陳慧妍, 沙之敏, 吳富鈞,2, 方凱凱, 徐春花, 楊曉磊, 朱元宏, 曹林奎**
稻蛙共作對水稻-紫云英輪作系統(tǒng)氨揮發(fā)的影響*
陳慧妍1, 沙之敏1, 吳富鈞1,2, 方凱凱1, 徐春花3, 楊曉磊3, 朱元宏4, 曹林奎1**
(1. 上海交通大學(xué)農(nóng)業(yè)與生物學(xué)院 上海 200240; 2. 福建農(nóng)林大學(xué)農(nóng)學(xué)院 福州 350002; 3. 上海市農(nóng)業(yè)技術(shù)推廣服務(wù)中心 上海 201103; 4. 上海青浦現(xiàn)代農(nóng)業(yè)園區(qū)發(fā)展有限公司 上海 201717)
氨揮發(fā)是稻田氮素?fù)p失的主要途徑之一, 探究稻田生態(tài)種養(yǎng)模式對稻田土壤氨揮發(fā)產(chǎn)生的影響, 可為該模式的生態(tài)環(huán)境效益評價(jià)提供理論依據(jù)。為評估稻蛙共作模式對水稻-紫云英輪作系統(tǒng)氨揮發(fā)的影響, 通過開展田間小區(qū)試驗(yàn), 采用密閉式間歇抽氣法采集氨氣, 對水稻-紫云英輪作系統(tǒng)的土壤氨揮發(fā)及其影響因素進(jìn)行研究。試驗(yàn)共設(shè)置3個(gè)處理: 空白對照(CK, 不施肥, 不放蛙)、常規(guī)水稻種植模式(CR, 施化肥, 不放蛙)、稻蛙共作模式(RF, 施化肥, 放蛙)。結(jié)果表明: 稻蛙共作模式水稻季氨揮發(fā)累積量為47.02 kg?hm?2, 占當(dāng)季施氮量12.9%; 其后茬紫云英季的氨揮發(fā)累積量為16.27 kg?hm?2; 全年輪作系統(tǒng)的氨揮發(fā)累積量為63.29 kg?hm?2,較常規(guī)水稻種植模式的氨揮發(fā)累積量降低15.3%。稻蛙共作模式全年水稻-紫云英輪作系統(tǒng)的氨揮發(fā)累積量占施氮量的比例為17.4%, 顯著低于常規(guī)水稻種植模式所占比例(20.5%)。水稻田面水的銨態(tài)氮濃度是影響水稻季氨揮發(fā)的主要因素, 水稻田面水pH、水溫、氣溫、風(fēng)速等因素的影響次之, 隨溫度上升, 水稻田面水銨態(tài)氮濃度對氨揮發(fā)速率的影響逐漸增大。放蛙對水稻產(chǎn)量、水稻產(chǎn)量構(gòu)成因素、氮肥利用效率及后茬作物紫云英產(chǎn)量的影響不顯著。綜上所述, 稻蛙共作模式在水稻-紫云英輪作系統(tǒng)中具備一定的氨減排潛力, 但該模式對稻田氨揮發(fā)影響的長期效應(yīng)及其影響機(jī)理仍需進(jìn)一步研究。
水稻-紫云英輪作; 稻蛙共作; 氨揮發(fā); 產(chǎn)量
氨(NH3)是大氣中一種主要的堿性痕量氣體, 也是一種主要的大氣污染物, 極易與空氣中的酸性氣體反應(yīng)生成PM2.5的前體物質(zhì)影響空氣質(zhì)量, 同時(shí)容易引起土壤酸化、水體富營養(yǎng)化等多種環(huán)境問題[1-2]。據(jù)報(bào)道, 我國每年的氨排放量約為14 Tg[3]。農(nóng)業(yè)是主要的氨排放來源, 占全球人為源氨排放量的90%, 其中由于農(nóng)田施肥導(dǎo)致的氨排放占農(nóng)業(yè)源氨排放量的40%[4]。與小麥()田等旱地相比, 水稻()田的高溫和淹水環(huán)境更有利于氨的揮發(fā)[5-6]。He等[7]研究表明稻田中施用的氮肥約有13.2%~47.0%通過氨揮發(fā)損失, 說明氨揮發(fā)是稻田氮素?fù)p失的主要途徑之一。影響氨揮發(fā)的因素有很多, 包括氮肥管理技術(shù)(如肥料類型、肥料用量和施肥方式)[8-9]、土壤理化性質(zhì)(如土壤pH和土壤類型)[10]、氣象因素(如溫度、降雨量和風(fēng)速)[11]、作物生育期等, 其中水稻田面水銨態(tài)氮濃度和pH是稻田氨揮發(fā)的直接影響因素。
