張 靜,龍新華,韓長杰,袁盼盼,高 杰
機(jī)械驅(qū)動(dòng)式辣椒穴盤苗自動(dòng)取投苗系統(tǒng)設(shè)計(jì)與試驗(yàn)
張 靜1,龍新華1,韓長杰1※,袁盼盼1,高 杰2
(1. 新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052; 2. 新疆中收農(nóng)牧機(jī)械有限公司,烏魯木齊 830052)
針對(duì)目前半自動(dòng)移栽機(jī)人工取投苗勞動(dòng)強(qiáng)度大、工作效率低,控制系統(tǒng)復(fù)雜等問題,該研究結(jié)合當(dāng)前新疆穴盤苗移栽作業(yè)模式和農(nóng)藝要求,模仿人工取喂苗的方式設(shè)計(jì)了一種機(jī)械驅(qū)動(dòng)式辣椒穴盤苗自動(dòng)取投苗系統(tǒng)。該自動(dòng)取投苗系統(tǒng)由地輪提供動(dòng)力,通過穴盤進(jìn)給裝置的橫向送苗驅(qū)動(dòng)機(jī)構(gòu)和縱向送苗驅(qū)動(dòng)機(jī)構(gòu)驅(qū)動(dòng)穴盤橫向、縱向準(zhǔn)確移位,實(shí)現(xiàn)128穴整盤穴盤苗的自動(dòng)進(jìn)給,通過機(jī)械取投苗裝置實(shí)現(xiàn)穴盤苗的自動(dòng)取投。根據(jù)“己”字型穴盤進(jìn)給方案和機(jī)械手取投苗軌跡與姿態(tài)要求,確定了機(jī)械取投苗裝置偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)和拔取驅(qū)動(dòng)機(jī)構(gòu)各構(gòu)件的尺寸參數(shù),構(gòu)建了機(jī)械自動(dòng)取投苗機(jī)構(gòu)驅(qū)動(dòng)裝置的運(yùn)動(dòng)學(xué)模型,分析得出機(jī)械手末端位移、速度、加速度方程以及偏轉(zhuǎn)、拔取驅(qū)動(dòng)裝置的主要參數(shù)和運(yùn)動(dòng)規(guī)律。為驗(yàn)證該系統(tǒng)的作業(yè)性能,利用Solidworks軟件對(duì)機(jī)械手取投苗軌跡和運(yùn)動(dòng)規(guī)律進(jìn)行仿真分析,選取苗齡60 d、基質(zhì)含水率24.61%~31.57%的辣椒穴盤苗進(jìn)行室內(nèi)樣機(jī)穴盤進(jìn)給位移可靠性試驗(yàn)和取投苗試驗(yàn)。試驗(yàn)結(jié)果表明,機(jī)械手仿真運(yùn)動(dòng)軌跡滿足設(shè)計(jì)要求;穴盤縱向和橫向進(jìn)給位移與理論偏差小于1 mm,滿足穴盤進(jìn)給裝置的供苗要求;在取投苗速度64~88株/min范圍內(nèi),隨著取苗速度的增加,取苗成功率、投苗成功率先增大后減少,輸苗成功率總體波動(dòng)較小,取投苗總成功率先增大后減少,取投苗速度80株/min時(shí)效果最佳,此時(shí)系統(tǒng)平均取投苗總成功率、取苗成功率、投苗成功率、輸苗成功率分別為92.54%、92.93%、99.57%和100.00%,作業(yè)過程中無傷苗情況,滿足穴高45 mm的辣椒穴盤苗栽植前自動(dòng)進(jìn)給穴盤苗、取投苗、輸苗等作業(yè)要求。研究結(jié)果可為后續(xù)機(jī)械式自動(dòng)穴盤移栽機(jī)的設(shè)計(jì)提供參考。
農(nóng)業(yè)機(jī)械;試驗(yàn);移栽;穴盤苗;機(jī)械驅(qū)動(dòng);自動(dòng)取投苗;辣椒
隨著穴盤育苗技術(shù)的日益成熟,穴盤苗移栽技術(shù)逐漸被應(yīng)用于辣椒、番茄等蔬菜作物的規(guī)?;灾?,以緩和季節(jié)矛盾,提高定植成活率和土地利用產(chǎn)出率[1-2]。然而在穴盤苗移栽種植過程中,人工作業(yè)勞動(dòng)強(qiáng)度大、效率低,不能適應(yīng)現(xiàn)代農(nóng)業(yè)快速發(fā)展的趨勢(shì)。在旱地移栽領(lǐng)域,國外主要在經(jīng)濟(jì)作物半自動(dòng)、全自動(dòng)移栽機(jī)方面進(jìn)行了設(shè)備研發(fā),技術(shù)相對(duì)成熟,可靠性較高,但整體結(jié)構(gòu)較為復(fù)雜,價(jià)格昂貴,專用性強(qiáng),大都不能滿足國內(nèi)農(nóng)藝種植要求和生產(chǎn)條件[3-5]。國內(nèi)在引進(jìn)吸收國外技術(shù)的基礎(chǔ)上,主要對(duì)盤夾式、鏈夾式、盤式、導(dǎo)苗管式、帶式、吊籃式等半自動(dòng)移栽機(jī)進(jìn)行了研究[5-9],但移栽作業(yè)通常由人工輔助進(jìn)行取苗和投苗工作,作業(yè)效率、勞動(dòng)強(qiáng)度和作業(yè)成本未能得到很大改善。
近年來,為了實(shí)現(xiàn)穴盤苗的自動(dòng)供苗和取投苗,提高機(jī)械化作業(yè)效率,國內(nèi)學(xué)者在半自動(dòng)移栽機(jī)的基礎(chǔ)上,結(jié)合機(jī)、電、氣一體化技術(shù),設(shè)計(jì)研發(fā)了夾持缽苗莖部及扎入缽體的取投苗機(jī)械手[10-14],并通過自動(dòng)化監(jiān)測(cè)手段控制苗盤的橫向和縱向步進(jìn)移位實(shí)現(xiàn)自動(dòng)取投苗[15-16]。李華等[17-18]研發(fā)的移栽機(jī)通過PLC控制實(shí)現(xiàn)了自動(dòng)送苗機(jī)構(gòu)與取苗機(jī)構(gòu)的精準(zhǔn)配合,工作時(shí)各機(jī)構(gòu)協(xié)調(diào)運(yùn)行完成開溝、鋪地膜、鋪設(shè)滴灌軟管、自動(dòng)移栽等工作。郭林強(qiáng)[19]以機(jī)、電、氣結(jié)合的方式控制氣動(dòng)式移栽機(jī)的供苗機(jī)構(gòu),將穴盤苗進(jìn)給氣動(dòng)式取苗裝置,待氣動(dòng)式取苗裝置取苗后,投苗至分苗機(jī)構(gòu),再由分苗機(jī)構(gòu)將秧苗轉(zhuǎn)移到栽植器中進(jìn)行栽植。吳儉敏等[20]基于PLC控制研制的苗盤缽苗自動(dòng)識(shí)別及控制裝置,能實(shí)現(xiàn)對(duì)缽苗的自動(dòng)檢測(cè),并通過控制苗盤的橫向和縱向步進(jìn)移位實(shí)現(xiàn)快速補(bǔ)苗,大大減少了漏栽率。然而現(xiàn)有自動(dòng)取投系統(tǒng)大都采用繁雜的電氣裝置,主要以氣缸作為執(zhí)行元件,采用氣壓進(jìn)行驅(qū)動(dòng),系統(tǒng)整體結(jié)構(gòu)較為復(fù)雜,成本相對(duì)較高,雖在實(shí)驗(yàn)室條件下取得了一定的效果,但考慮到取苗機(jī)械手?jǐn)?shù)量、取苗與投苗的工作時(shí)間間隔,系統(tǒng)單位時(shí)間內(nèi)工作效率受到了一定的限制,且工作時(shí)易出現(xiàn)氣缸氣壓不穩(wěn)定的情況,因此在實(shí)際生產(chǎn)過程中的可靠性有待進(jìn)一步驗(yàn)證,目前尚未有成熟產(chǎn)品。部分學(xué)者也嘗試采用純機(jī)械驅(qū)動(dòng)方式代替電氣控制進(jìn)行移栽機(jī)研制。董哲[21]研發(fā)的蔬菜穴盤苗自動(dòng)取苗裝置采用頂出與夾取結(jié)合的方式進(jìn)行整排取苗,并以純機(jī)械驅(qū)動(dòng)的方式實(shí)現(xiàn)自動(dòng)輸送穴盤苗、頂苗、夾苗、喂苗等工作,但整體結(jié)構(gòu)較為復(fù)雜,機(jī)型較大。隨著移栽作物種類需求的增加及穴盤苗栽植面積的增長,半自動(dòng)移栽機(jī)已不能滿足日益增長的移栽要求,研發(fā)具有穩(wěn)定性高、結(jié)構(gòu)簡單、成本低的自動(dòng)取投苗系統(tǒng)非常必要。
