• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence*

    2021-05-08 03:18:32XUEHuiyunWANGSufangZHANGXinZHANGZhiyong
    關(guān)鍵詞:作物栽培張志勇生理

    XUE Huiyun, WANG Sufang, ZHANG Xin, ZHANG Zhiyong

    The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence*

    XUE Huiyun, WANG Sufang, ZHANG Xin, ZHANG Zhiyong**

    (Henan Institute of Science and Technology / Henan Collaborative Innovation Center of Modern Biological Breeding / Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China)

    Cotton; Leaf senescence; Chlorophyll a fluorescence; Photosystem Ⅱ; Rapid chlorophyll a fluorescence parameter

    Cotton (spp.) has infinite reproductive properties, and is an important cash crop. Appropriate senescence can improve ?ber yield and quality of cotton by withstanding adverse weather conditions, efficiently utilizing material resources and energy during the growing season (Chen et al., 2018). Premature senescence generally leads to yield loss of about 10%, even more than 20% (Dong et al., 2005; Wright, 1999), and has been commonly in many cotton-growing countries (Dong et al., 2006; Dong et al., 2005) due to imbalance of source and sink (Wright, 1999) or poor ability to take up nutrients from soil in late season (Brouder and Cassman, 1990) and so on.

    Leaf senescence can dramatically affect crop production by reducing photosynthetic capacity and influencing dry matter transfer from senescing leaves to harvestable organs (Gregersen et al., 2008; Rajcan et al., 1999; Rajcan and Tollenaar, 1999a; Rajcan and Tollenaar, 1999b). Research shows that the disassembly of the photosynthetic apparatus (PSA) within chloroplasts of plants and the electron flow that through the light reactions of photosystem Ⅱ (PSⅡ) and photosystem Ⅰ (PSⅠ) are greatly associated with the photosynthetic capacity decline (Grover, 1993; Smart, 1994; Weng et al., 2005; Wingler et al., 2004). Furthermore, it has been proved that PSⅡ is more susceptible to senescence than PSⅠ in senescent leaves (Grover et al., 1986). Kautsky and Hirsch (1931) firstly proposed the possibility using fluorescence methods for PSA analysis, because they founded there was a close relationship between chlorophyll fluorescence and primary reaction of photosynthesis.

    Chlorophyll a ?uorescence (Chl F) analysis is noninvasive, fast and precise, and has been widely used for assessment of the physiological state of PSA of different species under different environment conditions (Baker and Rosenqvist, 2004; DeEll et al., 1999; Wang et al., 2016). The most commonly and widely used Chl F analyses are performed by the saturation pulse method, which uses the darkness adapted leaf samples to obtain different parameters characterizing the steady-state status of the PSA (Baker, 2008; Lazár, 2015). In the last two decades, because fast Chl F rise kinetics OJIP which showed a typical O-J-I-P phase and OJIP test analysis can capture more detailed information on the structure and function of the PSA, primarily PSⅡplant, it was developed to rapidly evaluate the physiological state of PSA in a high number of field grown plants (Goltsev et al., 2016) based on the energy flux theory in photosynthetic membranes (Strasser and Strasser, 1995). The OJIP test reflects the behavior of PSⅡ function, which includes the energy ?ow in PSⅡ and electron transport from H2O to the ?nal electron acceptors of PSⅠ (Ivanov et al., 2008; Papageorgiou, 2013). Wang et al (2016) examined the PSⅡ photochemistry by Chl F analysis in high-yield rice () ‘LYPJ’ flag leaves during senescence and found that natural senescence inhibited oxygen-evolving complex (OEC)-PSⅡ electron transport, also significantly limited the PSⅡ-PSⅠ electron flow. Paunov et al. (2018) analyzed the effect of cadmium and zinc on Chl F in durum wheat (var.) and found that both metals disturbed photosynthetic electron transport processes, which led to a 4- to 5-fold suppression of the ef?ciency of energy transformation in PSⅡ. Urbano Bron et al. (2004) used Chl F as a tool to evaluate the ripening of ‘Golden’ papaya fruit (), finding that maximal chlorophyll ?uorescence (M) and minimal chlorophyll ?uorescence (O) showed strong correlation with changes in skin color and fruit ?rmness, which suggested a relationship between the ?uorescence and the level of papaya fruit senescence. Although many researches about the Chl F parameters in senescence leaves have been reported, more detailed information describing the status of PSⅡ by the fast induced ?uorescence during leaf senescence is still unclear (Lu et al., 2002; Tang et al., 2015). And there is no report about Chl F in different cotton genotypes. In order to capture more detailed information describing the status of PSⅡ during leaf senescence and rapidly screen cotton genotypes with different duration of photosynthetic capacity, we observed the change of PSⅡ status using fast induced Chl F analysis during leaf senescence of different cotton genotypes under the same weather condition.

    1 Materials and Methods

    1.1 Cotton materials

    Three insect-resistant transgenic cotton genotypes were used for this study. They are ‘Baimian1’, bred by Henan Institute of Science and Technology with a performance of early-maturing but slow leaf senescence (Hu et al., 2014; Wang et al., 2020); ‘DP99B’ bred by the Monsanto Company and officially registered in Hebei Province in 2000 with a performance of early-maturing and fast leaf senescence(Zhang et al., 2007; Wang et al., 2020); ‘Baimian5’ bred by Henan Institute of Science and Technology with a performance of early-maturing but middle leaf senescence.

    1.2 Experimental design

    A ?eld experiment was conducted at the experimental station of Henan Institute of Science and Technology in Xinxiang, Henan Province, China (35°18′N, 113°55′E). A randomized experiment was designed with three cotton genotypes and three replicates in sandy soil with pH 8.5, 6.0 g?kg?1organic matter, 18.6 mg?kg?1available nitrogen, 16.2 mg?kg?1available phosphorus, 158.5 mg?kg?1available potassium in 2012. The cotton population was 4.5×104plants?hm?2for three genotypes. Before planting the land was plowed and irrigated. The three different cotton genotypes had a conventional field management, planted in 20 April and topped in 15 July. The weather conditions of the study area were provided in Table 1.

