• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content?

    2021-05-06 08:55:38RuiLi李睿MingShengXu徐明升PengWang汪鵬ChengXinWang王成新ShangDaQu屈尚達KaiJuShi時凱居YeHuiWei魏燁輝XianGangXu徐現(xiàn)剛andZiWuJi冀子武
    Chinese Physics B 2021年4期
    關(guān)鍵詞:李睿王成

    Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鵬), Cheng-Xin Wang(王成新),Shang-Da Qu(屈尚達), Kai-Ju Shi(時凱居), Ye-Hui Wei(魏燁輝),Xian-Gang Xu(徐現(xiàn)剛), and Zi-Wu Ji(冀子武),?

    1School of Microelectronics,Shandong University,Jinan 250100,China

    2Shandong Inspur Huaguang Optoelectronics Co.,Ltd.,Weifang 261061,China

    3State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    Keywords: photoluminescence,carrier localization effect,internal quantum efficiency,growth temperature

    1. Introduction

    Much attention has been paid to white light-emitting diodes (WLEDs) for solid-state lighting applications due to their excellent brightness, low power consumption, long lifetime, and environmental friendliness.[1–3]Generally, white light emission results from the use of phosphor to transform part of emissions of blue LEDs to the yellow–green spectral range. The transformation is related to an energy loss termed Stokes’ loss, which is on the order of 25% and thus restricts the highest attainable phosphor-converted WLED efficiency to much less than 100%;[4,5]however, in principle, one can avoid the loss through the use of phosphor-free monolithic WLEDs, which are integrated by blue, green, and even red long-wavelength InGaN-based LEDs, since the nitride system can cover the entire spectral region of the emitted light from near-ultraviolet to near-infrared by adjusting the composition of InGaN alloy.[6,7]Therefore, InGaN-based LEDs are a promising candidate for realizing the phosphor-free monolithic WLEDs operated at a high efficiency.

    Currently,InGaN/GaN multiple quantum wells(MQWs)-based blue LEDs with low In content have been found to have a high internal quantum efficiency (IQE) of about 90%,[8,9]however, by contrast, the IQE for the InGaN/GaN MQWsbased long-wavelength (e.g., yellow–green) LEDs with high In content is still much lower.[10–12]Several factors are responsible for the deterioration of emission efficiency.First,because of the low InN dissociation temperature, the high-In-content InGaN must be grown at low temperatures:[13]however,unfortunately,besides an increased density of structural defects[14]and incorporation of impurities,[15]the use of a low growth temperature for the InGaN well layers can result in more numerous composition fluctuation-induced point defects[16–18]and a stronger well/barrier lattice mismatch-induced quantumconfined Stark effect(QCSE)in the MQWs on account of the high In content.[19]Nevertheless,it has also been reported that in such InGaN/GaN MQW structures with a high-In-contentinduced compositional fluctuation, the In-rich regions in the InGaN well layers, acting as localization centers with deep potential levels, can restrict the outflow of carriers to nonradiative recombination center around, thus improving the emission efficiencies of the MQW structures.[20,21]In addition,some studies have shown that for a series of InGaN/GaN MQW LEDs with similar structures but different growth conditions, although those members in the set have almost the same In content, their localization effects are different as reported in Refs.[22,23]. These reports show that the emission mechanisms of the InGaN/GaN MQW structures, especially those of the InGaN/GaN MQW structures with lower growthtemperatures used for formation of their InGaN well layers,are diverse,and a comprehensive investigation is thus deemed necessary.

    In the present work, two green InGaN/GaN MQW samples with different growth temperatures of InGaN well layers are grown. To facilitate the incorporation of In into the MQWs and improve the emission efficiency of the MQWs,an underlying superlattice layer is introduced into both samples for releasing the strain in the MQW region.[24–26]The effects of growth temperature on the emission mechanism in such samples are investigated by measuring the dependence of photoluminescence(PL)spectra on temperature and excitation power.