為進(jìn)一步簡化移栽系統(tǒng)結(jié)構(gòu),提高移栽效率和穩(wěn)定性,本文在前期穴盤苗自動(dòng)移栽機(jī)自動(dòng)取投系統(tǒng)的基礎(chǔ)上[22-23],以新疆廣泛栽植的辣椒為研究對(duì)象,選用機(jī)械驅(qū)動(dòng)代替現(xiàn)有電、氣、液控制,設(shè)計(jì)一種機(jī)械驅(qū)動(dòng)式自動(dòng)輸送苗盤和取、喂苗自動(dòng)取投系統(tǒng),建立取苗、送苗等關(guān)鍵部件的動(dòng)力學(xué)模型,優(yōu)化取投苗驅(qū)動(dòng)裝置關(guān)鍵結(jié)構(gòu)參數(shù),結(jié)合軌跡提取、運(yùn)動(dòng)曲線分析和試驗(yàn)驗(yàn)證移栽可靠性,以期為辣椒穴盤苗機(jī)械式自動(dòng)移栽裝置的研制提供參考。
自動(dòng)取投苗系統(tǒng)是移栽機(jī)的核心工作部件,良好的取投苗性能是保證栽植性能的基礎(chǔ)。穴盤苗機(jī)械驅(qū)動(dòng)式自動(dòng)取投苗系統(tǒng)主要由動(dòng)力傳送子系統(tǒng)、穴盤進(jìn)給裝置、自動(dòng)取投苗機(jī)構(gòu)驅(qū)動(dòng)裝置、輸送喂入裝置、機(jī)架、機(jī)械手等構(gòu)成,系統(tǒng)結(jié)構(gòu)和工作流程如圖1所示。自動(dòng)取投苗系統(tǒng)中各運(yùn)動(dòng)部件采用機(jī)械傳動(dòng)的方式進(jìn)行驅(qū)動(dòng)和控制。
作業(yè)時(shí),取投苗系統(tǒng)動(dòng)力由地輪提供,經(jīng)動(dòng)力傳送子系統(tǒng)進(jìn)行動(dòng)力分配后,驅(qū)動(dòng)穴盤進(jìn)給裝置將穴盤橫向和縱向步進(jìn)移位進(jìn)給穴盤苗至取苗位置,同時(shí)驅(qū)動(dòng)取投苗裝置進(jìn)行取投苗工作,依次完成取苗、拔苗、回程、投苗動(dòng)作,再由輸送喂入裝置對(duì)投入的穴盤苗進(jìn)行連續(xù)輸送,在喂苗口逐個(gè)投入栽植器,然后回轉(zhuǎn)進(jìn)行循環(huán)接苗,最后由栽植器進(jìn)行栽植作業(yè)。
參照J(rèn)B/T 10291-2013標(biāo)準(zhǔn)[24],并結(jié)合新疆辣椒穴盤苗移栽種植農(nóng)藝要求,確定系統(tǒng)的主要技術(shù)參數(shù)如表1所示。
表1 機(jī)械驅(qū)動(dòng)式自動(dòng)取投苗系統(tǒng)主要技術(shù)參數(shù)
動(dòng)力傳送子系統(tǒng)用于自動(dòng)取投苗系統(tǒng)各裝置的動(dòng)力傳遞,傳動(dòng)機(jī)構(gòu)以串聯(lián)和并聯(lián)的形式實(shí)現(xiàn)動(dòng)力分配(圖2)。輸入動(dòng)力首先經(jīng)鏈傳動(dòng)直接輸送給穴盤進(jìn)給裝置進(jìn)給穴盤苗,同時(shí)傳遞至自動(dòng)取投苗機(jī)構(gòu)驅(qū)動(dòng)裝置,驅(qū)動(dòng)機(jī)械手進(jìn)行取投苗,動(dòng)力由錐齒輪系換向和齒輪系加速后,再經(jīng)鏈傳動(dòng)傳遞至輸送喂入裝置,帶動(dòng)輸送喂入裝置進(jìn)行連續(xù)輸送苗工作。根據(jù)各裝置工作要求,確定各級(jí)傳動(dòng)比依次為1(1/2)=1,2(3/4)=2,3(5/6)=1,4(7/8)=1,5(9/10)=1。
1.動(dòng)力源 2.穴盤進(jìn)給裝置 3.自動(dòng)取投苗機(jī)構(gòu)驅(qū)動(dòng)裝置 4.輸送喂入裝置
1.Power source 2.Plug tray feeding device 3.Driving device of automatic seedlings taking and throwing mechanism 4.Conveying and feeding device
注:1為鏈輪Ⅰ齒數(shù);2為鏈輪Ⅱ齒數(shù);3為大齒輪齒數(shù);4為小齒輪齒數(shù);5為鏈輪Ⅲ齒數(shù);6為鏈輪Ⅳ齒數(shù);7為錐齒輪Ⅰ齒數(shù);8為錐齒輪Ⅱ齒數(shù);9為鏈輪Ⅴ齒數(shù);10為鏈輪Ⅵ齒數(shù)。
Note:1is the teeth number of sprocket Ⅰ,2is the teeth number of sprocket Ⅱ,3is the teeth number of sprocketlarge gear,4is the teeth number of sprocketsmall gear,5is the teeth number of sprocket Ⅲ,6is the teeth number of sprocket Ⅳ,7is the teeth number of bevel gears Ⅰ,7is the teeth number of bevel gears Ⅱ,9is the teeth number of sprocket Ⅴ,10is the teeth number of sprocket Ⅵ.
圖2 動(dòng)力傳送子系統(tǒng)
Fig.2 Power transmission subsystem
穴盤進(jìn)給裝置主要由供苗動(dòng)力傳動(dòng)部件、機(jī)架、縱向送苗驅(qū)動(dòng)機(jī)構(gòu)、橫向送苗驅(qū)動(dòng)機(jī)構(gòu)、穴盤步進(jìn)移位部件組成,如圖3所示。動(dòng)力經(jīng)由動(dòng)力傳送機(jī)構(gòu)總成傳輸后,帶動(dòng)橫向送苗驅(qū)動(dòng)機(jī)構(gòu)、縱向送苗驅(qū)動(dòng)機(jī)構(gòu)依次完成橫向、縱向間歇輸送穴盤苗作業(yè)。其中,橫向送苗驅(qū)動(dòng)機(jī)構(gòu)采用往復(fù)絲杠和滑塊組合結(jié)構(gòu),以凸輪分割器實(shí)現(xiàn)間歇運(yùn)動(dòng)。根據(jù)設(shè)計(jì)要求,凸輪分割器選用1/2周期,即橫向送苗在機(jī)械手一次取喂苗周期的后半個(gè)周期完成,機(jī)械手在進(jìn)行二次取苗時(shí),穴盤經(jīng)歷停歇→移動(dòng)→停歇的狀態(tài),并依此確定往復(fù)絲杠螺距20 mm,圈數(shù)為1.5圈??v向送苗驅(qū)動(dòng)部件采用棘輪和四桿機(jī)構(gòu)組合結(jié)構(gòu),曲柄通過連桿帶動(dòng)搖桿每擺動(dòng)一次,棘輪轉(zhuǎn)過一個(gè)棘齒,穴盤步進(jìn)一格。穴盤步進(jìn)輸送鏈輪分度圓直徑81.37 mm,棘輪齒數(shù)為8個(gè),即棘輪每轉(zhuǎn)過1齒,棘輪轉(zhuǎn)過角度為45°,穴盤步進(jìn)一格,曲柄和搖桿尺寸分別為25.00和66.00 mm。
為確保取苗作業(yè)的順利進(jìn)行,穴盤進(jìn)給裝置需適時(shí)、準(zhǔn)確地橫向和縱向進(jìn)給穴盤苗,為減少進(jìn)給次數(shù),參照本課題組之前的研究[22],設(shè)計(jì)穴盤以“己”字型進(jìn)行步進(jìn)移位進(jìn)給穴盤苗,實(shí)現(xiàn)連續(xù)送盤定位。