稻蛙共作模式是一種有利于實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展的生態(tài)農(nóng)業(yè)模式。不少研究表明, 在稻田中引入蛙可以有效減少稻飛虱等水稻害蟲的種群數(shù)量, 并有利于改善土壤的養(yǎng)分狀況, 在一定程度上提高土壤微生物生物量和土壤脫氫酶、過氧化氫酶、酸性磷酸酶等多種土壤酶活性, 從而促進(jìn)水稻生長, 提高水稻結(jié)實(shí)率與籽粒產(chǎn)量[12-18]。此外, 稻蛙共作模式還具備降低溫室氣體CH4排放的潛力[19]。研究表明多種稻田生態(tài)種養(yǎng)模式具備影響稻田生態(tài)系統(tǒng)中養(yǎng)分利用和氮素循環(huán)的潛力。Gao等[20]和Xu等[21]研究表明, 稻鴨共作模式可以減少稻田氮素的滲漏損失, 并提高水稻的產(chǎn)量, 但其排泄向稻田中添加了氮和有機(jī)碳底物, 促進(jìn)了硝化和反硝化過程, 增加了N2O的排放。Frei等[22]研究表明, 稻魚共作模式中魚會(huì)消耗水稻田面水中的溶解氧, 降低水稻田面水pH, 減少N2O的排放。然而, Li等[23]研究表明, 稻鴨共作模式和稻魚共作模式在放鴨和放魚后均能降低稻田氨揮發(fā)。類似地, 在稻蟹共作模式中, 蟹的投入提高了表層土壤酶活性, 蟹投入后能少量降低稻田氨揮發(fā)并提高水稻的氮素積累量[24-25]。稻蛙共作模式在我國南方地區(qū)有較為廣泛的應(yīng)用, 與其他生態(tài)種養(yǎng)模式不同的是, 蛙是稻田中原生的兩棲動(dòng)物, 在稻田中引入蛙是一種更加生態(tài)和自然的水稻種植模式, 但關(guān)于該模式的氨揮發(fā)影響還鮮見報(bào)道。本文通過田間小區(qū)試驗(yàn), 比較稻蛙共作模式與常規(guī)水稻種植模式的稻田及全年水稻-紫云英()輪作系統(tǒng)的土壤氨揮發(fā)損失, 并比較氨揮發(fā)各影響因素的變化, 為評估稻蛙共作模式對生態(tài)環(huán)境的影響提供理論依據(jù)。
試驗(yàn)于2019年在上海市青浦現(xiàn)代農(nóng)業(yè)園區(qū)(121.03°E, 30.97°N)進(jìn)行。該地區(qū)屬于亞熱帶季風(fēng)氣候, 年平均氣溫15.5 ℃, 年平均降水量1056 mm, 年平均日照時(shí)數(shù)1960.70 h, 無霜期約247 d。2019年水稻生長期的日均氣溫、降雨量和風(fēng)速如圖1所示。本試驗(yàn)區(qū)的土壤類型為湖沼相沉積物起源的青紫泥水稻土, 試驗(yàn)前土壤基礎(chǔ)理化性質(zhì)為全氮1.70 g?kg?1, 全磷0.95 g?kg?1, 速效鉀0.11 g?kg?1, 有機(jī)質(zhì)29.60 g?kg?1, pH為7.02。
供試水稻品種為‘青角307’, 供試蛙種為虎紋蛙(), 肥料為高塔尿基復(fù)合肥(28% N, 6% P2O5, 6% K2O)、尿素(46% N)、過磷酸鈣(12% P2O5)和氯化鉀(60% K2O)。
本試驗(yàn)設(shè)置3種處理: 空白對照(CK), 水稻-紫云英輪作, 水稻季不施肥, 不放蛙; 常規(guī)水稻種植模式(CR), 水稻-紫云英輪作, 水稻季施化肥, 不放蛙; 稻蛙共作模式(RF), 稻蛙共作-紫云英輪作, 水稻季施化肥, 放蛙。每個(gè)處理設(shè)3個(gè)重復(fù), 共9個(gè)小區(qū), 隨機(jī)區(qū)組排列, 每個(gè)小區(qū)56 m2(7 m×8 m)。
每個(gè)小區(qū)有獨(dú)立的進(jìn)水口和排水口, 小區(qū)之間田埂用防滲膜包裹防止小區(qū)間的測滲, 稻蛙共作小區(qū)在田埂使用圍蛙網(wǎng)防止蛙逃逸, 并在圍蛙網(wǎng)田埂內(nèi)堆砌部分小土堆供蛙棲息, 整個(gè)試驗(yàn)田塊上方圍防鳥網(wǎng)避免蛙被天敵捕食。在稻季, CR與RF處理采用完全相同的施肥方案, 共分3次施入等量等比例化肥, N、P2O5、K2O總投入量分別為300.00 kg?hm?2、112.54 kg?hm?2和90.04 kg?hm?2,其中磷肥和鉀肥在基肥時(shí)一次性施入, 氮肥分別在6月19日施基肥, 7月6日第1次追肥, 7月25日第2次追肥, 具體氮肥施用量見表1。