    Table 1 The weather conditions of Xinxiang, Henan, China in 2012 and from 1961 to 2011

    1.3 Chlorophyll fluorescence measurements

    From 20 July (after topping) to 11 October (harvest time), polyphasic Chl F transient (OJIP) of the first leaves counted from the stem top of each cotton genotypes were measured with a portable fluorometer (Handy PEA, Hansatech, UK) by according to methods of Strasser et al. (1995) in the afternoon (16:00–17:00) at approximately 20 days intervals. Each cotton genotypes contained six leaves with the similar growth condition. Before measurements, leaves were dark-adapted for 30 min. Then OJIP transient was induced by 1 second pulses of red light (650 nm, 3500 μmol?m–2?s–1). The OJIP test (Strasser et al., 2004) was used to analyze each OJIP transient. The formulae and explanation of the technical data of the OJIP curves, as well as the selected OJIP test parameters used in this study was list blow (Table 2).

    1.4 Statistical analysis

    Duncan test was used to determine the differences among genotypes at<0.05 with SPSS (version 22.0; IBM). Charts were generated using Excel 2003 and Origin 9.0 software (OriginLab Inc., USA). Data presented in the figures and tables are means of six biological replicates.

    2 Results

    2.1 Identification of photosynthetic function duration of three cotton genotypes

    When the main stem nodes above the uppermost white flower at the first node of fruit branch was equal to 5, it indicates the growth and development of cotton has entered the physiological decline stage. In present study, the physiological decline periods of three cotton genotypes were basically the same between 19 July and 26 July (Table 3). ‘DP99B’ has a significantly less main stem nodes above the uppermost white flower at the first node of fruit branch than that of ‘Baimian1’ between 28 June and 19 July, indicated that the reproductive growth process of ‘DP99B’ was faster than Baimian1 in this stage.

    Table 2 De?nitions of measured and calculated chlorophyll a ?uorescence parameters used in the experiment

    Table 3 Main stem nodes number above the uppermost white flower at the first node of fruit branch of different cotton genotypes in 2012

    Different lowercase letters in the same column indicated significant differences among different cotton genotypes at<0.05.

    The performance index based on light energy absorption (PIABS) is a photosynthesis performance index that reflects the overall photosynthetic activity of PSⅡ. Therefore, the variations of PIABSinthree cotton genotypes were observed every 20 days from 21 July based on the results of the main stem nodes above the uppermost white flower at the first node of fruit branch (Table 4). There was no obvious difference in the value of PIABSin three genotypes of cotton on 21 July. With the duration of leaf senescence, PIABSdeclined gradually inthree cotton genotypes. On 10 August, obvious difference of PIABSappeared in ‘DP99B’ compared with the other cotton genotypes. Then, obvious difference of PIABScontinued in ‘DP99B’ compared with the other cotton genotypes. At last, ‘Baimian1’ decreased 57.13%, ‘DP99B’ decreased 89.66%, ‘Baimian5’ decreased 76.17% compared with the PIABSon 21 July. And obvious difference of PIABSappeared between those cotton genotypes on 11 October. These results indicated that the process of leaf senescence in three cotton genotypes were different. The senescence of leaves in ‘DP99B’ was faster than that in the other cotton genotypes. And the rate of leaf senescence in ‘DP99B’ was the fastest, then was ‘Baimian5’, ‘Baimian1’ was the slowest. Taken together, the functional period of leaf in ‘Baimian1’ was longest, ‘DP99B’ was shortest, ‘Baimian5’ was middle.

    Table 4 Trends of the performance index based on light energy absorption (PIABS) with time for different cotton genotypes in 2012

    Different lowercase letters in the same line at the same date indicated significant differences among genotypes at0.05.

    2.2 Chlorophyll a fluorescence OJIP transient in cotton leaves of three genotypes

    The state of the light-dependent photosynthetic processes in three cotton genotypes were analyzed with OJIP transient during the leaf senescence (Fig. 1). Characteristic difference existed at each phase (O?J, J?I, and I?P phase) of the OJIP fluorescence. The O?J phase denotes gradual reduction of QAwhich is the primary electron acceptor in PSⅡ. The K-phase will appear before J point when the donor site of PSⅡ is injured. The J?I phase mainly reflect the reduction of the intersystem electron carriers. The I?P phase reflects the reduction of PSⅠ electron acceptor (Strasser et al., 2004; Yusuf et al., 2010).

    Compared with the fluorescence intensity on 21 July,Oincreased by 2.84%, 22.91%, 26.29% andPreduced by 4.98%, 7.15%, 23.86% respectively in ‘Baimian1’, ‘Baimian5’ and ‘DP99B’ on 11 October. These results probably indicated that the components of photosynthetic apparatus of three cotton genotypes were differently injured during the leaf senescence. And this result was accord with the above result of PIABS(Table 4).

    2.3 Changes of reaction center, donor and acceptor side of PSⅡ in leaves of three cotton genotypes

    More parameters involved the reaction center, electron transport at donor and acceptor sides of PSⅡ were analyzed. The variation of RC/CSOandKdemonstrate the changes in the reaction center and donor side of PSⅡ, respectively, were shown in Fig. 2. Parameters such asO,m,I,J,ando primarily re?ect changes in the acceptor site of PSⅡ were shown as a spider plot (Fig. 3).

    With the duration of leaf senescence, the RC/CSOof the three cotton genotypes declined greatly before 30 August, then it increased on 20 September, which may be caused by the weather condition during late August. On the whole, the RC/CSOof the three cotton genotypes showed descending trend. It can be seen that those active reaction centers were susceptible to disruption reversibly, but the overall trends of RC/CSOwere decline with the duration of leave senescence. Compared with the highest values of RC/CSO, the RC/CSOvalues of ‘Baimian1’ ‘Baimian5’ and ‘DP99B’ on 11 October decreased by 10.37%, 7.77% and 16.75%, respectively. And different cotton genotypes had similar change on the active reaction centers during leaf senescence. The reduction of active reaction centers number of those cotton genotypes indicated that less energy was used to drive electron transport. With the duration of the leaf senescence, the trends ofKof three cotton genotypes were increasing, the values ofKchanged greatly after 10 August. At last, theKof ‘DP99B’ was significantly greater than that of ‘Baimian1’. And there were evident differences between ‘DP99B’ and ‘Baimian1’, but ‘Baimian5’ had no significantly difference with ‘DP99B’ and ‘Baimian1’ on 11 October. Compared with the value ofKon 21 July, theKon 11 October in ‘Baimian1’ ‘Baimian5’ and ‘DP99B’ increased by 18.40%, 26.95% and 38.53%, respectively. This indicated that the oxygen-evolving complex (OEC) was damaged greatly at the late growth stage, while the damaged extents of the OEC were different in three cotton genotypes even at the same growing environment.