機(jī)械取投苗裝置是機(jī)械驅(qū)動(dòng)式自動(dòng)取投系統(tǒng)的核心部件,完成從穴盤苗中取苗,再轉(zhuǎn)移至投苗位置進(jìn)行投苗工作。根據(jù)人工取喂苗作業(yè)形式,取投苗裝置主要由機(jī)械手、機(jī)械手固定座、偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)、動(dòng)力輸入軸、雙排鏈輪、傳動(dòng)鏈、從動(dòng)鏈輪、機(jī)架、傳動(dòng)軸、拔取驅(qū)動(dòng)機(jī)構(gòu)、擺臂、導(dǎo)軌、滑塊等組成,如圖4所示。機(jī)械手并排固定安裝在機(jī)械手固定座上,可沿安裝在擺臂上的導(dǎo)軌移動(dòng)。機(jī)械取投苗裝置經(jīng)由動(dòng)力輸入軸驅(qū)動(dòng)主從動(dòng)鏈輪轉(zhuǎn)動(dòng),帶動(dòng)偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)的凸輪控制滾子軸承的運(yùn)動(dòng),驅(qū)動(dòng)擺臂帶動(dòng)機(jī)械手完成下降、停止、上升、停止等動(dòng)作,從動(dòng)鏈輪同時(shí)帶動(dòng)拔取驅(qū)動(dòng)機(jī)構(gòu),通過拉桿推動(dòng)機(jī)械手固定座作直線運(yùn)動(dòng),從而實(shí)現(xiàn)機(jī)械手完成停止、下降、停止、上升等動(dòng)作,準(zhǔn)確完成取苗點(diǎn)拔苗和投苗點(diǎn)投苗動(dòng)作,擺臂和機(jī)械手周期性勻速交替動(dòng)作。偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)和拔取驅(qū)動(dòng)機(jī)構(gòu)的凸輪運(yùn)動(dòng)過程如圖5所示。
2.3.1 驅(qū)動(dòng)機(jī)構(gòu)
1)偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)
偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)主要由擺臂、偏轉(zhuǎn)驅(qū)動(dòng)凸輪、固定軸、偏轉(zhuǎn)驅(qū)動(dòng)凸輪、滾子軸承Ⅰ、齒條、滑塊Ⅰ、導(dǎo)軌Ⅰ、傳動(dòng)軸、齒輪、穴盤組成,如圖6所示。工作時(shí),偏轉(zhuǎn)驅(qū)動(dòng)凸輪通過滾子軸承Ⅰ推動(dòng)齒條的上下運(yùn)動(dòng),齒條帶動(dòng)齒輪旋轉(zhuǎn),進(jìn)而驅(qū)動(dòng)擺臂在投苗位置與取苗位置之間往復(fù)擺動(dòng),偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)最終驅(qū)動(dòng)機(jī)械手完成偏轉(zhuǎn)(~)、停止(~)、回轉(zhuǎn)(~)、停止(~)等動(dòng)作。其中,推動(dòng)齒條旋轉(zhuǎn)所需的推力需滿足如下關(guān)系:
式中1為齒輪的扭矩,N·m;為齒輪旋轉(zhuǎn)需承受的負(fù)載重力,N;為有效力臂的長度,m;為齒輪實(shí)際所需的扭矩,N·m;為安全系數(shù);為偏轉(zhuǎn)驅(qū)動(dòng)凸輪對(duì)齒條的推力,N;為齒輪的半徑,m。
測(cè)得齒輪旋轉(zhuǎn)需承受的負(fù)載重力為113.40 N,有效力臂長度為0.16 m,齒輪半徑為0.022 5 m,安全系數(shù)取1.5,依此計(jì)算得出齒輪的扭矩1為18.14 N·m,齒輪實(shí)際所需的扭矩為27.22 N·m,齒條的所需的推力為1 209.60 N。
1.擺臂 2.偏轉(zhuǎn)驅(qū)動(dòng)凸輪驅(qū)動(dòng)軸 3.偏轉(zhuǎn)驅(qū)動(dòng)凸輪 4.滾子軸承Ⅰ 5.齒條 6.滑塊Ⅰ 7.導(dǎo)軌Ⅰ 8.傳動(dòng)軸 9.齒輪 10.穴盤
1.Swing arm 2.Driving shaft of deflection driving cam 3.Deflection driving cam 4.Roller bearing Ⅰ 5.Rack 6.Slider Ⅰ 7.Guide Ⅰ 8.Transmission shaft 9.Gear 10.Plug tray
注:1為凸輪基圓圓心;2為傳動(dòng)軸鉸接點(diǎn);、、和為凸輪輪廓上的點(diǎn);和分別為機(jī)械手偏轉(zhuǎn)取苗的起始點(diǎn)和終點(diǎn);0和1分別為凸輪基圓半徑和最大外輪廓半徑,m;為齒輪的直徑,m;為凸輪角速度,rad·s-1;為偏轉(zhuǎn)角度,(°);為滑塊Ⅰ運(yùn)動(dòng)速度,m·s-1。
Note:1is the center of the CAM base circle;2is the hinge point of driving shaft;、、andare points on cam contour;andare the starting point and the end point of manipulator's deflection seedling taking, respectively;0and1are base circle radius and maximum outer contour radius of cam, m;is the diameter of the gear, m;is the angular velocity of cam, rad·s-1;isthe deflection Angle, (°);is the speed of slider Ⅰ, m·s-1.
圖6 偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)簡圖
Fig.6 Diagram of deflection driving mechanism
2)穴苗拔取驅(qū)動(dòng)機(jī)構(gòu)
拔取驅(qū)動(dòng)機(jī)構(gòu)主要由擺臂、傳動(dòng)軸、固定橫梁、直線軸承、連接頭、滾子軸承Ⅱ、拔取驅(qū)動(dòng)凸輪、導(dǎo)軌Ⅱ、滑塊Ⅱ、機(jī)械手固定座、細(xì)軸、機(jī)械手等組成(圖7)。驅(qū)動(dòng)凸輪安裝在傳動(dòng)軸上,滾子軸承Ⅱ與驅(qū)動(dòng)凸輪上的滑道緊密貼合,導(dǎo)軌Ⅱ安裝在滑塊Ⅱ上,滑塊Ⅱ固定于擺臂,為達(dá)到機(jī)械手取投苗的運(yùn)動(dòng)要求,驅(qū)動(dòng)機(jī)構(gòu)需完成停止、拔取、停止、投放4個(gè)階段的動(dòng)作。以驅(qū)動(dòng)凸輪作為主動(dòng)件限制滾子軸承Ⅱ的運(yùn)動(dòng),通過拉桿驅(qū)動(dòng)機(jī)械手作直線往復(fù)運(yùn)動(dòng)。
1.傳動(dòng)軸 2.拔取驅(qū)動(dòng)凸輪 3.滾子軸承Ⅱ 4.拉桿 5.直線軸承
1.Shaft 2.Pulling driving cam 3.Roller bearing Ⅱ 4.Tie rod 5.Linear bearing
注:0為凸輪基圓圓心;、、和為凸輪輪廓上的點(diǎn);0和1分別為凸輪基圓半徑和最大外輪廓半徑,m;為凸輪角速度,rad·s-1。
Note:0is the cam base circle center;,,andare points on cam contour;0and1are base circle radius and maximum outer contour radius of cam, m;is the angular velocity of cam, rad·s-1.