6月23日進(jìn)行人工插秧, 密度為16 cm株距×16 cm行距, 之后進(jìn)行人工拔草, 不使用化學(xué)農(nóng)藥。7月23日, 按7500只?hm?2蛙密度向稻蛙共作小區(qū)投放體重為20 g左右的虎紋蛙幼蛙。有研究[26]表明在自然狀態(tài)下田間昆蟲量可基本滿足每公頃900~9000只投蛙量的捕食需求, 故本研究在放蛙后5 d內(nèi)每天傍晚在田埂邊上投放少量蛙餌助其適應(yīng)田間環(huán)境, 隨后蛙自主捕食田間昆蟲, 不另外喂食飼料。通過觀察蛙在田間的存活情況, 及時(shí)補(bǔ)充適量蛙苗, 以保證蛙在田間持續(xù)的活動(dòng)影響。11月5日, 水稻人工收割, 投放的虎紋蛙不回收。在紫云英季, 3種處理的田間管理均相同, 10月18日以60 kg?hm?2的播種量撒播紫云英種子, 不施肥, 水稻收獲后在小區(qū)內(nèi)開十字溝疏水, 次年4月23日對紫云英翻耕還田, 水稻季投放的虎紋蛙不回收。
表1 水稻-紫云英輪作系統(tǒng)不同處理水稻季氮肥純氮施用量
1.4.1 NH3的采樣與測定
水稻季每次施肥后連續(xù)10 d采樣, 此后1周采樣1次; 紫云英季每2~4周采樣1次。每次采樣時(shí)間為7:00—9:00和15:00—17:00。NH3的采樣使用改進(jìn)的密閉室間歇抽氣法[27]。采樣裝置由真空泵、流量計(jì)、洗氣瓶、抽氣室和換氣桿等組成, 其中抽氣室為直徑20 cm、高30 cm、底部開放和頂部有兩個(gè)通氣孔的圓柱形有機(jī)玻璃罩。通過真空泵抽氣經(jīng)洗氣瓶內(nèi)的吸收液(100 mL 0.0005 mol?L?1H2SO4)吸收氨氣, 抽氣速率為15~20 L?min?1。采樣時(shí), 將抽氣室置于每個(gè)小區(qū)正中央?yún)^(qū)域, 在抽氣結(jié)束后, 將抽氣室從田面移開, 以保證蛙能在采樣點(diǎn)處進(jìn)行活動(dòng), 消除抽氣室內(nèi)外環(huán)境的影響。采回的吸收液使用靛酚藍(lán)分光光度法測定所吸收氨的含量。
1.4.2 其他樣品的采樣與測定
水稻季試驗(yàn)期間, 每次施肥后連續(xù)10 d上午8:00采集水稻田面水, 于冰箱保存至實(shí)驗(yàn)室分析。水稻收獲時(shí), 采用樣方法收割水稻, 風(fēng)干籽粒后稱重測定水稻產(chǎn)量。紫云英翻耕前, 采用樣方法收割紫云英地上部分, 風(fēng)干后稱重測定紫云英產(chǎn)量。
對不同處理的差異顯著性進(jìn)行單因素方差分析,采用LSD法進(jìn)行多重比較(<0.05), 采用逐步回歸分析氨揮發(fā)對各影響因素的響應(yīng), 各相關(guān)性采用回歸分析法。采用SPSS 25軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)和分析, 用Origin 9.1繪圖。
在水稻季, 各處理的氨揮發(fā)累積量為37.08~55.72 kg?hm?2, 其中CR和RF水稻季氨揮發(fā)累積量分別占當(dāng)季施氮量的15.3%和12.9%, RF比CR的水稻季氨揮發(fā)累積量降低15.6%, 但無顯著差異。在紫云英季, 各處理的氨揮發(fā)累積量為16.27~19.20 kg?hm?2, 均無顯著差異。全年水稻-紫云英輪作系統(tǒng)的氨揮發(fā)累積量為56.27~74.76 kg?hm?2, RF較CR的全年輪作系統(tǒng)氨揮發(fā)累積量降低15.3%, RF和CR全年輪作系統(tǒng)氨揮發(fā)累積量分別占施氮量的17.4%和20.5%, RF顯著低于CR(表2)。與CK相比, CR施肥顯著增加了稻田氨揮發(fā), 但RF全年氨揮發(fā)累積量與CK無顯著差異。這說明放蛙能在一定程度上減少氨揮發(fā), 盡管CR與RF的氨揮發(fā)累積量無顯著差異。