    TheJof three cotton genotypes increased during the leaf senescence. TheIof ‘Baimian1’ always increased, while theIof ‘Baimian5’ and ‘DP99B’ first increased then declined during the leaf senescence. TheJof ‘Baimian1’ ‘Baimian5’ and ‘DP99B’ increased by 27.28%, 46.57% and 45.80%, respectively; and theIof ‘Baimian1’, ‘Baimian5’ and ‘DP99B’ increased by 28.74%, 25.78% and 22.18%, respectively, on 11 October, compared with those on 21 July. It indicated that the electron transport had stronger inhibition in ‘Baimian5’ and ‘DP99B’ than that in ‘Baimian1’ at J phase. While the strength of inhibition was ‘Baimian1’ > ‘Baimian5’ > ‘DP99B’ at Ⅰ phase.

    2.4 Variations of PSⅡ and PSⅠ efficiency and excitation energy dissipation in cotton leaves of three genotypes

    With the duration of the leaf senescence, theΦO, ΦOand ΦOdecreased, while ΦOincreased. On 11 October, there were evident differences among those cotton genotypes in PSⅡ and PSⅠ efficiency. Among those genotypes, the range of change in energy efficiency was ‘DP99B’ > ‘Baimian5’ > ‘Baimian1’ from 20 July to 11 October. This indicated that with the cotton leaf senescence, the functional activity of PSⅡ and PSⅠ could be maintained until 11 October, accompanied the increase of the thermal dissipation quantum yield (Table 5).

    Table 5 Mean values of PSⅡ reaction center numbers and energy allocation of three cotton genotypes in different days

    Different lowercase letters in the same line at the same date indicated significant differences among genotypes at0.05.

    3 Discussion

    3.1 Senescence being reflected by PIABS and differences exist among three genotypes

    Leaf senescence is an integrated response of leaf cells to age information and other internal and environmental signals, early leaf senescence may decrease yield in crop plants by limiting the growth phase (Lim et al., 2007). Senescence may differ between genotypes because the internal factors, especially the senescence related genes, and the external factors including light, temperature, water availability, carbon dioxide, nutrients and so on (Chen et al., 2018). In this paper, the three cotton genotypes enter into the senescence periods at the time between 19 July and 26 July which were proved by the main stem nodes above the uppermost white flower at the first node of fruit branch under the same environment (Table 3).

    The disassembly of the photosynthetic apparatus within chloroplast and the concomitant decrease in photosynthetic activity of PSⅠ and PSⅡ, especially PSⅡ, are the most remarkable events in leaf senescence (Grover and Mohanty, 1992; Grover et al., 1986; Woolhouse, 1987). PIABSis shown to be well correlated with photosynthetic capacity which can be measured as CO2assimilation (Heerden et al., 2003; Ripley et al., 2004). PIABSis more sensitive than commonly used parameter maximum quantum yield of photosystem Ⅱ (V/M) (?iv?ák et al., 2008), very susceptible to environmental stress, so it has been used to differentiate genotypes by their responses to different abiotic stresses including natural senescence (Boureima et al., 2012; Holland et al., 2014; Kalaji et al., 2014). Chen and Dong (2016) proposed that there were three senescence performance categories including normal, premature and late senility in cotton. In this research, three genotypes showed distinctly leaf senescence differences being expressed by PIABS(Table 4), which could classify ‘Baimian1’ ‘Baimian5’ and ‘DP99B’ into late, middle and early senescence types. Furthermore, the senescence of leaves in ‘DP99B’ not only began earlier, but also expanded faster than that in ‘Baimian1’ and ‘Baimian5’ (Table 4), which was identical to the phenomenon observed at the yield level, and also explained why ‘DP99B’ usually had lower fiber yield than ‘Baimian1’ (Wang et al., 2020).

    3.2 Different electron transport exist in different senescence performance

    The senescence pattern which affects photosynthesis is variable and differences among cultivars with different genotypes (Falqueto et al., 2009). Anything affecting photosynthesis can affect the intensity of Chl F, so Chl F can be used as a versatile tool to sense environmental and physiological changes of plants (Guo and Tan, 2015). The shape of the fluorescence rise kinetics (OJIP) is highly dependent on the physiological conditions. In the present study, the major difference during natural senescence for different cotton genotypes occurred in the J?P phase, indicating major difference existed at the intersystem electron carriers and PS Ⅰ electron acceptors among different genotypes. Furthermore, during the leaf senescence the PSⅡ?PSⅠ electron flow was also significantly limited. Among those cotton genotypes, the variation of fluorescence intensity about ‘DP99B’ was the biggest, ‘Baimian1’ was the least, ‘Baimian5’ was the middle at the J?P phase on 11 October compared with 21 July (Fig. 1).

    In order to further identify the damage site and sensitive functions during the photosynthetic electron transport within senescent leaf, we calculated several OJIP parameters. The OJIP parameters are quantitative analysis of the OJIP transient (Chen et al., 2016), helping account the different steps and phases of the OJIP transient with the redox states of PSⅡ and realize the efficiencies of electron transfer through the intersystem chain to the end electron acceptors at the PSⅠ acceptor side, concomitantly (Pollastrini et al., 2014; Tsimilli-Michael and Strasser, 2008).Kis a relative measure of inactivation of OEC. With the duration of leaf senescence, the overall trends ofKin three cotton genotypes were increasing (Fig. 2). At the same time, the inhibition of the acceptor side of PSⅡ was greater than that of the donor side, which can be proved by the bigger increase ofJandIthanKin three cotton genotypes. Among those genotypes, ‘DP99B’ had the biggest increase ofK, ‘Baimian5’ had the biggest increase ofJ, ‘Baimian1’ had the biggest increase ofI(Fig. 2 and Fig. 3).