圖7 拔取機(jī)構(gòu)結(jié)構(gòu)圖
Fig.7 Structure diagram of pulling driving mechanism
2.3.2 機(jī)械手
機(jī)械手采用氣驅(qū)動(dòng),各機(jī)械手相互獨(dú)立,作業(yè)對(duì)象為吸塑成型的128穴矩形穴盤苗。穴盤(535 mm× 280 mm× 45 mm)以橫向16穴、縱向8穴姿態(tài)放置,穴形呈四棱臺(tái)形(31.75 mm×31.75 mm),相鄰兩穴孔中心距為31.75 mm。為防止出現(xiàn)掛苗、帶苗情況,采用間隔取苗的方式取苗,8個(gè)機(jī)械手并排安裝在機(jī)械手固定座上。為適應(yīng)不同穴盤高度,取苗爪在拉桿上的高度可調(diào)。機(jī)械手間距為63.5 mm,以拖拉機(jī)電瓶供電,以拖拉機(jī)自帶的氣泵和自鎖控制電路控制取苗爪實(shí)現(xiàn)定點(diǎn)定位精準(zhǔn)取苗,投苗。機(jī)械手開閉控制電路由2個(gè)接近開關(guān)、1個(gè)中間繼電器、1個(gè)電磁閥、1個(gè)12 V直流電源組成。機(jī)械手分布及控制電路如圖8所示。
為達(dá)到機(jī)械手的取苗運(yùn)動(dòng)要求,偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)需驅(qū)動(dòng)機(jī)械手完成偏轉(zhuǎn)、停止、回轉(zhuǎn)、停止4個(gè)階段的動(dòng)作要求。通過對(duì)偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)上述4個(gè)階段運(yùn)動(dòng)學(xué)分析確定機(jī)構(gòu)相關(guān)結(jié)構(gòu)參數(shù)和運(yùn)動(dòng)參數(shù)。
3.1.1 偏轉(zhuǎn)機(jī)構(gòu)數(shù)學(xué)模型
機(jī)械手從水平面偏轉(zhuǎn)至傾斜穴盤上的取苗位置進(jìn)行取苗時(shí),驅(qū)動(dòng)凸輪通過控制齒條上下運(yùn)動(dòng),帶動(dòng)齒輪旋轉(zhuǎn),實(shí)現(xiàn)機(jī)械手跟隨擺臂到達(dá)取苗位置,偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)各工作階段參數(shù)滿足:
式中S為滾子軸承Ⅰ從點(diǎn)至點(diǎn)的位移,mm;S為滾子軸承Ⅰ從點(diǎn)至點(diǎn)的位移,mm;S為滾子軸承Ⅰ點(diǎn)至點(diǎn)的位移,mm;S為滾子軸承Ⅰ從點(diǎn)至點(diǎn)的位移,mm;為齒輪的直徑,mm;1、2、3、4為各階段齒條運(yùn)動(dòng)的距離,mm;1、2為擺臂分別到達(dá)取苗、投苗位置的偏轉(zhuǎn)角度,(°);0為穴苗拔取驅(qū)動(dòng)凸輪的基圓半徑,mm;1為穴苗拔取驅(qū)動(dòng)凸輪的最大外輪廓半徑,mm。
根據(jù)設(shè)計(jì)要求,選取齒輪直徑為45 mm,依此求得齒條運(yùn)動(dòng)距離為23.55 mm,擺臂偏轉(zhuǎn)角度即穴盤傾斜放置角度為60°,基圓半徑0為30 mm,最大外輪廓半徑1為53.55 mm。在動(dòng)力輸入軸轉(zhuǎn)速=10 r/min下,基于多項(xiàng)式擬合法,用Matlab軟件對(duì)偏轉(zhuǎn)驅(qū)動(dòng)凸輪理論輪廓曲線參數(shù)方程進(jìn)行求解[25-31],結(jié)果顯示三次擬合時(shí)效果最佳,驅(qū)動(dòng)凸輪輪廓曲線參數(shù)方程如式(3),具體結(jié)構(gòu)參數(shù)如表2所示。
式中為運(yùn)動(dòng)循環(huán)周期,s。
表2 偏轉(zhuǎn)驅(qū)動(dòng)凸輪結(jié)構(gòu)參數(shù)
3.1.2 偏轉(zhuǎn)機(jī)構(gòu)運(yùn)動(dòng)學(xué)模型
對(duì)偏轉(zhuǎn)機(jī)構(gòu)的偏轉(zhuǎn)、回轉(zhuǎn)環(huán)節(jié)進(jìn)行分析,建立以偏轉(zhuǎn)凸輪轉(zhuǎn)動(dòng)中心為坐標(biāo)原點(diǎn),水平方向?yàn)檩S,垂直方向?yàn)檩S的直角坐標(biāo)系,如圖9所示,以機(jī)械手作為質(zhì)點(diǎn),對(duì)其進(jìn)行運(yùn)動(dòng)學(xué)分析。
1.偏轉(zhuǎn)驅(qū)動(dòng)凸輪 2.滾子軸承Ⅰ 3.導(dǎo)軌Ⅰ
1.Deflection driving cam 2.Roller bearing Ⅰ 3.Slider Ⅰ
注:12為凸輪基圓圓心;13為凸輪和滑塊Ⅰ機(jī)構(gòu)連接點(diǎn);23為齒輪和滑塊Ⅰ機(jī)構(gòu)連接點(diǎn);為坐標(biāo)原點(diǎn);、-、a、a-分別為凸輪偏轉(zhuǎn)過程和回轉(zhuǎn)過程的4個(gè)位置點(diǎn);1為偏轉(zhuǎn)驅(qū)動(dòng)凸輪角速度,rad s-1;2為齒輪角速度,rad s-1;為機(jī)械手?jǐn)[動(dòng)角度,(°);x和y分別為偏轉(zhuǎn)角度時(shí)點(diǎn)橫坐標(biāo)和縱坐標(biāo),m;x-和y-分別為回轉(zhuǎn)角度時(shí)-點(diǎn)橫坐標(biāo)和縱坐標(biāo),m;為齒條的運(yùn)動(dòng)速度,mm·s-1;v和v分別為點(diǎn)和-點(diǎn)的線速度,mm·s-1。
Note:12is the cam base circle center;13is the institutions connection points for cam and slider Ⅰ;23is the institutions connection points for gear and the slider Ⅰ;is the origin of the coordinates;,-,a, anda-is the 4 position points of cam deflection process and rotation process respectively;1is the angular velocity of deflection driving cam, rad s-1;2is the angular velocity of the gear, rad s-1;is the swing angles, (°);xandyare the abscissa and ordinate of pointfor deflection angle, respectively, m;x-andy-are the abscissa and ordinate of point-for deflection angle, m;is the motion speed of rack, mm·s-1;vandvare the linear velocities at pointand point-, respectively, mm·s-1.
圖9 偏轉(zhuǎn)機(jī)構(gòu)運(yùn)動(dòng)簡圖
Fig.9 Kinematic diagram of deflection mechanism
在偏轉(zhuǎn)階段,齒條的速度為
依此求得偏轉(zhuǎn)階段機(jī)械手末端的位移方程、速度方程、加速度方程分別為
在回轉(zhuǎn)階段,機(jī)械手末端的位移方程、速度方程、加速度方程分別為
式中下標(biāo)-表示回轉(zhuǎn)階段。
根據(jù)機(jī)械手的取苗作業(yè)要求,穴苗拔取機(jī)構(gòu)需完成停歇、拔取、停歇、投放動(dòng)作。為獲得滿足辣椒穴盤苗自動(dòng)拔取苗作業(yè)要求的結(jié)構(gòu)參數(shù),保證良好的作業(yè)性能,需以拔取苗時(shí)齒條運(yùn)動(dòng)速度和軌跡等目標(biāo)進(jìn)行機(jī)構(gòu)參數(shù)優(yōu)化。
3.2.1 拔取機(jī)構(gòu)數(shù)學(xué)模型
拔取機(jī)構(gòu)以驅(qū)動(dòng)凸輪作為主動(dòng)件限制滾子軸承Ⅱ的運(yùn)動(dòng),從而改變機(jī)械手的運(yùn)動(dòng)(圖10)。第一階段為準(zhǔn)備階段,機(jī)械手停歇,隨擺臂偏轉(zhuǎn)至取苗位置。拔取驅(qū)動(dòng)凸輪驅(qū)動(dòng)機(jī)械手向下運(yùn)動(dòng)進(jìn)行投放苗。拔取過程各階段位移變化滿足式(11)所示關(guān)系:
式中L、L、L、L分別為滾子軸承Ⅱ從點(diǎn)至點(diǎn)、點(diǎn)至點(diǎn)、點(diǎn)至點(diǎn)、點(diǎn)至點(diǎn)的位移,mm。
式中為運(yùn)動(dòng)循環(huán)周期,s。
表3 穴苗拔取驅(qū)動(dòng)凸輪結(jié)構(gòu)參數(shù)
3.2.2 拔取機(jī)構(gòu)運(yùn)動(dòng)學(xué)模型
對(duì)拔取驅(qū)動(dòng)機(jī)構(gòu)進(jìn)行研究,建立以拔取凸輪轉(zhuǎn)動(dòng)中心為坐標(biāo)原點(diǎn),水平方向?yàn)檩S,垂直方向?yàn)檩S的直角坐標(biāo)系,如圖10所示,齒條運(yùn)動(dòng)速度滿足如式(13)所示關(guān)系。通過分析拔取機(jī)構(gòu)齒條運(yùn)動(dòng)速度對(duì)取苗軌跡的影響,得出滿足辣椒穴盤苗自動(dòng)拔取苗作業(yè)要求的機(jī)構(gòu)參數(shù)組合。
4.拔取驅(qū)動(dòng)凸輪 5.滾子軸承Ⅱ 6.直線軸承
4.Puling driving cam 5.Roller bearing Ⅱ 6.Linear bearing
注:為坐標(biāo)原點(diǎn);為滾子軸承Ⅱ鉸接點(diǎn);、、和為凸輪輪廓上的點(diǎn);45為凸輪和滾子軸承Ⅱ機(jī)構(gòu)連接點(diǎn);46為滾子軸承Ⅱ和直線軸承機(jī)構(gòu)連接點(diǎn);為拔取驅(qū)動(dòng)凸輪角速度,rad·s-1;2為齒輪角速度,rad·s-1;1為齒條的運(yùn)動(dòng)速度,mm·s-1。
Note:is the origin of coordinates;is roller bearing Ⅱ articulated point;,,andare points on cam contour;45is connection points for cam and roller bearing Ⅱ institutions;46is connection points for roller bearing Ⅱand linear bearing;is the angular velocity of driving cam, rad·s-1;2is the angular velocity of gear, rad·s-1;1is the motion speed of rack, mm·s-1.