在水稻季, CR和RF在3次施肥后的氨揮發(fā)速率迅速升高, 在施肥后1~3 d內(nèi)達(dá)到峰值, CR和RF最高氨揮發(fā)速率峰值均在穗肥期間, 分別為3.97 kg?hm?2?d?1和3.10 kg?hm?2?d?1,隨后逐步下降, 除基肥外其余兩次追肥7 d后氨揮發(fā)速率降至與CK一致(圖2)。CR和RF的氨揮發(fā)損失率分別為5.1%和2.7%, RF的氨揮發(fā)損失率略低于CR, 但無顯著差異。在紫云英季氨揮發(fā)速率穩(wěn)定在0.30 kg?hm?2?d?1以內(nèi), 各處理動(dòng)態(tài)變化基本一致。
表2 水稻-紫云英輪作系統(tǒng)不同種植模式氨揮發(fā)累積量
各處理的含義見表1。不同小寫字母表示處理間在<0.05水平差異顯著。The meaning of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among treatments at<0.05 level.
各處理的含義見表1。The meaning of each treatment is shown in the table 1.
各處理的含義見表1。The meaning of each treatment is shown in the table 1.
各處理的水稻田面水pH變化范圍為6.97~8.27, CK、CR、RF水稻田面水的平均pH分別為7.43、7.37和7.41。在基肥和第1次追肥期間, 各處理水稻田面水pH的變化趨勢較為一致; 而在第2次追肥期間不施肥處理CK的水稻田面水pH略高于施肥處理CR和RF(圖3c)。在放蛙后, 稻蛙共作模式RF的水稻田面水pH略高于常規(guī)水稻種植模式CR, 但差異不顯著。
**表示在<0.01水平顯著相關(guān)。** denotes significant correlation at<0.01 level.
為進(jìn)一步分析氨揮發(fā)速率與水稻田面水pH的關(guān)系, 使用Growth模型分別擬合了水稻基肥期、第1次追肥期和第2次追肥期施肥后連續(xù)10 d的氨揮發(fā)速率與水稻田面水pH的關(guān)系(圖5)。3個(gè)時(shí)期的模型均通過顯著性檢驗(yàn)。在3個(gè)時(shí)期中, 第1次追肥期的模型擬合優(yōu)度最高, 該時(shí)期的模型說明當(dāng)田面水pH分別在7.00~7.50、7.50~8.00和8.00~8.50范圍內(nèi)時(shí), pH每增加0.5個(gè)單位, 氨揮發(fā)速率分別增加0.216 kg?hm?2?d?1、0.467 kg?hm?2·d?1和1.012 kg?hm?2?d?1(圖5b)。說明該階段隨著水稻田面水pH的逐漸增大, 稻田氨揮發(fā)速率也逐漸增大且增大的速率越來越高。
表3 稻田氨揮發(fā)速率與各影響因素的逐步回歸分析
常規(guī)水稻種植模式CR與稻蛙共作模式RF的水稻產(chǎn)量分別為8.33 t?hm?2和8.32 t?hm?2, 水稻氮素利用率分別為41.0%和35.3%。分別計(jì)算3種模式水稻單位產(chǎn)量的氨揮發(fā)累積排放量, RF的平均單位產(chǎn)量氨揮發(fā)累積排放量較CR降低16.2%, 但無顯著差異,這與各模式稻季氨揮發(fā)累積量的結(jié)果一致。3種模式的紫云英鮮重產(chǎn)量為38.53~44.23 t?hm?2, 風(fēng)干后測得紫云英生物量為5.48~6.57 t?hm?2, 均無顯著差異。各處理水稻的收獲指數(shù)為37.1%~41.9%, 分析不同模式水稻產(chǎn)量構(gòu)成因素及植株性狀, 施肥處理CR和RF較CK顯著增加了單位面積有效穗數(shù)和株高, 而CR與RF間各產(chǎn)量構(gòu)成因素?zé)o顯著差異(表4)。
表4 不同種植模式水稻-紫云英輪作系統(tǒng)產(chǎn)量和氮肥利用效率
各處理的含義見表1。同行不同小寫字母表示處理間差異顯著。The meaning of each treatment is shown in the table 1. Different lowercase letters in the same line mean significant differences at<0.05 level.