    2. Experiment

    Two green InGaN/GaN MQW samples(S1 and S2)under study were grown on (0001)-oriented sapphire substrates via metal-organic chemical vapor deposition (MOCVD). During epitaxial growth,trimethylgallium(TMGa),ammonia(NH3),trimethylindium (TMIn), and silane (SiH4) were separately used as the precursors of Ga, N, In, and Si. The epitaxial structure for each of both samples includes a GaN buffer layer (25-nm thick), an undoped GaN layer (4-μm thick),an Si-doped n-type GaN layer (3-μm thick), five periods of In0.05Ga0.95N/GaN (1 nm/5 nm) forming a strain relief layer(SRL),and ten periods of InGaN/GaN(3 nm/17 nm)forming the MQW active region, in turn. For better comparison, the growth parameters of the two samples are the same except the growth temperature of InGaN well layers in the active region,which is 745?C for S1 and 730?C for S2.

    Temperature and excitation-power-dependent PL were measured by placing samples on a Cu cold-stage in a closedcycle He cryostat at temperatures ranging from 6 K to 330 K,and a semiconductor laser (405-nm cw) with a spot size of about 200μm and an operating range of 0.001 mW to 75 mW was used as an excitation source. An iHR320 monochromator(Jobin-Yvon) and a thermoelectrically cooled Synapse CCD detector were used to scatter and detect PL signals, respectively.

    3. Results and discussion

    Figure 1 shows the typical 5-mW PL spectra of samples S1 and S2 detected at 6 K and 300 K,respectively, where all PL spectra exhibit one InGaN-related main PL peak at around 2.35 eV.Two weak peaks denoted as 1LO and 2LO at 6 K for both the samples are phonon replicas of the main PL peak. In order to estimate the peak position and linewidth of the main PL peak,the spectra are deconvoluted by multi-peak gaussian fitting.[21]Additionally,it is also found from Fig.1 that comparison between scenarios of samples S1 and S2 shows that the main PL peak of S2 has a lower energy and a slightly larger linewidth at all measured temperatures,and the integrated PL intensity shows a more significant reduction as the temperature increases from 6 K to 300 K.To further investigate the effects of growth temperature of the InGaN well layers on the emission mechanism of the InGaN/GaN MQWs,both the temperature and excitation-power-dependent PL spectra for the two samples will be investigated.

    Fig.1.The 5-mW PL spectra of S1 and S2 at(a)6 K and(b)300 K,with two observed weak shoulder peaks(1LO and 2LO)at 6 K belonging to phonon replicas originating from the main peak, thin dotted lines denoting fitted Gaussion peaks of profile of S1 at 6 K,and empty circles referring to their sum.

    Figure 2 shows the dependence of the PL peak energy and linewidth on excitation power for these two samples measured in a range of 0.001 mW–75 mW at 6 K. As seen from Fig.2, when the excitation power rises from 0.001 mW to about 0.02 mW, the peak energy remains almost unchanged while the linewidth narrows in a monotonic manner for each of the two samples. This behavior can be explained as follows: with the increase of excitation power in the initial range below about 0.02 mW, the increased free carriers in the In-GaN matrix can weaken the QCSE in the MQWs, resulting in an increase in peak energy accompanied by a decrease in linewidth; meanwhile, the increased localized carriers in the localized centers will enhance the carrier scattering effect,which causes the localized carriers to transfer from the highenergy localized centers to the low-energy localized centers by tunneling, resulting in a decrease in peak energy accompanied by a decrease in linewidth.[26–29]That is, the above MQW-related emission processes for both samples should be dominated simultaneously by the carrier scattering effect and the Coulomb screening effect of QCSE in the initial excitation power range. Nevertheless, by comparison, it is found from Fig.2 that the behaviour of the excitation-power-dependent linewidth narrowing is more significant for S2 than for S1,indicating that both the carrier scattering effect and the Coulomb screening effect in the process should be stronger for S2 than for S1. Next, when the excitation power further increases above about 0.02 mW,the peak energy values for both samples increase monotonically up to 75 mW,but the difference is that the linewidth of S1 significantly narrows below 10 mW due to the Coulomb screening effect, and then markedly broadens because of the filling effect of the high-energy localized states;in contrast,the linewidth of S2 slightly broadens below 0.1 mW due to the filling effect of the low-energy localized states,and then significantly narrows because of the more significant Coulomb screening effect.

    Fig.2. Excitation-power-dependent peak energy and full-width at halfmaximum(FWHM)for(a)S1 and(b)S2 measured at 6 K.