圖10 穴苗拔取機(jī)構(gòu)運(yùn)動(dòng)簡圖
Fig.10 Kinematic diagram of seedlings pulling mechanism
為驗(yàn)證機(jī)械取投苗裝置設(shè)計(jì)是否滿足工作要求,結(jié)合機(jī)械取投苗裝置驅(qū)動(dòng)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)分析結(jié)果,用SolidWorks軟件的motion模塊對(duì)機(jī)械取投苗裝置進(jìn)行仿真分析,當(dāng)自動(dòng)取投苗機(jī)構(gòu)驅(qū)動(dòng)裝置動(dòng)力輸入轉(zhuǎn)速為10 r/min,獲得機(jī)械手取投苗軌跡(圖11)和取投苗的速度曲線(圖12)。
根據(jù)圖11和圖12可知,取投苗過程主要分為如下4個(gè)階段:
1)取苗準(zhǔn)備段(軌跡段):偏轉(zhuǎn)驅(qū)動(dòng)凸輪向下發(fā)生偏轉(zhuǎn),穴苗拔取驅(qū)動(dòng)凸輪停止,機(jī)械手以為初始點(diǎn)向取苗位置移動(dòng),到達(dá)取苗位置點(diǎn),偏轉(zhuǎn)角位移為0°~60°。根據(jù)取苗階段速度曲線可知,在0~1 s內(nèi)(取苗階段),機(jī)械手的切向速度先增加后減少,在取苗點(diǎn)處為0,符合定點(diǎn)夾苗要求。
2)夾苗拔取段(軌跡段):偏轉(zhuǎn)驅(qū)動(dòng)凸輪停止,拔取驅(qū)動(dòng)凸輪向下發(fā)生偏轉(zhuǎn),機(jī)械手拔取帶動(dòng)穴盤苗從點(diǎn)向上運(yùn)動(dòng)至點(diǎn),偏轉(zhuǎn)角為60°~180°。根據(jù)拔苗階段速度曲線可知,在1~3 s內(nèi)(拔苗階段),機(jī)械手的徑向速度保持恒定,為0.2 mm/s,保證拔苗工作的穩(wěn)定進(jìn)行。
3)持苗回轉(zhuǎn)段(軌跡段):偏轉(zhuǎn)驅(qū)動(dòng)凸輪向上發(fā)生偏轉(zhuǎn),穴苗拔取驅(qū)動(dòng)凸輪停止,機(jī)械手在偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)的作用下夾持穴苗從點(diǎn)向下移動(dòng)至點(diǎn),偏轉(zhuǎn)角為180°~240°。根據(jù)回程階段速度曲線可知,在3~4 s內(nèi)(回程階段),機(jī)械手的切向速度先減少后增加,方向與取苗階段相反,在點(diǎn)切向速度為0,符合定點(diǎn)投苗要求。
4)投放苗段(軌跡段):偏轉(zhuǎn)驅(qū)動(dòng)凸輪停止,拔取驅(qū)動(dòng)凸輪向上發(fā)生偏轉(zhuǎn),機(jī)械手在穴苗拔取驅(qū)動(dòng)機(jī)構(gòu)的作用下從點(diǎn)垂直向下移動(dòng)至點(diǎn)釋放穴盤苗,偏轉(zhuǎn)角為240°~360°,隨后以為起始點(diǎn),以相同運(yùn)動(dòng)軌跡開始下一次取投苗作業(yè)。根據(jù)投苗階段速度曲線可知,在4~6 s內(nèi)(投苗階段),機(jī)械手投苗徑向速度恒定且與拔苗速度相等,方向相反,滿足穩(wěn)定投放苗要求。
為進(jìn)一步驗(yàn)證穴盤苗機(jī)械驅(qū)動(dòng)式自動(dòng)取投苗系統(tǒng)的可行性,根據(jù)系統(tǒng)的總體結(jié)構(gòu)設(shè)計(jì)方案,將設(shè)計(jì)的穴盤進(jìn)給裝置、機(jī)械取投苗裝置、輸送喂入裝置等裝置進(jìn)行整合,搭建機(jī)械驅(qū)動(dòng)式自動(dòng)取投苗系統(tǒng)試驗(yàn)平臺(tái),并參照旱地栽植機(jī)械標(biāo)準(zhǔn)[24]進(jìn)行樣機(jī)試驗(yàn)。
4.2.1 試驗(yàn)條件
試驗(yàn)于2019年11月3日在新疆農(nóng)業(yè)大學(xué)農(nóng)牧機(jī)械試驗(yàn)室內(nèi)進(jìn)行。試驗(yàn)用秧苗為標(biāo)準(zhǔn)培育的128穴型、60 d苗齡(育苗時(shí)間為2019年9月2日至11月2日)辣椒苗,穴盤苗平均高度163.5 mm,穴盤內(nèi)所有秧苗均為優(yōu)質(zhì)秧苗,漲勢(shì)良好,缽體無破損。穴盤內(nèi)基質(zhì)由草炭、蛭石、珍珠巖按照體積比1:1:1配得(基質(zhì)含水率24.61%~31.57%)。輸入動(dòng)力由電機(jī)提供,所用壓縮空氣由氣泵(ZBM-0.1/8型,壓力保持在0.6~0.8 MPa之間)提供,經(jīng)減壓閥調(diào)整輸出氣壓穩(wěn)定在0.6 MPa,通過變頻器(臺(tái)達(dá)VFD015M43B,精度0.1 Hz)調(diào)節(jié)電機(jī)轉(zhuǎn)速,機(jī)械式自動(dòng)取投苗系統(tǒng)試驗(yàn)平臺(tái)如圖13所示。
4.2.2 試驗(yàn)方法
1)穴盤進(jìn)給試驗(yàn)
根據(jù)辣椒穴盤規(guī)格尺寸可知,相鄰兩穴孔中心距(即理論偏移距離)為31.75 mm。穴盤橫向移動(dòng)時(shí),選取左側(cè)和右側(cè)兩個(gè)待取苗點(diǎn),分別以橫向移位待取苗點(diǎn)距理論待取苗點(diǎn)的距離(左和右)及橫向移動(dòng)距離為試驗(yàn)指標(biāo);穴盤縱向移動(dòng)時(shí),選取上側(cè)和下側(cè)兩個(gè)待取苗的點(diǎn),分別以縱向移位待取苗點(diǎn)距理論待取苗點(diǎn)的距離及縱向移動(dòng)距離為試驗(yàn)指標(biāo);以此測(cè)算出平均進(jìn)給位移和標(biāo)準(zhǔn)差,以驗(yàn)證穴盤進(jìn)給裝置在橫向與縱向橫向移動(dòng)的距離與理論移動(dòng)的距離是否一致。
2)取投苗性能試驗(yàn)
因試驗(yàn)平臺(tái)未搭載栽植器進(jìn)行實(shí)際田間土壤栽植試驗(yàn),故參照《旱地栽植機(jī)械標(biāo)準(zhǔn)》,先重點(diǎn)考察不同取投苗速度對(duì)自動(dòng)取投系統(tǒng)取投苗成功率的影響,以此確定較佳的取投苗速度;然后測(cè)定該取投苗速度下取苗、投苗、輸苗等各主要環(huán)節(jié)的成功率以及取投苗過程中的基質(zhì)損失率。重復(fù)3次試驗(yàn)取平均值,試驗(yàn)過程通過數(shù)碼相機(jī)記錄。
取投苗成功率:
以取苗成功率1、投苗成功率2、輸苗成功率3、取投苗總成功率作為取投苗性能評(píng)價(jià)指標(biāo),按下列公式計(jì)算:
式中0為每盤穴盤苗初始株數(shù);1為機(jī)械手每盤成功取苗株數(shù);2為機(jī)械手每盤準(zhǔn)確投入苗筒株數(shù);為苗筒輸苗成功(無卡滯、無夾苗)株數(shù)。
基質(zhì)損失率:
為考察機(jī)械手取苗和系統(tǒng)輸送轉(zhuǎn)移過程中造成的基質(zhì)損失情況,將隨機(jī)選取的穴盤苗標(biāo)記序號(hào)并采用電子天平對(duì)其稱量(0),然后將穴盤苗放回穴盤中,對(duì)取投后的穴盤苗稱量(M),以此計(jì)算基質(zhì)損失率μ,評(píng)價(jià)系統(tǒng)自動(dòng)取苗對(duì)基質(zhì)的影響。
式中0為穴盤苗取投前的質(zhì)量,g;M為穴盤苗取投后的質(zhì)量,g;μ為基質(zhì)損失率,%;為穴盤苗標(biāo)號(hào)。
4.3.1 穴盤進(jìn)給移位的準(zhǔn)確性
隨機(jī)抽取8盤長勢(shì)相當(dāng)?shù)难ūP苗進(jìn)行穴盤進(jìn)給移位試驗(yàn),分別測(cè)算縱向位移和橫向位移,結(jié)果如表4。由表4可知,縱向移動(dòng)的平均距離為31.54 mm,橫向移動(dòng)的平均距離為31.76 mm,縱向和橫向的偏移距離與理論偏移距離存在一定的誤差,但最大偏差距離均小于1mm,穴盤進(jìn)給裝置基本符合供苗功能要求。