本研究中, 稻蛙共作模式的氨揮發(fā)累積量與常規(guī)水稻種植模式相比偏低, 其水稻氮素利用率與常規(guī)水稻種植模式相比也偏低, 盡管該偏低的結(jié)果無顯著差異。研究學(xué)者通常認(rèn)為較高氮素利用率的水稻更加具備減少稻田氮素?fù)p失的潛力, 但近年來Chen等[38]研究表明稻田氨揮發(fā)量與水稻氮素利用率兩者間并無直接相關(guān)關(guān)系, 稻田氨揮發(fā)量越低, 并不意味著水稻氮素利用率越高, 稻田生態(tài)系統(tǒng)中的氮素可能通過其他途徑損失。陳貴等[39]研究表明, 水稻在抽穗期之前的吸氮量超過全生育期吸氮量的80.0%, 推測較低氮素利用率的水稻可能在前期吸氮能力更強(qiáng), 施肥引起的氨揮發(fā)較低, 但在后期通過滲漏、硝化和反硝化等途徑引起的氮素?fù)p失量更大。有研究表明, 綠色稻蛙共作模式與有機(jī)稻蛙共作模式的滲漏水總氮濃度分別比常規(guī)水稻種植模式降低8.8%和18.0%, 但在相同施肥條件下稻蛙共作對稻田氮素滲漏損失的影響尚不清楚, 有待進(jìn)一步研究[40]。
盡管本研究稻田中蛙的投入直接降低稻田氨揮發(fā)的效果有限, 但稻蛙共作模式下生產(chǎn)的稻米品質(zhì)得到改善, 市場價(jià)格和市場需求可觀, 在提高生態(tài)效益的同時(shí)也提高了經(jīng)濟(jì)效益[41]。Lia等[42]通過錄像觀察發(fā)現(xiàn)稻田中褐飛虱的主要捕食者是蛙類, 蛙在稻田中起到最直接的作用是捕食水稻害蟲, 既加速了養(yǎng)分在稻田生態(tài)系統(tǒng)中的循環(huán), 又減少了化學(xué)農(nóng)藥的使用, 提高了水稻的品質(zhì)。然而, 稻蛙共作模式中蛙對稻田氮循環(huán)和土壤氨揮發(fā)的影響機(jī)理仍不清楚。采用長期定位研究, 設(shè)置不同的蛙投放密度, 結(jié)合盆栽試驗(yàn)分解研究蛙的擾動(dòng)與蛙的排泄等行為對稻田生態(tài)系統(tǒng)氮循環(huán)產(chǎn)生的作用, 有利于全面評估稻蛙共作模式對稻田生態(tài)系統(tǒng)的影響。
本研究采用密閉室間歇抽氣法測得稻蛙共作模式中水稻季氨揮發(fā)累積量為47.02 kg?hm?2, 占當(dāng)季施氮量12.9%, 其后茬紫云英季的氨揮發(fā)累積量為16.27 kg?hm?2, 全年輪作系統(tǒng)的氨揮發(fā)累積量為63.29 kg?hm?2。與常規(guī)水稻種植模式相比, 稻蛙共作模式全年氨揮發(fā)累積量降低了15.3%, 其占該年施氮量的比例17.4%顯著低于常規(guī)水稻種植模式所占比例20.5%。綜上所述, 稻蛙共作模式在水稻-紫云英輪作系統(tǒng)中具備一定的氨減排潛力, 但該模式對稻田氨揮發(fā)影響的長期效應(yīng)及其影響機(jī)理仍需進(jìn)一步研究。
[1] LIAN Z M, OUYANG W, HAO F H, et al. Changes in ferti-lizer categories significantly altered the estimates of ammonia volatilizations induced from increased synthetic fertilizer application to Chinese rice fields[J]. Agriculture, Ecosystems & Environment, 2018, 265: 112?122
[2] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008?1010
[3] HUANG X, SONG Y, LI M M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1030
[4] 王文林, 劉波, 韓睿明, 等. 農(nóng)業(yè)源氨排放影響因素研究進(jìn)展[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2016, 32(6): 870?878 WANG W L, LIU B, HAN R M, et al. Review of researches on factors affecting emission of ammonia from agriculture[J]. Journal of Ecology and Rural Environment, 2016, 32(6): 870–878
[5] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041–3046
[6] DONG Y B, WU Z, ZHANG X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research, 2019, 241: 107568
[7] HE T H, LIU D Y, YUAN J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture, Ecosystems & Environment, 2018, 264: 44–53
[8] XIA L L, LI X B, MA Q Q, et al. Simultaneous quantification of N2, NH3and N2O emissions from a flooded paddy field under different N fertilization regimes[J]. Global Change Biology, 2020, 26(4): 2292–2303
[9] LIU X D, CHEN L Y, HUA Z L, et al. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region[J]. Environmental Science and Pollution Research, 2020, 27(8): 8386–8394
[10] WEBB J, THORMAN R E, FERNANDA-ALLER M, et al. Emission factors for ammonia and nitrous oxide emissions following immediate manure incorporation on two contrasting soil types[J]. Atmospheric Environment, 2014, 82: 280–287
[11] LOURO A, SAWAMOTO T, CHADWICK D, et al. Effect of slurry and ammonium nitrate application on greenhouse gas fluxes of a grassland soil under atypical South West England weather conditions[J]. Agriculture, Ecosystems & Environment, 2013, 181: 1–11
[12] YI X M, YI K, FANG K K, et al. Microbial community structures and important associations between soil nutrients and the responses of specific taxa to rice-frog cultivation[J]. Frontiers in Microbiology, 2019, 10: 1752
