清在线观看| 校园春色视频在线观看| 成人国产一区最新在线观看| 男女视频在线观看网站免费| 欧美+日韩+精品| 国产精品av视频在线免费观看| 男人和女人高潮做爰伦理| 亚洲成av人片在线播放无| www.色视频.com| 精品人妻熟女av久视频| 久久国产精品影院| 久久亚洲真实| 国内精品一区二区在线观看| 国产三级黄色录像| 黄色丝袜av网址大全| 91久久精品电影网| 毛片一级片免费看久久久久 | 日本黄色片子视频| 又黄又爽又免费观看的视频| 亚洲av电影在线进入| 99久国产av精品| 午夜两性在线视频| 亚洲av第一区精品v没综合| a级一级毛片免费在线观看| 少妇被粗大猛烈的视频| 在现免费观看毛片| 婷婷亚洲欧美| 嫩草影院新地址| 久久久久久久亚洲中文字幕 | 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 午夜老司机福利剧场| 男女那种视频在线观看| 99久久精品热视频| 国产日本99.免费观看| 黄色日韩在线| 日韩欧美免费精品| 中文字幕av在线有码专区| eeuss影院久久| 久9热在线精品视频| 一个人看视频在线观看www免费| 国产一区二区三区在线臀色熟女| 黄色丝袜av网址大全| 国产三级中文精品| 18美女黄网站色大片免费观看| 国产精品野战在线观看| www.999成人在线观看| 成人鲁丝片一二三区免费| 在线天堂最新版资源| 嫩草影院精品99| 国产淫片久久久久久久久 | 天堂动漫精品| 一级av片app| 亚洲一区二区三区色噜噜| 超碰av人人做人人爽久久| 色av中文字幕| 欧美又色又爽又黄视频| a在线观看视频网站| 日日摸夜夜添夜夜添av毛片 | 精品人妻视频免费看| 久久亚洲真实| 成年版毛片免费区| 国产一区二区三区在线臀色熟女| 观看免费一级毛片| 久久久久久久久久黄片| 国产69精品久久久久777片| 日本黄色视频三级网站网址| 深爱激情五月婷婷| 免费人成在线观看视频色| 日本精品一区二区三区蜜桃| 蜜桃久久精品国产亚洲av| 男人舔奶头视频| 少妇人妻精品综合一区二区 | 性欧美人与动物交配| 国产极品精品免费视频能看的| 久久6这里有精品| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 三级毛片av免费| 老司机深夜福利视频在线观看| 亚洲av一区综合| 免费在线观看日本一区| 久久婷婷人人爽人人干人人爱| 久久久久性生活片| 亚洲成人精品中文字幕电影| 国产欧美日韩一区二区精品| 国语自产精品视频在线第100页| 久久精品综合一区二区三区| 午夜视频国产福利| АⅤ资源中文在线天堂| 国内久久婷婷六月综合欲色啪| 成人av一区二区三区在线看| 精品欧美国产一区二区三| 好看av亚洲va欧美ⅴa在| 亚洲av美国av| 高潮久久久久久久久久久不卡| 日韩中字成人| 亚洲成a人片在线一区二区| 亚洲,欧美,日韩| 亚洲av第一区精品v没综合| 久久久精品大字幕| 久久99热这里只有精品18| 亚洲不卡免费看| 国产三级在线视频| 精品一区二区三区视频在线| 一级黄色大片毛片| 久久久色成人| 在线观看免费视频日本深夜| 岛国在线免费视频观看| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 欧美黄色淫秽网站| 久久久久久九九精品二区国产| 露出奶头的视频| 日韩欧美在线乱码| 琪琪午夜伦伦电影理论片6080| 乱码一卡2卡4卡精品| 成人av一区二区三区在线看| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 亚洲精品影视一区二区三区av| 亚洲午夜理论影院| 日本免费a在线| 国产av麻豆久久久久久久| 黄色女人牲交| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 夜夜爽天天搞| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 99视频精品全部免费 在线| 午夜亚洲福利在线播放| 欧美最新免费一区二区三区 | 蜜桃亚洲精品一区二区三区| 不卡一级毛片| 一级黄片播放器| 永久网站在线| 精品熟女少妇八av免费久了| ponron亚洲| 欧美xxxx性猛交bbbb| 色哟哟哟哟哟哟| 亚洲人成电影免费在线| 身体一侧抽搐| 精品久久久久久久末码| 我的老师免费观看完整版| 色播亚洲综合网| 全区人妻精品视频| 嫩草影院入口| 亚洲人成网站在线播放欧美日韩| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆国产97在线/欧美| netflix在线观看网站| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 亚洲av电影在线进入| 窝窝影院91人妻| 88av欧美| 日日摸夜夜添夜夜添小说| 我的女老师完整版在线观看| 在线播放国产精品三级| 91午夜精品亚洲一区二区三区 | 欧美黑人欧美精品刺激| 国产欧美日韩精品一区二区| 亚洲av美国av| 