表4 穴盤進(jìn)給試驗(yàn)結(jié)果
4.3.2 取苗速度對(duì)取投苗成功率的影響
隨機(jī)抽取4盤長勢(shì)相當(dāng)、可移栽的穴盤苗進(jìn)行不同取苗速度試驗(yàn)。根據(jù)機(jī)械驅(qū)動(dòng)式自動(dòng)取投系統(tǒng)的移栽效率要求,經(jīng)過初期試驗(yàn),電機(jī)輸出轉(zhuǎn)速范圍為8~11 r/min時(shí),取投苗系統(tǒng)能按功能要求完成取投苗動(dòng)作,因此試驗(yàn)中依次選取對(duì)應(yīng)上述適宜電機(jī)輸出轉(zhuǎn)速范圍的取苗速度64、72、80、88株/min。不同取苗速度下的試驗(yàn)結(jié)果如表5所示。
注:為取苗速度,株·min-1;0為穴盤苗初始株數(shù);1為成功取苗株數(shù);2為準(zhǔn)確投苗株數(shù);為輸苗成功株數(shù);1為取苗成功率,%;2為投苗成功率,%;3為輸苗成功率,%;為取投苗總成功率,%。下同。
Note:is the rate of seedlings taking, plants·min-1;0is the initial number of plug seedlings;1is the number of successful taking seedlings;2is the number of accurately throwing seedlings;is the number of successful transplanting seedlings;1is the success rate of seedlings taking, %;2is the success rate of seedlings throwing, %;3is the success rate of seedlings transplanting,%;is the total success rate of seedlings taking and throwing, %. The same below.
由表5可知,隨著取苗速度的增加,取苗成功率1、投苗成功率2先增大后減少;輸苗成功率3總體波動(dòng)較??;取投苗總成功率先增大后減少。在取苗速度80株/min時(shí),取苗成功率1為93.75%,投苗成功率2為99.17%,輸苗成功率3為99.16%,取投苗總成功率達(dá)92.19%,取投苗效果最佳。結(jié)合試驗(yàn)過程觀察,取苗速度過高,即地輪速度過高時(shí),取投苗系統(tǒng)從穴盤轉(zhuǎn)移缽苗過程會(huì)出現(xiàn)甩苗,機(jī)械手未運(yùn)行至目標(biāo)位置便開始下一動(dòng)作或抖動(dòng)等。
4.3.3 取投苗可靠性分析
根據(jù)取苗速度試驗(yàn)測(cè)得的較佳取苗速度,任取8盤穴盤苗在80株/min的取苗速度下進(jìn)行取投苗可靠性驗(yàn)證試驗(yàn),試驗(yàn)結(jié)果如表6。由表6可知,該試驗(yàn)條件下系統(tǒng)的平均取投苗總成功率、取苗成功率1、投苗成功率2、輸苗成功率3分別為92.54%、92.93%、99.57%和100.00%。其中,輸苗成功率3較為穩(wěn)定,取苗成功率1與取投苗總成功率總體變化趨勢(shì)相同。由于部分試驗(yàn)穴盤苗盤根情況較差,枝葉過于緊湊,機(jī)械手運(yùn)轉(zhuǎn)苗過程中存在抖動(dòng),一定程度上影響了系統(tǒng)取投苗總成功率。
4.3.4 穴盤苗高度對(duì)基質(zhì)損失率的影響
基質(zhì)損失率是影響秧苗移栽后根系再生長和栽植質(zhì)量的主要指標(biāo)。隨機(jī)選取18株長勢(shì)良好的穴盤苗,在較佳取苗速度80株/min條件下進(jìn)行試驗(yàn),試驗(yàn)結(jié)果如表7所示。試驗(yàn)用穴盤苗的高度基本分布在150~170 mm之間,最小基質(zhì)損失率為2.12%,最大基質(zhì)損失率為14.27%,平均基質(zhì)損失率9.44%,均小于25%,滿足設(shè)計(jì)要求。通過對(duì)試驗(yàn)過程觀察可知,穴盤苗基質(zhì)損失率波動(dòng)范圍較大(SD=3.65%)的主要原因是部分秧苗根系不夠發(fā)達(dá),基質(zhì)較松散,在取投苗過程中機(jī)械手的一些抖動(dòng)、投苗和輸送過程中穴盤苗落苗沖擊和苗筒的間歇振動(dòng)均對(duì)基質(zhì)損失造成了一定影響。
表7 基質(zhì)損失率試驗(yàn)結(jié)果
綜合上述試驗(yàn)結(jié)果,該系統(tǒng)雖未搭載栽植器進(jìn)行實(shí)際田間栽植試驗(yàn),參照《旱地栽植機(jī)械》所設(shè)計(jì)的自動(dòng)取投苗系統(tǒng)取投苗效率為80株/min,遠(yuǎn)高于規(guī)定的栽植頻率;取苗成功率、投苗成功率、輸苗成功率和取投苗總成功率均大于90%,高于規(guī)定的栽植合格率;且平均基質(zhì)損失率低于10%,未發(fā)現(xiàn)傷苗情況,低于規(guī)定的傷苗率。該取投苗系統(tǒng)穴盤苗取投效果較好,能夠滿足栽植前自動(dòng)進(jìn)給穴盤苗、取投苗、輸苗等作業(yè)要求。
1)設(shè)計(jì)了一種針對(duì)128穴軟穴盤辣椒苗移栽的機(jī)械驅(qū)動(dòng)式自動(dòng)取投苗系統(tǒng),根據(jù)“己”字型穴盤苗步進(jìn)移位進(jìn)給方案及人工取投苗作業(yè)形式,確定了穴盤進(jìn)給裝置、機(jī)械取投苗裝置、輸送喂入裝置的結(jié)構(gòu)方案及動(dòng)力傳送系統(tǒng)方案。
2)根據(jù)機(jī)械手取投苗軌跡與姿態(tài)要求,確定了偏轉(zhuǎn)驅(qū)動(dòng)機(jī)構(gòu)和穴苗拔取驅(qū)動(dòng)機(jī)構(gòu)結(jié)構(gòu),構(gòu)建了機(jī)械取投苗機(jī)構(gòu)驅(qū)動(dòng)裝置的運(yùn)動(dòng)學(xué)模型,分析得出機(jī)械手末端位移、速度、加速度方程,并得出偏轉(zhuǎn)凸輪和拔取驅(qū)動(dòng)凸輪三項(xiàng)式擬合理論輪廓曲線參數(shù)方程及以結(jié)構(gòu)參數(shù)。
3)利用Solidworks軟件獲得取投苗軌跡和運(yùn)動(dòng)曲線,證明機(jī)械手運(yùn)動(dòng)規(guī)律滿足設(shè)計(jì)要求;試制了自動(dòng)取投系統(tǒng)樣機(jī)和試驗(yàn)臺(tái)架,以128穴辣椒苗進(jìn)行室內(nèi)穴盤進(jìn)給移位試驗(yàn)、取投苗試驗(yàn)和基質(zhì)損失率試驗(yàn),試驗(yàn)結(jié)果表明:穴盤縱向和橫向進(jìn)給位移與理論偏差距離小于1 mm,驗(yàn)證了穴盤進(jìn)給裝置設(shè)計(jì)的合理性;取投苗系統(tǒng)能按設(shè)計(jì)要求完成各項(xiàng)動(dòng)作,較佳取苗速度80株/min,滿足自動(dòng)取投苗系統(tǒng)設(shè)計(jì)要求;平均取投苗總成功率、取苗成功率、投苗成功率、輸苗成功率分別為92.54%、92.93%、99.57%和100.00%;平均基質(zhì)損失率為9.44%;達(dá)到《旱地栽植機(jī)械》中的相應(yīng)要求。
本文所設(shè)計(jì)的機(jī)械驅(qū)動(dòng)式自動(dòng)取投苗系統(tǒng)主要以機(jī)械控制的形式實(shí)現(xiàn)整盤穴盤苗的自動(dòng)取投功能,可通過調(diào)節(jié)取苗爪在拉桿上的高度滿足不同高度穴盤苗栽植要求,實(shí)現(xiàn)連續(xù)整盤穴盤苗的自動(dòng)取投功能,有待與栽植器配合開展后續(xù)研究。
[1]陳大軍,侯加林,施國英,等. 國內(nèi)旱地移栽機(jī)技術(shù)現(xiàn)狀分析[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2018,39(7):98-102.