[13] YI X M, YUAN J, ZHU Y H, et al. Comparison of the abundance and community structure of N-cycling bacteria in paddy rhizosphere soil under different rice cultivation patterns[J]. International Journal of Molecular Sciences, 2018, 19(12): 3772
[14] TENG Q, HU X F, LUO F, et al. Influences of introducing frogs in the paddy fields on soil properties and rice growth[J]. Journal of Soils and Sediments, 2016, 16(1): 51–61
[15] 林海雁, 黃倩霞, 邵紫依, 等. 養(yǎng)殖虎紋蛙稻田土壤酶活性及主要養(yǎng)分含量特征[J]. 核農(nóng)學(xué)報(bào), 2018, 32(4): 802–808 LIN H Y, HUANG Q X, SHAO Z Y, et al. Characterization of soil enzymatic activities and main nutrient contents in paddy field for eco-planting and breeding rice and frog[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(4): 802–808
[16] 郭文嘯, 趙琦, 朱元宏, 等. 蛙稻生態(tài)種養(yǎng)模式對土壤微生物特性的影響[J]. 江蘇農(nóng)業(yè)科學(xué), 2018, 46(5): 57–60 GUO W X, ZHAO Q, ZHU Y H, et al. Effect of frog and rice ecological farming model on soil microbial characteristics[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 57–60
[17] SHA Z M, CHU Q N, ZHAO Z, et al. Variations in nutrient and trace element composition of rice in an organic rice-frog coculture system[J]. Scientific Reports, 2017, 7(1): 15706
[18] 劉功朋, 張玉燭, 黃志農(nóng), 等. 水稻牛蛙生態(tài)種養(yǎng)對稻飛虱防效及水稻產(chǎn)量的影響[J]. 中國生物防治學(xué)報(bào), 2013, 29(2): 207–213 LIU G P, ZHANG Y Z, HUANG Z N, et al. Effects of rice-bullfrog mixed cultivation on rice planthoppers and rice yield[J]. Chinese Journal of Biological Control, 2013, 29(2): 207–213
[19] FANG K K, YI X M, DAI W, et al. Effects of integrated rice-frog farming on paddy field greenhouse gas emissions[J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1930
[20] GAO H, SHA Z M, WANG F, et al. Nitrogen leakage in a rice-duck co-culture system with different fertilizer treatments in China[J]. Science of The Total Environment, 2019, 686: 555–567
[21] XU G C, LIU X, WANG Q S, et al. Integrated rice-duck farming mitigates the global warming potential in rice season[J]. Science of The Total Environment, 2017, 575: 58–66
[22] FREI M, BECKER K. Integrated rice-fish production and methane emission under greenhouse conditions[J]. Agriculture, Ecosystems & Environment, 2005, 107(1): 51–56
[23] LI C F, CAO C G, WANG J P, et al. Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J]. Plant and Soil, 2008, 307(1/2): 207–217
[24] 羅喜秀, 李成芳, 陳燦, 等. 稻蟹共作模式生態(tài)效應(yīng)研究進(jìn)展[J]. 作物研究, 2019, 33(5): 352–355 LUO X X, LI C F, CHEN C, et al. Research status of ecological effect under the co-production mode of rice and crabs[J]. Crop Research, 2019, 33(5): 352–355
[25] 王昂, 馬旭洲, 于永清, 等. 北方稻蟹共作系統(tǒng)氨揮發(fā)損失的研究[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2018, 30(4): 622–631 WANG A, MA X Z, YU Y Q, et al. Ammonia volatilization from rice-crab culture systems in northern China[J]. Acta Agriculturae Zhejiangensis, 2018, 30(4): 622–631
[26] 劉功朋. 不同蛙類及密度對水稻主要害蟲、天敵及其產(chǎn)量的影響[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2013: 11–16 LIU G P. Effects of different frog species and densities on main insect pests, natural enemies and rice yield[D]. Changsha: Hunan Agricultural University, 2013: 11–16
[27] KISSEL D E, BREWER B L, ARKIN G F. Design and test of a field sampler for ammonia volatilization[J]. Soil Science Society of America Journal, 1977, 41(6): 1133–1138