    The above results obtained from Figs. 1 and 2 suggest that S2 should have a higher In content in the MQW than S1 due to the lower growth temperature, and thus causing a more significant component fluctuation-induced potential fluctuation and a stronger well/barrier lattice mismatch-induced QCSE for S2,which eventually results in the aforementioned stronger excitation-power-dependent carrier scattering effect and Coulomb screening effect(Fig.2),respectively.

    Figure 3 shows the excitation-power-dependent PL peak energy and linewidth of the two samples in a range of 0.001 mW–75 mW at 300 K. With the excitation power increasing, the PL peak energy and linewidth for each of the two samples exhibit an excitation-power-dependent approximately “V-shape” (decreasing-increasing) and an approximately “N-shape” (broadening-narrowing-broadening), respectively. These behaviors are often observed in similar InGaN/GaN-based structures,[21,27]and can be explained as follows. Under the 300-K high temperature measuring conditions, the defect-related non-radiative centers are thermally activated,with excitation power increasing in the initial excitation power range below a critical value(Pc),the non-radiative recombination dominates the emission process in the MQW,thus leading the peak energy to decrease and the linewidth to broaden as shown in Fig.3. Here,Pcis about 0.05 mW for S1 and about 0.2 mW for S2. In the case for the excitation power higher than Pc, as an increasing excitation power makes the non-radiative centers saturated,the Coulomb screening of the QCSE followed by the band-filling of high-energy localized states dominates the emission process of the MQWs for both samples. Moreover, it can also be seen from Fig.3 that the excitation-power-dependent behaviors of the peak energy and linewidth in the initial non-radiative recombination process and in the subsequent Coulomb screening process, are more significant for S2 than for S1. These results,together with the larger Pc(0.2 mW)of S2 than that of S1(0.05 mW)mentioned above,indicate that S2 should have more non-radiative centers and stronger QCSE in the MQW than S1,which is consistent with those obtained from Figs.1 and 2.

    Fig.3. Excitation-power-dependent peak energy and FWHM for(a)S1 and(b)S2 measured at 300 K.

    To examine and compare the carrier localization effects of the two MQW structures, figure 4 shows the curves of peak energy shift versus temperature for these two samples at 0.005 mW and 75 mW, respectively. At 0.005 mW(see Fig.4(a)), the peak energy of sample S1 exhibits an“S-shaped” (decreasing-increasing-decreasing) temperaturedependent behavior, while that of S2 demonstrates an approximately“V-shaped”(decreasing-increasing-remaining almost constant) relationship. These behaviors are often observed in similar InGaN/GaN-based structures, and ascribed to the potential fluctuation and localized nature of carrier recombination caused by compositional fluctuation in the In-GaN well layers.[19,21,30–33]However, these behaviors shown in Fig.4(a) also indicate that S2 has a stronger carrier localization effect than S1,since the carrier thermalization process following what is predicted by Varshni’s equation in the hightemperature range as observed in sample S1, is not seen in sample S2.[34,35]

    Fig.4. Temperature-dependent peak energy shift for S1 and S2 measured at(a)0.005 mW and(b)75 mW.

    Furthermore, as the excitation power increases from 0.005 mW to 75 mW,it is found that both the“S-shaped”behavior for S1 and the “V-shaped” behavior for S2 as shown in Fig.4(a) evolve into an inverted “V-shaped” (increasingdecreasing)relationship(Fig.4(b))due to the carrier localization effect decreasing markedly.[31,36]Nevertheless,as a comparison, one can see from Fig.4(b) that the critical temperature corresponding to the maximum of the peak energy shift,is greater(160 K)for S2 than for S1(140 K);also, the depth of the localized states, which is estimated from the discrepancy between the curve of the peak energy shift versus temperature and the Varshni’s curve at low temperatures,[6,26]is greater(~32.8 meV)for S2 than for S1(~24.2 meV).These results indicate that S2 has a stronger carrier localization effect than S1, which is in good agreement with the aforementioned result. Moreover, it is also found from Figs. 1–4 that S2 has a stronger localization effect and QCSE than S1, but its linewidth is only slightly larger. The reason is not clear. It may be because S2 has a better homogeneity in the depth of the localized state than S1,[36]and this partially compensates for its stronger QCSE-induced linewidth broadening.

    Fig.5. Excitation-power-dependent IQE for samples S1 and S2.