    4 Conclusion

    BAKER N R, ROSENQVIST E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities[J]. Journal of Experimental Botany, 55(403): 1607–1621

    BAKER N R. 2008. Chlorophyll fluorescence: a probe of photosynthesis[J]. Annual Review of Plant Biology, 59: 89–113

    BOUREIMA S, OUKARROUM A, DIOUF M, et al. 2012. Screening for drought tolerance in mutant germplasm of sesame () probing by chlorophyll a fluorescence[J]. Environmental and Experimental Botany, 81: 37–43

    BROUDER S M, CASSMAN K G. 1990. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil[J]. Field Crops Research, 23(3/4): 187–203

    CHEN S G, YANG J, ZHANG M S, et al. 2016. Classification and characteristics of heat tolerance inpopulations using fast chlorophyll a fluorescence rise O-J-I-P[J]. Environmental and Experimental Botany, 122: 126–140

    CHEN Y Z, DONG H Z. 2016. Mechanisms and regulation of senescence and maturity performance in cotton[J]. Field Crops Research, 189: 1–9

    CHEN Y Z, KONG X Q, DONG H Z. 2018. Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton[J]. Field Crops Research, 216: 10–21

    DEELL J R, VAN KOOTEN O, PRANGE R K, et al. 1999. Applications of chlorophyll ?uorescence techniques in postharvest physiology[J]. Horticultural Reviews, 23: 69–107

    DONG H Z, LI W J, TANG W, et al. 2006. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 98(2/3): 106–115

    DONG H Z, LI W J, TANG W, et al. 2005. Research progress in physiological premature senescence in cotton[J]. Acta Gossypii Sinica, 17(1): 56–60

    FALQUETO A R, CASSOL D, MAGALH ES JUNIOR A M M, et al. 2009. Physiological analysis of leaf senescence of two rice cultivars with different yield potential[J]. Pesquisa Agropecuária Brasileira, 44: 695–700

    GOLTSEV V N, KALAJI H M, PAUNOV M, et al. 2016. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus[J]. Russian Journal of Plant Physiology, 63(6): 869–893

    GOVINDJEE, PAPAGEORGIOU G. 1971. Chlorophyll fluorescence and photosynthesis: fluorescence transients[M]//Photophysiology. Amsterdam: Elsevier.

    GREGERSEN P L, HOLM P B, KRUPINSKA K. 2008. Leaf senescence and nutrient remobilisation in barley and wheat[J]. Plant Biology: Stuttgart, Germany, 10(1): 37–49

    GROVER A, MOHANTY P. 1993. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts[M]//ABROL Y P. Photosynthesis: Photoreactions to Plant Productivity. New Delhi: Springer Science+Business Media Dordrecht, 225–255

    GROVER A, SABAT S C, MOHANTY P. 1986. Effect of temperature on photosynthetic activities of senescing detached wheat leaves[J]. Plant and Cell Physiology, 27(1): 117–126

    GROVER A. 1993. How do senescing leaves lose photosynthetic activity? [J]. Current Science, 64: 226–234

    GUO Y, TAN J L. 2015. Recent advances in the application of chlorophylla fluorescence from photosystem Ⅱ[J]. Photochemistry and Photobiology, 91(1): 1–14

    Heerden P D R V, Tsimilli-Michael M, Kruger G H J, et al. 2003. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J]. Physiologia Plantarum, 117: 476–491

    HOLLAND V, KOLLER S, BRüGGEMANN W. 2014. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis[J]. Plant Biology: Stuttgart, Germany, 16(4): 801–808

    HU Z B, WANG S F, ZHANG X, et al. 2014. Differences of potassium efficiency and root responses to potassium deficiency between short-and long-season cotton genotypes[J]. Acta Agriculturae Boreali-Sinica, 29(5): 218–225

    IVANOV A G, HURRY V, SANE P V, et al. 2008. Reaction centre quenching of excess light energy and photoprotection of photosystem Ⅱ[J]. Journal of Plant Biology, 51(2): 85–96

    KALAJI H M, OUKARROUM A, ALEXANDROV V, et al. 2014. Identification of nutrient deficiency in maize and tomato plants bychlorophyll a fluorescence measurements[J]. Plant Physiology and Biochemistry, 81: 16–25

    KAUTSKY H, HIRSCH A. 1931. Neue versuche zur kohlens?ureassimilation[J]. Naturwissenschaften, 19(48): 964

    LAZáR D. 2015. Parameters of photosynthetic energy partitioning[J]. Journal of Plant Physiology, 175: 131–147

    LIM P O, KIM H J, GIL NAM H. 2007. Leaf senescence[J]. Annual Review of Plant Biology, 58(1): 115–136

    LU Q T, LU C M, ZHANG J H, et al. 2002. Photosynthesis and chlorophyllafluorescence during flag leaf senescence of field-grown wheat plants[J]. Journal of Plant Physiology, 159(11): 1173–1178

    Papageorgiou G. 2013. Chlorophyll ?uorescence and photosynthesis: ?uorescence transients[J]. Photophysiology, 1

    PAUNOV M, KOLEVA L, VASSILEV A, et al. 2018. Effects of differentmetals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat[J]. International Journal of Molecular Sciences, 19: 787

    POLLASTRINI M, HOLLAND V, BRüGGEMANN W, et al. 2014. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology[J]. Plant Biology: Stuttgart, Germany, 16(2): 323–331

    RAJCAN I, DWYER L M, TOLLENAAR M. 1999. Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence[J]. Field Crops Research, 63(1): 13–17

    RAJCAN I, TOLLENAAR M. 1999. Source: sink ratio and leaf senescence in maize: Ⅰ. Dry matter accumulation and partitioning during grain filling[J]. Field Crops Research, 60(3): 245–253

    RAJCAN I, TOLLENAAR M. 1999. Source: sink ratio and leaf senescence in maize: Ⅱ. Nitrogen metabolism during grain filling[J]. Field Crops Research, 60(3): 255–265

    RIPLEY B S, REDFERN S P, DAMES J. 2004. Quantification of the photosynthetic performance of phosphorus-deficientby means of chlorophyll-a fluorescence kinetics[J]. South African Journal of Science, 100(11/12): 615–618

    SMART C M. 1994. Gene expression during leaf senescence[J]. New Phytologist, 126(3): 419–448

    STRASSER B J, STRASSER R J. 1995. Measuring fast fluorescence transients to address environmental questions: the JIP-test[M]//Photosynthesis: from Light to Biosphere. Dordrecht: Springer Netherlands, 4869–4872

    STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. 2004. Analysis of the chlorophyll a fluorescence transient[M]// Chlorophyll a Fluorescence. Dordrecht: Springer Netherlands, 321–362

    TANG G, LI X, LIN L, et al. 2015. Combined effects of girdling and leaf removal on fluorescence characteristic ofleaf senescence[J]. Plant Biology, 17(5): 980–989

    TSIMILLI-MICHAEL M, STRASSER R J. 2008. In vivo assessment of stress impact on plant’s vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants[M]//Mycorrhiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 679–703

    URBANO BRON I, VASCONCELOS RIBEIRO R, AZZOLINI M, et al. 2004. Chlorophyll fluorescence as a tool to evaluate the ripening of ‘Golden’fruit[J]. Postharvest Biology and Technology, 33(2): 163–173

    VAN HEERDEN P D, TSIMILLI-MICHAEL M, KRüGER G H, et al. 2003. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J]. Physiologia Plantarum, 117(4): 476–491

    WANG S F, XUE H Y, ZHANG Z Y, et al. 2020. Coordination of root growth and leaf senescence in cotton[J]. Acta Agronomica Sinica, 46(1): 93–101

    WANG Y W, XU C, LV C F, et al. 2016. Chlorophyll a fluorescence analysis of high-yield rice (L.) LYPJ during leaf senescence[J]. Photosynthetica, 54(3): 422–429

    WANG Y W, ZHANG J J, YU J, et al. 2014. Photosynthetic changes of flag leaves during senescence stage in super high-yield hybrid rice LYPJ grown in field condition[J]. Plant Physiology and Biochemistry, 82: 194–201

    WENG X Y, XU H X, JIANG D A. 2005. Characteristics of gas exchange, chlorophyll fluorescence and expression of key enzymes in photosynthesis during leaf senescence in rice plant[J]. Journal of Integrative Plant Biology, 47: 560–566

    WINGLER A, MARèS M, POURTAU N. 2004. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence[J]. New Phytologist, 161(3): 781–789

    WOOLHOUSE H. 1987. Leaf senescence[M]//SMITH H, GRIERSON D. The Biology of Plant Development. Oxford: Blackwell Scientific Publications, 256–284

    WRIGHT P R. 1999. Premature senescence of cotton (L.) — Predominantly a potassium disorder caused by an imbalance of source and sink[J]. Plant and Soil, 211(2): 231–239

    YUSUF M A, KUMAR D, RAJWANSHI R, et al. 2010. Overexpression of gamma-tocopherol methyl transferase gene in transgenicplants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements[J]. Biochimica et Biophysica Acta, 1797(8): 1428–1438

    ZHANG Z Y, TIAN X L, DUAN L S, et al. 2007. Differential responses of conventional and bt-transgenic cotton to potassium deficiency[J]. Journal of Plant Nutrition, 30(5): 659–670

    ?IV?áK M, BRESTI? M, OL?OVSKá K, et al. 2008. Performance index as a sensitive indicator of water stress inL[J]. Plant, Soil and Environment, 54(4): 133–139

    基于快速葉綠素?zé)晒鈪?shù)的不同基因型棉花葉片衰老研究*

    薛惠云, 王素芳, 張 新, 張志勇**

    (河南科技學(xué)院/河南省現(xiàn)代生物育種協(xié)同創(chuàng)新中心/河南省棉麥分子生態(tài)和種質(zhì)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室 新鄉(xiāng) 453003)

    棉花; 葉片衰老; 葉綠素?zé)晒? 光系統(tǒng)Ⅱ(PSⅡ); 快速葉綠素?zé)晒鈪?shù)

    10.13930/j.cnki.cjea.200888

    XUE H Y, WANG S F, ZHANG X, ZHANG Z Y. The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 870?879

    S562

    *This study was supported by the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN023) and the National Natural Science Foundation of China (31571600, 31271648).

    , E-mail: z_zy123@126.com

    Nov. 17, 2020;

    Feb. 20, 2021

    * 河南省高校科技創(chuàng)新團(tuán)隊(duì)支持計(jì)劃項(xiàng)目(21IRTSTHN023)和國(guó)家自然科學(xué)基金項(xiàng)目(31571600, 31271648)資助