[28] 白志剛. 氮肥運(yùn)籌對水稻氮代謝及稻田氮肥利用率的影響[D]. 杭州: 中國農(nóng)業(yè)科學(xué)院(中國水稻研究所), 2019: 18 BAI Z G. Effects of N management strategy on N metabolism in rice plant and N use efficiency in paddy soil[D]. Hangzhou: Chinese Academy of Agricultural Sciences (China National Rice Research Institute), 2019: 18
[29] SUN H J, ZHANG H L, POWLSON D, et al. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)- pyridine[J]. Field Crops Research, 2015, 173: 1–7
[30] 陳宇眺. 栽培模式對水稻產(chǎn)量和氮肥利用率的影響及生理機(jī)制的研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2016: 62–63 CHEN Y T. Effects of cultivation patterns on rice yield and nitrogen use efficiency and its mechanisms[D]. Wuhan: Huazhong Agricultural University, 2016: 62–63
[31] 余姍, 薛利紅, 花昀, 等. 水熱炭減少稻田氨揮發(fā)損失的效果與機(jī)制[J]. 環(huán)境科學(xué), 2020, 41(2): 922–931 YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020, 41(2): 922–931
[32] SUN H J, FENG Y F, XUE L H, et al. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar[J]. Chemosphere, 2020, 242: 125247
[33] LIN K M, WU J P. Effect of introducing frogs and fish on soil phosphorus availability dynamics and their relationship with rice yield in paddy fields[J]. Scientific Reports, 2020, 10(1): 21
[34] WYNGAARD N, CABRERA M L, SHOBER A, et al. Fertilization strategy can affect the estimation of soil nitrogen mineralization potential with chemical methods[J]. Plant and Soil, 2018, 432(1/2): 75–89
[35] WHALEN J K, CHANG C, CLAYTON G W, et al. Cattle manure amendments can increase the pH of acid soils[J]. Soil Science Society of America Journal, 2000, 64(3): 962–966
[36] WYNGAARD N, FRANKLIN D H, HABTESELASSIE M Y, et al. Legacy effect of fertilization and tillage systems on nitrogen mineralization and microbial communities[J]. Soil Science Society of America Journal, 2016, 80(5): 1262–1271
[37] 何一帆. 云南8種無尾兩棲類呼吸和水分調(diào)節(jié)器官的環(huán)境適應(yīng)性研究[D]. 昆明: 云南師范大學(xué), 2018: 2–6 HE Y F. Studies on the environmental adaptability of respiratory and water regulation structures of 8 species of Anura Ampthibians in Yunnan Province[D]. Kunming: Yunnan Normal University, 2018: 2–6
[38] CHEN G, ZHAO G H, CHENG W D, et al. Rice nitrogen use efficiency does not link to ammonia volatilization in paddy fields[J]. Science of the Total Environment, 2020, 741: 140433
[39] 陳貴, 施衛(wèi)明, 趙國華, 等. 太湖地區(qū)主栽高產(chǎn)水稻品種對土壤和肥料氮的利用特性研究[J]. 土壤, 2016, 48(2): 241–247 CHEN G, SHI W M, ZHAO G H, et al. Characteristics of utilization of n sources from soil and fertilizer by rice varieties with high yield in Taihu Lake Area[J]. Soils, 2016, 48(2): 241–247
[40] 郭文嘯. 不同種植模式對稻田土壤養(yǎng)分和微生物特性的影響[D]. 上海: 上海交通大學(xué), 2017: 38–41 GUO W X. Response of soil nutrient and microbiological characteristics to different rice cultivation patterns[D]. Shanghai: Shanghai Jiao Tong University, 2017: 38–41
[41] 魯艷紅, 廖育林, 聶軍, 等. 稻-蛙生態(tài)種養(yǎng)技術(shù)模式研究與展望[J]. 湖南農(nóng)業(yè)科學(xué), 2017, (3): 74–76 LU Y H, LIAO Y L, NIE J, et al. Research and prospect of rice-frog ecological cultivation and breeding technology mode[J]. Hunan Agricultural Sciences, 2017, (3): 74–76
[42] LIA H, Felix B, INGE V D W, et al. Survival analysis of brown plant hoppers () in rice using video recordings of predation events[J]. Biological Control, 2018, 127: 155–161
Effect of rice-frog cultivation on ammonia volatilization in rice-Chinese milk vetch rotation system*
CHEN Huiyan1, SHA Zhimin1, WU Fujun1,2, FANG Kaikai1, XU Chunhua3, YANG Xiaolei3, ZHU Yuanhong4, CAO Linkui1**