Chen Dajun, Hou Jialin, Shi Guoying, et, al. Analysis on the current situation of technology of domestic dryland transplanter[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(7): 98-102. (in Chinese with English abstract)
[2]夏廣寶,韓長杰,郭輝,等.全自動(dòng)移栽機(jī)械關(guān)鍵部件研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)機(jī)化研究,2019,41(2):1-7,14.
Xia Guangbao, Han Changjie, Guo Hui, et, al. Research status and development trend of key components of automatic transplanting machine[J].Journal of Agricultural Mechanization Research, 2019, 41(2): 1-7, 14. (in Chinese with English abstract)
[3]何亞凱,顏華,崔巍,等. 蔬菜自動(dòng)移栽技術(shù)研究現(xiàn)狀與分析[J]. 農(nóng)業(yè)工程,2018,8(3):1-7.
He Yakai, Yan Hua, Cui Wei, et, al. Research situation and analysis on automatic transplanting technology for vegetable seedling[J]. Agricultural Engineering, 2018, 8(3): 1-7. (in Chinese with English abstract)
[4]Chen Jianneng, Huang Qianze, Wang Ying, et al. Kinematics modeling and analysis of transplanting mechanism with planetary elliptic gears for pot seedling transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 6-12.
[5]張靜,韓長杰,郭輝,等. 結(jié)球葉菜收獲機(jī)械關(guān)鍵技術(shù)與裝備研究現(xiàn)狀[J]. 新疆農(nóng)機(jī)化,2019(2):29-34.
Zhang Jing, Han Changjie, Guo Hui, et, al. Research status of key technology and equipment of corm leaf vegetable harvester[J]. Xinjiang Agricultural Mechanization, 2019(2): 29-34. (in Chinese with English abstract)
[6]張振國,曹衛(wèi)彬,王僑,等. 穴盤苗自動(dòng)移栽機(jī)的發(fā)展現(xiàn)狀與展望[J]. 農(nóng)機(jī)化研究,2013,35(5):237-241.
Zhang Zhenguo, Cao Weibin, Wang Qiao, et, al. Development status and prospect of plug seedlings automatic transplanting machine[J]. Journal of Agricultural Mechanization Research, 2013, 35(5): 237-241. (in Chinese with English abstract)
[7]韓長杰,張學(xué)軍,楊宛章,等. 旱地缽苗自動(dòng)移栽技術(shù)現(xiàn)狀與分析[J]. 農(nóng)機(jī)化研究,2011,33(11):238-240.
Han Changjie, Zhang Xuejun, Yang Wanzhang, et, al. Present status and analysis of dry-land auto-transplanting seedling technique[J]. Journal of Agricultural Mechanization Research, 2011, 33(11): 238-240. (in Chinese with English abstract)
[8]Kumar G V P, Rahemman H. Vegetable transplanters for use in developing countries a review[J]. International Journal of Vegetable Science, 2008, 14(3): 232-255.
[9]盧勇濤,李亞雄,劉洋,等. 國內(nèi)外移栽機(jī)及移栽技術(shù)現(xiàn)狀分析[J]. 新疆農(nóng)機(jī)化,2011(3):29-32.
Lu Yongtao, Li Yaxiong, Liu Yang, et, al. Analysis of transplanting machine and transplanting technology at home and abroad[J]. Xinjiang Agricultural Mechanization, 2011(3):29-32. (in Chinese with English abstract)
[10]李華,曹衛(wèi)彬,李樹峰,等. 2ZXM-2型全自動(dòng)蔬菜穴盤苗鋪膜移栽機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):23-33.
Li Hua, Cao Weibin, Li Shufeng, et, al. Development of 2ZXM-2 automatic plastic film mulching plug seedling transplanter for vegetable[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 23-33. (in Chinese with English abstract)
[11]吳儉敏,張小超,金鑫,等. 苗盤缽苗自動(dòng)識(shí)別及控制裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):47-52.
Wu Jianmin, Zhang Xiaochao, Jin Xin, et al. Design and experiment on transplanter pot seedling disk conveying and positioning control system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 47-52. (in Chinese with English abstract)
[12]俞高紅,俞騰飛,葉秉良,等. 一種旋轉(zhuǎn)式穴盤苗取苗機(jī)構(gòu)的設(shè)計(jì)[J]. 機(jī)械工程學(xué)報(bào),2015,51(7):67-76.
Yu Gaohong, Yu Tengfei, Ye Bingliang, et, al. Design of a rotary plug seedling pick-up mechanism[J]. Journal of Mechanical Engineering, 2015, 51(7): 67-76. (in Chinese with English abstract)
[13]倪有亮,金誠謙,劉基. 全自動(dòng)移栽機(jī)取送苗系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):10-19.
Ni Youliang, Jin Chengqian, Liu Ji. Design and experiment of system for picking up and delivering seedlings in automatictransplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 10-19. (in Chinese with English abstract)
[14]魏新華,包盛,劉曉凱,等. 穴盤苗全自動(dòng)移栽機(jī)運(yùn)動(dòng)協(xié)調(diào)控制系統(tǒng)設(shè)計(jì)與移栽試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,(12):1-7,52.
Wei Xinhua, Bao Sheng, Liu Xiaokai, et, al. Design and experiment on potted-seedling automatic transplanter control system for motion coordinating[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, (12): 1-7, 52. (in Chinese with English abstract)
[15]王蒙蒙,宋建農(nóng),劉彩玲,等. 蔬菜移栽機(jī)曲柄擺桿式夾苗機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):49-57.
Wang Mengmeng, Song Jiannong, Liu Cailing, et al. Design and experiment of crank rocker type clamp seedlings mechanism of vegetable transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 49-57. (in Chinese with English abstract)
[16]俞高紅,陳志威,趙勻,等. 橢圓-不完全非圓齒輪行星系蔬菜缽苗取苗機(jī)構(gòu)的研究[J]. 機(jī)械工程學(xué)報(bào),2012,48(13):32-39.
Yu Gaohong, Chen Zhiwei, Zhao Yun, et, al. Study on vegetable plug seedling pick-up mechanism of planetary gear train with ellipse gears and incomplete non-circular gear[J]. Journal of Mechanical Engineering, 2012, 48(13): 32-39. (in Chinese with English abstract)
[17]李華,曹衛(wèi)彬,李樹峰,等. 辣椒穴盤苗自動(dòng)取苗機(jī)構(gòu)運(yùn)動(dòng)學(xué)分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):20-23.
Li Hua, Cao Weibin, Li Shufeng, et, al. Kinematic analysis and test on automatic pick-up mechanism for chiliplug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 20-27. (in Chinese with English abstract)
[18]李華,曹衛(wèi)彬,李樹峰,等. 2ZXM-2型全自動(dòng)蔬菜穴盤苗鋪膜移栽機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):23-33.
Li Hua, Cao Weibin, Li Shufeng, et, al. Development of 2ZXM-2 automatic plastic film mulching plug seedling transplanter for vegetable[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 23-33. (in Chinese with English abstract)
[19]郭林強(qiáng). 穴盤苗全自動(dòng)移栽機(jī)氣動(dòng)取苗裝置的設(shè)計(jì)與試驗(yàn)[D]. 鎮(zhèn)江:江蘇大學(xué),2016.
Guo Linqiang. Design and Test on the Pneumatic Taking Seedling Mechanism of Auto-Transplanter[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[20]吳儉敏,張小超,金鑫,等. 苗盤缽苗自動(dòng)識(shí)別及控制裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):47-52.