    張志勇, 主要研究方向?yàn)樽魑镌耘嗌怼-mail: z_zy123@126.com

    薛惠云, 主要研究方向?yàn)樽魑镌耘嗌?。E-mail: xuehy8310@163.com

    2020-11-17

    2021-02-20

    猜你喜歡
    作物栽培張志勇生理
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會(huì)再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    中國(guó)染料作物栽培史
    作物栽培科學(xué)在農(nóng)業(yè)生產(chǎn)中的應(yīng)用初探
    打破生理“平衡”
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    基于BP神經(jīng)網(wǎng)絡(luò)的旋轉(zhuǎn)血泵生理控制
    基于新技術(shù)的作物栽培學(xué)研究
    媽媽們產(chǎn)后的生理煩惱
    Coco薇(2017年5期)2017-06-05 13:03:24
    制服丝袜香蕉在线| 久久99热这里只频精品6学生| 亚洲精品成人av观看孕妇| 欧美精品一区二区大全| 亚洲精品成人av观看孕妇| 一级片'在线观看视频| 亚洲精品美女久久av网站| 夫妻午夜视频| 欧美日本中文国产一区发布| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看| 亚洲国产最新在线播放| 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 免费高清在线观看日韩| 久久 成人 亚洲| 最近中文字幕2019免费版| 亚洲欧美精品综合一区二区三区| 极品人妻少妇av视频| 永久免费av网站大全| 欧美激情 高清一区二区三区| 国产成人欧美| 午夜91福利影院| 一级片'在线观看视频| 成人手机av| 国产熟女欧美一区二区| 不卡视频在线观看欧美| 国产免费又黄又爽又色| 国产爽快片一区二区三区| 9191精品国产免费久久| 综合色丁香网| 一级毛片电影观看| 日韩不卡一区二区三区视频在线| 亚洲人成77777在线视频| 亚洲精品美女久久av网站| 精品亚洲成国产av| 青春草国产在线视频| av不卡在线播放| 久久影院123| 亚洲精品乱久久久久久| 色婷婷av一区二区三区视频| 日本午夜av视频| a级毛片在线看网站| 亚洲国产欧美一区二区综合| 不卡视频在线观看欧美| 久久婷婷青草| 日日啪夜夜爽| 美女视频免费永久观看网站| 久久国产亚洲av麻豆专区| 久久久精品94久久精品| 国产男人的电影天堂91| 色吧在线观看| 成人国语在线视频| 欧美日韩一级在线毛片| 只有这里有精品99| 男的添女的下面高潮视频| 亚洲成色77777| 亚洲成色77777| 国产成人精品在线电影| 伦理电影大哥的女人| 亚洲在久久综合| 亚洲在久久综合| 亚洲人成网站在线观看播放| 国产一卡二卡三卡精品 | 日韩人妻精品一区2区三区| 亚洲av日韩精品久久久久久密 | 欧美日韩亚洲综合一区二区三区_| 人人澡人人妻人| 叶爱在线成人免费视频播放| 亚洲精品美女久久久久99蜜臀 | 国产一区有黄有色的免费视频| 国产爽快片一区二区三区| 国产精品一二三区在线看| 精品国产一区二区三区四区第35| 日本欧美国产在线视频| 免费在线观看视频国产中文字幕亚洲 | 天天添夜夜摸| 一本一本久久a久久精品综合妖精| 国产av一区二区精品久久| 精品人妻一区二区三区麻豆| 亚洲精品国产av蜜桃| 飞空精品影院首页| 国产欧美日韩一区二区三区在线| 蜜桃国产av成人99| 国产精品一二三区在线看| 秋霞在线观看毛片| 国产精品国产三级国产专区5o| 亚洲欧美精品综合一区二区三区| 日本av手机在线免费观看| av又黄又爽大尺度在线免费看| 七月丁香在线播放| 国产成人免费观看mmmm| 国产欧美日韩综合在线一区二区| 国产黄频视频在线观看| 交换朋友夫妻互换小说| 亚洲一码二码三码区别大吗| 不卡视频在线观看欧美| 国产成人系列免费观看| 男女午夜视频在线观看| 91成人精品电影| 亚洲伊人色综图| 日日啪夜夜爽| 亚洲专区中文字幕在线 | 大香蕉久久网| 久久久国产精品麻豆| 性高湖久久久久久久久免费观看| 国产成人午夜福利电影在线观看| 国产亚洲av片在线观看秒播厂| 黑人巨大精品欧美一区二区蜜桃| 欧美亚洲日本最大视频资源| 蜜桃国产av成人99| 美女视频免费永久观看网站| 国产精品蜜桃在线观看| 亚洲欧美日韩另类电影网站| 日韩 亚洲 欧美在线| 国产精品国产三级国产专区5o| 久久人人爽人人片av| 少妇人妻精品综合一区二区| 亚洲精品成人av观看孕妇| 激情视频va一区二区三区| 国产精品久久久久久精品古装| 国产精品99久久99久久久不卡 | 国产高清不卡午夜福利| 国产av码专区亚洲av| 成人亚洲欧美一区二区av| 国产精品久久久久久人妻精品电影 | 一区福利在线观看| 人妻 亚洲 视频| 少妇被粗大的猛进出69影院| 国产伦理片在线播放av一区| 人人妻人人爽人人添夜夜欢视频| 叶爱在线成人免费视频播放| 午夜日本视频在线| 91aial.com中文字幕在线观看| 国产一区二区激情短视频 | 王馨瑶露胸无遮挡在线观看| 老司机深夜福利视频在线观看 | 18在线观看网站| av在线观看视频网站免费| 十八禁人妻一区二区| 欧美日韩视频精品一区| 欧美日韩一级在线毛片| 视频区图区小说| 制服诱惑二区| 日本wwww免费看| 爱豆传媒免费全集在线观看| 日本猛色少妇xxxxx猛交久久| 男女边吃奶边做爰视频| 久久影院123| 国精品久久久久久国模美| 毛片一级片免费看久久久久| 亚洲自偷自拍图片 自拍| 久久精品亚洲熟妇少妇任你| a 毛片基地| 亚洲欧美中文字幕日韩二区| 亚洲欧美中文字幕日韩二区| 亚洲欧美激情在线| 亚洲国产成人一精品久久久| 亚洲伊人色综图| 日韩 欧美 亚洲 中文字幕| 亚洲,欧美精品.