99久久成人亚洲精品观看| 久久久久久久久久黄片| 国产综合懂色| 国产精品免费一区二区三区在线| 国产精品野战在线观看| 久久久久久大精品| 天堂av国产一区二区熟女人妻| 超碰av人人做人人爽久久| netflix在线观看网站| 久久亚洲精品不卡| av在线老鸭窝| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 在线观看美女被高潮喷水网站 | 动漫黄色视频在线观看| 午夜老司机福利剧场| 欧美最新免费一区二区三区 | 成人精品一区二区免费| 五月玫瑰六月丁香| 国产大屁股一区二区在线视频| 亚洲成人中文字幕在线播放| 久久人妻av系列| 亚洲片人在线观看| 久久伊人香网站| 丁香欧美五月| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费看美女性在线毛片视频| 国产伦精品一区二区三区四那| 国产高清视频在线观看网站| 又爽又黄a免费视频| 女生性感内裤真人,穿戴方法视频| 成人美女网站在线观看视频| 88av欧美| 中文资源天堂在线| 深爱激情五月婷婷| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 久久精品国产亚洲av涩爱 | 亚洲av电影不卡..在线观看| av在线观看视频网站免费| 亚洲人成网站在线播| 91av网一区二区| 亚洲人成伊人成综合网2020| 熟妇人妻久久中文字幕3abv| 女人十人毛片免费观看3o分钟| 757午夜福利合集在线观看| 国产成人影院久久av| 国产精品久久久久久久电影| 最后的刺客免费高清国语| 搡老熟女国产l中国老女人| 嫩草影院入口| 在线国产一区二区在线| 亚洲av免费在线观看| 小蜜桃在线观看免费完整版高清| 久久久久久久久久黄片| 亚洲男人的天堂狠狠| 久久这里只有精品中国| 天堂影院成人在线观看| 亚洲av美国av| 熟妇人妻久久中文字幕3abv| 制服丝袜大香蕉在线| 特级一级黄色大片| 欧美乱妇无乱码| 国产免费一级a男人的天堂| 麻豆国产av国片精品| 日韩精品中文字幕看吧| 男人和女人高潮做爰伦理| 国产精品一区二区性色av| 欧美成狂野欧美在线观看| 午夜福利18| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 国产 一区 欧美 日韩| 88av欧美| 高潮久久久久久久久久久不卡| 一个人免费在线观看电影| 在线十欧美十亚洲十日本专区| 男女之事视频高清在线观看| 亚洲精品在线美女| 午夜精品久久久久久毛片777| av在线蜜桃| 国产单亲对白刺激| 男女下面进入的视频免费午夜| 老司机福利观看| 少妇的逼好多水| 啦啦啦韩国在线观看视频| 精品久久久久久久久av| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 一级黄色大片毛片| 久9热在线精品视频| 三级男女做爰猛烈吃奶摸视频| 中文字幕熟女人妻在线| 毛片女人毛片| 国产精品永久免费网站| 婷婷色综合大香蕉| 亚洲av免费高清在线观看| 国产白丝娇喘喷水9色精品| 最近最新免费中文字幕在线| 亚洲,欧美,日韩| 一个人免费在线观看的高清视频| 国产在视频线在精品| 少妇人妻一区二区三区视频| 一级作爱视频免费观看| 国产在线男女| 久久精品国产清高在天天线| 欧美xxxx性猛交bbbb| 在线观看免费视频日本深夜| 舔av片在线| 亚洲久久久久久中文字幕| 悠悠久久av| 国产高清有码在线观看视频| 国产伦精品一区二区三区四那| 久久亚洲精品不卡| 国产69精品久久久久777片| 全区人妻精品视频| 搡女人真爽免费视频火全软件 | 亚洲最大成人手机在线| 国产亚洲精品综合一区在线观看| 男女下面进入的视频免费午夜| 国模一区二区三区四区视频| 午夜精品一区二区三区免费看| 最好的美女福利视频网| 中亚洲国语对白在线视频| 午夜免费激情av| 午夜视频国产福利| 99热只有精品国产| 亚洲国产精品久久男人天堂| 中文字幕av成人在线电影| 色播亚洲综合网| 久久久久免费精品人妻一区二区| 亚洲熟妇熟女久久| 免费在线观看日本一区| 国产精品,欧美在线| 高清在线国产一区| 天堂动漫精品| 一本精品99久久精品77| 久久中文看片网| 亚洲不卡免费看| 国产av在哪里看| 一级av片app| 国产精品久久久久久亚洲av鲁大| 精品人妻熟女av久视频| 国产男靠女视频免费网站| 能在线免费观看的黄片| 国产男靠女视频免费网站| 欧美日韩福利视频一区二区| 999久久久精品免费观看国产| 国产成人aa在线观看| 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片| av在线蜜桃| 在现免费观看毛片| 看片在线看免费视频| 日日摸夜夜添夜夜添小说| 久久国产乱子伦精品免费另类| 精品一区二区三区视频在线| 国产视频一区二区在线看| 偷拍熟女少妇极品色| 日韩欧美在线乱码| 国产91精品成人一区二区三区| 国产成人啪精品午夜网站| 国产黄a三级三级三级人| 日日夜夜操网爽| 亚洲熟妇中文字幕五十中出|