Wu Jianmin, Zhang Xiaochao, Jin Xin, et al. Design and experiment on transplanter pot seedling disk conveying and positioning control system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 47-52. (in Chinese with English abstract)
[21]董哲. 蔬菜穴盤苗自動(dòng)取苗裝置的設(shè)計(jì)與研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2015.
Dong Zhe. Design and Study on Vegetable Automatic Seedling Pick-up Device[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese with English abstract)
[22]韓長杰,楊宛章,張學(xué)軍,等. 穴盤苗移栽機(jī)自動(dòng)取喂系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(8):51-61.
Han Changjie, Yang Wanzhang, Zhang Xuejun, et al. Design and test of automatic feed system for tray seedlings transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 51-61. (in Chinese with English abstract)
[23]韓長杰,徐陽,尤佳,等. 半自動(dòng)壓縮基質(zhì)型西瓜缽苗移栽機(jī)成穴器參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):48-56.
Han Changjie, Xu Yang, You Jia, et, al. Parameter optimization of opener of semi-automatic transplanter for watermelon seedlings raised on compression substrate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 48-56. (in Chinese with English abstract)
[24]中華人民共和國工業(yè)和信息化部. 旱地栽植機(jī)械行業(yè)標(biāo)準(zhǔn):JB/T 10291-2013[S]. 北京:機(jī)械工業(yè)出版社,2013.
[25]劉旋峰,張杰,喬園園,等. 殘膜回收機(jī)凸輪廓線的設(shè)計(jì)與計(jì)算[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2016,37(11):28-31.
Liu Xuanfeng, Zhang Jie, Qiao Yuanyuan, et al. Design and calculation on cam profilogram of plastic residual film collector[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 28-31.
[26]王海濱,李志鵬,姜雪松,等. 基于槽型凸輪傳動(dòng)的藍(lán)莓采摘機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(10):80-91.
Wang Haibin, Li Zhipeng, Jiang Xuesong, et al. Design and experiment on blue berry picking machine based on groove cam drive[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 80-91. (in Chinese with English abstract)
[27]吳佳,何雪明,何楷,等. 多項(xiàng)式擬合法在旋蓋機(jī)凸輪曲線設(shè)計(jì)中的研究與應(yīng)用[J]. 食品與機(jī)械,2018,34(6):75-80,151.
Wu Jia, He Xueming, He Kai, et al. The research and application of polynomial fitting in cam curve design of cap screwing machine[J]. Food and Machinery, 2018, 34(6): 75-80, 151. (in Chinese with English abstract)
[28]王超超,韓長杰,尤佳,等. 食葵采收臺(tái)凸輪機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2019,40(4):8-9.
Wang Chaochao, Han Changjie, You Jia, et, al. Design and experiment on the cam mechanism for collecting station of edible sunflower[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 8-9. (in Chinese with English abstract)
[29]孫桓,陳作模,葛文杰. 機(jī)械原理[M]. 北京:北京高等教育出版社,2006:109-138.
[30]章鵬華. 近似停頓往復(fù)運(yùn)動(dòng)機(jī)構(gòu)及其在缽苗移栽機(jī)的應(yīng)用研究[D]. 杭州:浙江理工大學(xué),2016.
Zhang Penghua. Study on the Reciprocating Mechanism with Approximate Pause and its Application in the Seedling Transplanting Machine[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. (in Chinese with English abstract)
[31]王永維,何焯亮,王俊,等. 旱地蔬菜缽苗自動(dòng)移栽機(jī)栽植性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):19-25.
Wang Yongwei, He Zhuoliang, Wang Jun, et, al. Experiment on transplanting performance of automatic vegetable pot seedling transplanter for dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 19-25. (in Chinese with English abstract)
Design and experiments of mechanically-driven automatic taking and throwing system for chili plug seedlings
Zhang Jing1, Long Xinhua1, Han Changjie1※, Yuan Panpan1, Gao Jie2
(1.,,830052,;2.830052,)
Manual handling of plug seedling has significantly confined the mechanized planting in previous semi-automatic transplanting machines. It is necessary to update the current complex control system with high labor intensity and low work efficiency. In this study, a mechanically- driven system with automatic picking and throwing for plug seedling was developed, combining the latest transplanting mode of plug seedling and agronomic requirements in Xinjiang Region, China. Two devices were designed, including the tray feeding device as well as the mechanical seedlings taking and throwing device. The new system was mainly composed of power transmission subsystem, tray feeding, mechanical seedlings taking/throwing, and conveying device. The horizontal and vertical seedling driving mechanism was used for the tray feeding device to drive the plug for the automatic feeding and taking of 128-hole plug seedlings. The driven power was from the ground wheel. Moreover, the mechanical transmission was realized through the deflection/picking cam driving mechanism and the manipulator. The trajectory and posture of the manipulator were set in the “”-shaped plug feeding plan for taking and throwing seedlings. The dimensional relationship of the deflection/taking driving mechanism was determined for the mechanical seedlings taking and throwing device. A kinematics model was constructed for the driving device in the mechanical seedling taking and feeding mechanism. The main parameters were analyzed, including the end displacement, velocity, acceleration of manipulator, and motion equations of deflection and extraction drive device. SolidWorks software was used to simulate the trajectory and motion of the seedling, in order to verify the performance of the system. The transplanting objects were selected as the pepper plug seedlings with a 60-day seedling age and a substrate moisture content of 24.61% to 31.57%. A displacement reliability test of hole-plate feeding and an experiment indoor were carried out to determine the main technical parameters, and thereby to evaluate the indicators of performance. The standard of “dry land planting machinery” was used to describe the planting performance of clamp- and hanging-cup type transplanter. Test results showed that the motion track of the manipulator reached the design requirements, where the deviation was less than 1 mm for the simulated distance between the longitudinal and transverse displacements of hole-plate feeding, compared with the theoretical value. The seedlings taking and throwing system realized various actions, according to the design requirements. There was a significant impact of seedlings taking rate on the success rate in the range of 64-88 plants/min. Specifically, the success rate of seedlings taking and throwing increased first and then decreased, with the increase of seedlings taking rate. The total success rate of seedlings taking and throwing first increase and then decrease, and the overall success rate of seedling transplantation fluctuated slightly. The best performance was achieved at the taking rate of 80 plants/min, where the average values of the total success rate of seedlings taking and throwing, the success rate seedlings takign, the success rate of seedlings throwing, and the success rate of seedling transplantation were 92.54%, 92.93%, 99.57%, and 100.00%, respectively. The dispersion degree of each success rate index was small, and there was no damage to the seedlings during the process. In addition, the indicators were in agreement with the specified values of planting performance in the mechanical industry standard. The planting frequency and qualification rate were 80 plants/min and higher than 90%, respectively. The missed taking rate and seedling damage rate were lower than 5%. These results further demonstrated that the developed system met the demands of automatic feeding of plug seedlings, taking and throwing seedlings, as well as seedling delivery before planting pepper plug seedlings with a hole height of 45 mm, together with the feasibility and reliability of the access system. The findings can provide a potential reference to design the follow-up mechanical automatic plug transplanter.
agricultural machinery; experiments; transplanting; plug seedling; mechanical driven; automatic seedlings taking and throwing; chili
張靜,龍新華,韓長杰,等. 機(jī)械驅(qū)動(dòng)式辣椒穴盤苗自動(dòng)取投苗系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(5):20-30.doi:10.11975/j.issn.1002-6819.2021.05.003 http://www.tcsae.org
Zhang Jing, Long Xinhua, Han Changjie, et al. Design and experiments of mechanically-driven automatic taking and throwing system for chili plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 20-30. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.003 http://www.tcsae.org
2020-11-23
2021-01-11
國家重點(diǎn)研發(fā)計(jì)劃(2017YFD0700800);國家自然科學(xué)基金項(xiàng)目(50905153,51565059);自治區(qū)重點(diǎn)研發(fā)計(jì)劃(2018B01001-3);自治區(qū)天山青年計(jì)劃(2017Q018)
張靜,博士生,講師,研究方向?yàn)橹悄軝C(jī)械化裝備與無損品質(zhì)檢測(cè)。Email:Zj_xjau@vip.163.com
韓長杰,教授,博士生導(dǎo)師,博士,研究方向?yàn)檗r(nóng)業(yè)機(jī)械設(shè)計(jì)與智能農(nóng)業(yè)裝備。Email:hcj_627@163.com
10.11975/j.issn.1002-6819.2021.05.003
S223.9
A
1002-6819(2021)-05-0020-11