(1. School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China; 2. College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 3. Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China; 4. Shanghai Qingpu Modern Agricultural Park Development Co., Ltd, Shanghai 201717, China)
Ammonia (NH3)volatilization is one of the main mechanisms of nitrogen loss in paddy fields. Studying the impact of the ecological cultivation model in paddy fields on ammonia volatilization can provide a theoretical basis for its ecological and environmental benefits. To evaluate the effects of rice-frog cultivation on ammonia volatilization in a rice-Chinese milk vetch (CMV) rotation system, the continuous airflow enclosure method was used to collect ammonia in a field plot experiment to study soil ammonia volatilization and its related factors. The experiment included three treatments: control check (CK, no fertilization, no frogs), conventional rice cultivation (CR, fertilization, no frogs), and rice-frog cultivation (RF, fertilization, frogs released). The results showed that the cumulative amount of ammonia volatilization in the rice-frog cultivation treatment was 47.02 kg·hm–2, accounting for 12.9% of the nitrogen application rate in the current season. The subsequent cumulative amount of ammonia volatilization in the Chinese milk vetch season was 16.27 kg·hm–2. The cumulative ammonia volatilization in the annual rotation system was 63.29 kg·hm–2, which was 15.3% lower than that of conventional rice planting. The cumulative amount of ammonia volatilization produced by rice-frog cultivation in the annual rice-Chinese milk vetch rotation system accounted for 17.4% of the annual nitrogen application, which was significantly lower than that of conventional rice cultivation (20.5%). The ammonium nitrogen concentration in the floodwater was the main factor affecting ammonia volatilization in the rice season, followed by the pH and temperature of the floodwater, air temperature, and wind speed. As the temperature increased, the influence of the ammonium nitrogen concentration in the floodwater on ammonia volatilization increased. Frogs did not affect the rice yield, rice yield components, nitrogen fertilizer efficiency, or Chinese milk vetch yield. Therefore, rice-frog cultivation has the potential to reduce ammonia in the rice-Chinese milk vetch rotation system, but the long-term effects of this model on ammonia volatilization in paddy fields and its mechanisms require further study.
Rice-Chinese milk vetch () rotation; Rice-frog cultivation; Ammonia volatilization; Yield
10.13930/j.cnki.cjea.200657
陳慧妍, 沙之敏, 吳富鈞, 方凱凱, 徐春花, 楊曉磊, 朱元宏, 曹林奎. 稻蛙共作對水稻-紫云英輪作系統(tǒng)氨揮發(fā)的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2021, 29(5): 792-801
CHEN H Y, SHA Z M, WU F J, FANG K K, XU C H, YANG X L, ZHU Y H, CAO L K. Effect of rice-frog cultivation on ammonia volatilization in rice-Chinese milk vetch rotation system[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 792-801
X171.3
* 上海市科技興農(nóng)推廣項(xiàng)目[滬農(nóng)科推字(2019)第2-1號(hào)]和國家自然科學(xué)基金項(xiàng)目(31770482)資助
曹林奎, 主要研究方向?yàn)樯鷳B(tài)農(nóng)業(yè)與面源污染防控。E-mail: clk@sjtu.edu.cn
陳慧妍, 主要研究方向?yàn)榈咎锷鷳B(tài)系統(tǒng)氮素循環(huán)。E-mail: huiyanchen@sjtu.edu.cn
2020-08-06
2020-11-12
* This study was supported by Shanghai Science and Technology Promotion Project [(2019) No. 2-1] and the National Natural Science Foundation of China (31770482).
, E-mail: clk@sjtu.edu.cn
Aug. 6, 2020;
Nov. 12, 2020
中國生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文)2021年5期