| 女性生殖器流出的白浆| 五月开心婷婷网| 亚洲av日韩在线播放| 51午夜福利影视在线观看| 日韩av不卡免费在线播放| 国产97色在线日韩免费| 亚洲色图综合在线观看| 亚洲欧美中文字幕日韩二区| 熟妇人妻不卡中文字幕| 韩国精品一区二区三区| 国产日韩欧美在线精品| 嫩草影视91久久| 国产亚洲av片在线观看秒播厂| 另类亚洲欧美激情| 欧美激情极品国产一区二区三区| 最近中文字幕2019免费版| 国产精品久久久久久人妻精品电影 | 十八禁网站网址无遮挡| 国产探花极品一区二区| 欧美黑人欧美精品刺激| 大香蕉久久网| 久久婷婷青草| 亚洲欧美成人精品一区二区| 国产不卡av网站在线观看| 999久久久国产精品视频| 精品亚洲乱码少妇综合久久| 99九九在线精品视频| 老司机亚洲免费影院| 亚洲欧美日韩另类电影网站| 久久精品久久久久久久性| 久久久久久久大尺度免费视频| 老熟女久久久| 欧美黑人精品巨大| 欧美人与善性xxx| www.av在线官网国产| 大话2 男鬼变身卡| 欧美人与性动交α欧美精品济南到| 一区二区av电影网| 日韩一卡2卡3卡4卡2021年| 欧美少妇被猛烈插入视频| 黄色怎么调成土黄色| 国语对白做爰xxxⅹ性视频网站| 99热全是精品| 韩国精品一区二区三区| av在线老鸭窝| kizo精华| 国产有黄有色有爽视频| 汤姆久久久久久久影院中文字幕| 日韩伦理黄色片| 成人影院久久| netflix在线观看网站| 男人爽女人下面视频在线观看| 超碰97精品在线观看| 伊人久久国产一区二区| 一个人免费看片子| 国产在线视频一区二区| 电影成人av| 波多野结衣一区麻豆| 国产97色在线日韩免费| 国产精品一区二区在线不卡| 啦啦啦在线免费观看视频4| 女性被躁到高潮视频| 青春草国产在线视频| 国产精品久久久久久久久免| 99久久人妻综合| 十八禁网站网址无遮挡| 成人毛片60女人毛片免费| 看非洲黑人一级黄片| 可以免费在线观看a视频的电影网站 | 亚洲,一卡二卡三卡| av不卡在线播放| 一级a爱视频在线免费观看| 久久人人97超碰香蕉20202| 男女无遮挡免费网站观看| 国产精品.久久久| av.在线天堂| 哪个播放器可以免费观看大片| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品欧美亚洲77777| 日本爱情动作片www.在线观看| 嫩草影院入口| 亚洲五月色婷婷综合| 97在线人人人人妻| 午夜福利一区二区在线看| 女性生殖器流出的白浆| 一级,二级,三级黄色视频| 欧美人与性动交α欧美精品济南到| 中国三级夫妇交换| 黑人欧美特级aaaaaa片| 王馨瑶露胸无遮挡在线观看| 超碰97精品在线观看| 亚洲精品一二三| 精品国产一区二区三区久久久樱花| 日韩大码丰满熟妇| 亚洲av成人精品一二三区| 久久影院123| 婷婷色综合www| 久久久久久人人人人人| 午夜福利一区二区在线看| 欧美激情高清一区二区三区 | 五月天丁香电影| 精品亚洲乱码少妇综合久久| 成人亚洲精品一区在线观看| 91aial.com中文字幕在线观看| svipshipincom国产片| 欧美人与性动交α欧美软件| 国产精品久久久久久久久免| 久久天堂一区二区三区四区| 成人毛片60女人毛片免费| 久久99一区二区三区| 大陆偷拍与自拍| 永久免费av网站大全| 欧美精品一区二区免费开放| 亚洲国产精品一区三区| 一本久久精品| 悠悠久久av| 在线精品无人区一区二区三| 永久免费av网站大全| 最近最新中文字幕免费大全7| 9191精品国产免费久久| 精品亚洲乱码少妇综合久久| 久久女婷五月综合色啪小说| 一区在线观看完整版| 亚洲,一卡二卡三卡| 晚上一个人看的免费电影| 捣出白浆h1v1| 日本色播在线视频| 亚洲情色 制服丝袜| 国产无遮挡羞羞视频在线观看| 深夜精品福利| 制服诱惑二区| 人人妻人人添人人爽欧美一区卜| 亚洲熟女毛片儿| 美女午夜性视频免费| 两个人免费观看高清视频| 波野结衣二区三区在线| 久久久久精品人妻al黑| 免费女性裸体啪啪无遮挡网站| 免费不卡黄色视频| 多毛熟女@视频| 中文字幕高清在线视频| 亚洲自偷自拍图片 自拍| 丝袜在线中文字幕| 国产日韩欧美亚洲二区| 色婷婷久久久亚洲欧美| 性色av一级| 国产亚洲精品第一综合不卡| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久天躁狠狠躁夜夜2o2o | 国产精品秋霞免费鲁丝片| 各种免费的搞黄视频| 久久热在线av| 免费观看性生交大片5| 国产在视频线精品| 丁香六月天网| 国产伦理片在线播放av一区| 亚洲国产欧美一区二区综合| 青草久久国产| 91老司机精品| 夜夜骑夜夜射夜夜干| 欧美亚洲日本最大视频资源| 丝袜喷水一区| 亚洲欧美成人精品一区二区| 国产毛片在线视频| 女性生殖器流出的白浆| 这个男人来自地球电影免费观看 | 中文字幕av电影在线播放| 人妻人人澡人人爽人人| 精品国产超薄肉色丝袜足j| 在线观看一区二区三区激情| 日韩精品免费视频一区二区三区| 黑丝袜美女国产一区| 亚洲一区二区三区欧美精品| 青青草视频在线视频观看| 亚洲色图综合在线观看| 中文字幕av电影在线播放| 久久久久久久国产电影| 久久久欧美国产精品| 久久女婷五月综合色啪小说| av在线观看视频网站免费| 免费久久久久久久精品成人欧美视频| xxxhd国产人妻xxx| 亚洲情色 制服丝袜| 一级毛片电影观看| 国产成人av激情在线播放| 热99国产精品久久久久久7| 麻豆精品久久久久久蜜桃| 另类亚洲欧美激情| 免费女性裸体啪啪无遮挡网站| 日本av免费视频播放| 大片电影免费在线观看免费| 五月天丁香电影| 亚洲伊人色综图| 国产在线一区二区三区精| 日韩视频在线欧美| 国产淫语在线视频| 国产成人精品久久久久久| 久久天躁狠狠躁夜夜2o2o | 亚洲欧美中文字幕日韩二区| 午夜免费观看性视频| 岛国毛片在线播放| 性少妇av在线| 青春草亚洲视频在线观看| 超碰97精品在线观看| 赤兔流量卡办理| 国产高清不卡午夜福利| 国产精品偷伦视频观看了| 可以免费在线观看a视频的电影网站 | 国产一区二区 视频在线| 亚洲国产精品一区三区| 欧美 日韩 精品 国产| 国产一卡二卡三卡精品 | 久久久欧美国产精品| 亚洲成色77777| 中国三级夫妇交换| 日日爽夜夜爽网站| 妹子高潮喷水视频| 一区二区三区激情视频| 欧美老熟妇乱子伦牲交| 亚洲精品,欧美精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品国产精品| 美女高潮到喷水免费观看| 天天躁夜夜躁狠狠久久av| 91老司机精品| 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 天天躁夜夜躁狠狠久久av| 国产一区亚洲一区在线观看| 国产高清国产精品国产三级| 啦啦啦视频在线资源免费观看| 999精品在线视频| 青春草视频在线免费观看| 久久国产精品大桥未久av| 超色免费av| 日韩成人av中文字幕在线观看| 最近的中文字幕免费完整| 国产深夜福利视频在线观看| 人妻一区二区av| 你懂的网址亚洲精品在线观看| 成人黄色视频免费在线看| 国产激情久久老熟女| 黄色 视频免费看| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 可以免费在线观看a视频的电影网站 | 精品国产一区二区三区久久久樱花| 777米奇影视久久| av天堂久久9| 777久久人妻少妇嫩草av网站| 中文字幕亚洲精品专区| 久久婷婷青草| 免费观看人在逋| 日韩不卡一区二区三区视频在线| 18禁裸乳无遮挡动漫免费视频| 国产免费一区二区三区四区乱码| 国产精品99久久99久久久不卡 | 国产免费现黄频在线看| 如日韩欧美国产精品一区二区三区| 美女福利国产在线| 999精品在线视频| 国产精品av久久久久免费| 一本色道久久久久久精品综合| 在线免费观看不下载黄p国产| 国产色婷婷99| 成人亚洲欧美一区二区av| 免费高清在线观看视频在线观看| 亚洲天堂av无毛| 欧美中文综合在线视频| 99久久综合免费| 日韩制服丝袜自拍偷拍| 久久精品国产亚洲av涩爱| 精品福利永久在线观看| 久久久精品94久久精品| 国产老妇伦熟女老妇高清| 波多野结衣av一区二区av| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图| 免费在线观看视频国产中文字幕亚洲 | 欧美久久黑人一区二区| 一个人免费看片子| 男人爽女人下面视频在线观看| 欧美97在线视频| 亚洲av日韩精品久久久久久密 | 日日摸夜夜添夜夜爱| 一级爰片在线观看| 黄频高清免费视频| av网站在线播放免费| 亚洲国产精品成人久久小说| 精品国产一区二区三区四区第35| 两性夫妻黄色片| 免费观看性生交大片5| 婷婷成人精品国产| 免费在线观看完整版高清| av网站免费在线观看视频| 啦啦啦视频在线资源免费观看| 成年av动漫网址| 国产男女超爽视频在线观看| 欧美日韩视频精品一区| 欧美国产精品一级二级三级| 国产老妇伦熟女老妇高清| 日本91视频免费播放| 国产成人精品久久久久久| 最近中文字幕高清免费大全6| 黑人巨大精品欧美一区二区蜜桃| 欧美激情 高清一区二区三区| 最新在线观看一区二区三区 | 99国产精品免费福利视频| 夫妻午夜视频| 欧美精品亚洲一区二区| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 成年人午夜在线观看视频| 欧美精品高潮呻吟av久久| 亚洲成人av在线免费| 伦理电影免费视频| av在线老鸭窝| 交换朋友夫妻互换小说| 极品人妻少妇av视频| netflix在线观看网站| 久久久国产欧美日韩av| 妹子高潮喷水视频| 国产探花极品一区二区| 一边亲一边摸免费视频| 国产乱来视频区| 欧美在线一区亚洲| 男女边吃奶边做爰视频| 国产在线一区二区三区精| 国产精品久久久久久人妻精品电影 | 午夜91福利影院| 另类亚洲欧美激情| 日本av免费视频播放| 亚洲成人手机| 欧美人与善性xxx| 91aial.com中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 一级片'在线观看视频| 99热国产这里只有精品6| 国产男女超爽视频在线观看| 日本欧美视频一区| 成年人午夜在线观看视频| 国产男女内射视频| 亚洲人成电影观看| av.在线天堂| 日韩一卡2卡3卡4卡2021年| 在线观看免费高清a一片| 亚洲伊人色综图| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久 | 最近最新中文字幕免费大全7| 亚洲欧美清纯卡通| 国产精品久久久久久久久免| 1024视频免费在线观看| 国产免费视频播放在线视频| 国产精品一二三区在线看| av有码第一页| 亚洲av男天堂| 无限看片的www在线观看| 男女床上黄色一级片免费看| 美女主播在线视频| 免费在线观看视频国产中文字幕亚洲 | 国产成人欧美| 亚洲精品日韩在线中文字幕| 国产精品 欧美亚洲| 国产精品一二三区在线看| 制服丝袜香蕉在线| 丰满乱子伦码专区| 曰老女人黄片| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 国产野战对白在线观看| 男女边摸边吃奶| 亚洲欧美一区二区三区国产| 看免费成人av毛片| 黑人猛操日本美女一级片| 中文乱码字字幕精品一区二区三区| 宅男免费午夜| 亚洲欧洲精品一区二区精品久久久 | 亚洲,欧美精品.| 亚洲精品一区蜜桃| 国产成人精品久久二区二区91 | 午夜日韩欧美国产| 国产一区有黄有色的免费视频| 国产一区二区在线观看av| 丝袜在线中文字幕| 中文字幕人妻丝袜制服| 国产精品女同一区二区软件| 国产无遮挡羞羞视频在线观看| 伊人亚洲综合成人网| av在线播放精品| 亚洲精品一二三| 成人国产麻豆网| 天堂俺去俺来也www色官网| 丝袜美腿诱惑在线| 在线观看国产h片| 一区二区日韩欧美中文字幕| 欧美日韩成人在线一区二区| 99九九在线精品视频| 五月开心婷婷网| 多毛熟女@视频| 国产xxxxx性猛交| 亚洲精品,欧美精品| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| e午夜精品久久久久久久| 另类精品久久| 欧美亚洲 丝袜 人妻 在线| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 久久ye,这里只有精品| 在线观看免费视频网站a站| 91aial.com中文字幕在线观看| 另类精品久久| 久久性视频一级片| 国产精品久久久久久精品电影小说| 国产福利在线免费观看视频| 久久午夜综合久久蜜桃| 波多野结衣av一区二区av| 亚洲精品乱久久久久久| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 咕卡用的链子| 国产精品香港三级国产av潘金莲 | 久久精品国产a三级三级三级| www.av在线官网国产| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 久久久精品94久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品国产亚洲精品| 亚洲欧美精品综合一区二区三区| 不卡视频在线观看欧美| xxxhd国产人妻xxx| 久久毛片免费看一区二区三区| 国产亚洲午夜精品一区二区久久| av线在线观看网站| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| 午夜福利免费观看在线| netflix在线观看网站| 中文字幕人妻丝袜一区二区 | 亚洲三区欧美一区| 中文字幕另类日韩欧美亚洲嫩草| 夜夜骑夜夜射夜夜干| 黄色视频不卡| 大片免费播放器 马上看| 两个人免费观看高清视频| 欧美日韩亚洲综合一区二区三区_| 欧美日韩国产mv在线观看视频| 国产一卡二卡三卡精品 | 亚洲美女视频黄频| 国产精品蜜桃在线观看| 亚洲中文av在线|