    To explore the influence mechanism of the well layer growth temperature on recombination efficiency, the IQE,which is defined as the ratio of the PL efficiency at 300 K to the maximum PL efficiency at 6 K,is plotted as a function of excitation power for both S1 and S2(Fig.5). Here,the PL efficiency is defined as the integrated PL intensity divided by the corresponding excitation power density,and the maximum PL efficiency value at 6 K is assumed to be nearly 100% in the present study.[37,38]With the excitation power increasing from 0.005 mW to 75 mW, the IQE value of S1 markedly increases below 10 mW followed by relatively slowly increasing up to 75 mW, implying that the growing of photogenerated carriers can gradually saturate those non-radiative recombination centers thermally activated at 300 K, and this results in the carrier recombination mechanism in the MQWs gradually evolving from one of non-radiative recombination to radiative recombination;[31]in contrast, however, the IQE value of S2 first increases slightly below about 0.02 mW,then decreases slightly until about 0.2 mW, and finally increases markedly up to 75 mW. The excitation-power-dependent increase of the IQE value of S2 both in the initial excitation power range (<0.02 mW) and in the final excitation power range (>0.2 mW) is believed to be related to the dominant non-radiative recombination,similar to the description for S1 in Fig.5, but the excitation-power-dependent decrease of the IQE value of S2 in the intermediate excitation power range of 0.02 mW–0.2 mW, may correspond to the marked weakening of carrier localization effect. The explanations are also supported by the experimental fact that compared with S1,S2 exhibits a high IQE in the initial excitation power range below about 0.05 mW,which may be due to the stronger carrier localization effect as mentioned above,and a lower IQE in the high excitation power range above about 0.05 mW may mainly be because of the presence of more numerous defect-related nonradiative centers as confirmed in Fig.3. Moreover, the claim that there is a larger number of non-radiative centers in S2 than in S1, is also consistent with the experimental result that in contrast to S1,S2 does not exhibit excitation-power-dependent saturation trend of the IQE even in the higher excitation power range above 10 mW(Fig.5).

    4. Conclusions

    Excitation-power-dependent and temperature-dependent PL spectra of two different green InGaN/GaN MQW samples S1 and S2, in which InGaN well layers are separately deposited at a higher temperature of (745?C) for S1 and a lower temperature (730?C) for S2, are investigated. When the excitation power increases in an initial excitation power range below about 0.02 mW at 6 K, the peak energy remains almost unchanged while the linewidth narrows monotonically for both the samples S1 and S2, but the behavior of the excitation-power-dependent linewidth narrowing is more significant for S2 than for S1. The behaviors indicate that in the initial excitation power range, the emission processes of the MQWs for both the samples are dominated simultaneously by the carrier scattering effect and Coulomb screening effect, but both the scattering effect and the screening effect in the process are stronger for S2 than for S1; however,when the excitation power rises in the highest excitation power range above about 10 mW, the peak energy increases monotonically for both the samples, but the peak linewidth markedly broadens for S1 and significantly narrows for S2,indicating that the excitation-power-dependent Coulomb screening effect is stronger for S2 than for S1 in the highest excitation power range. The above results indicate that S2 has a higher amount of In content in the MQWs than S1 due to the lower growth temperature, and this results in the more significant compositional fluctuation-induced potential fluctuation and the stronger well/barrier lattice mismatch-induced QCSE. This explanation is also supported by the measurements of the excitation-power-dependent PL peak energy and linewidth at 300 K, the temperature-dependent peak energy,and the excitation-power-dependent IQE.

    猜你喜歡
    李睿王成
    美麗的柳樹姑娘
    Dynamics of magnetic microbubble transport in blood vessels
    Low-Velocity Impact Response of Stitched Multi-layer Foam Sandwich Composites
    基于ADAMS的洗衣機減速器多體動力學(xué)仿真
    冬天的蟲子去哪兒了
    Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
    奇妙的大自然
    只往壞處想
    GLOBAL WEAK SOLUTIONS TO A GENERALIZED BENJAMIN-BONA-MAHONY-BURGERS EQUATION?
    春節(jié)的“魚”
    91成人精品电影| 久久99一区二区三区| 亚洲精品在线观看二区| 精品久久久精品久久久| 丝袜美腿诱惑在线| 国产精品一区二区精品视频观看| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区黑人| 99在线人妻在线中文字幕 | 男女之事视频高清在线观看| 超碰成人久久| 操出白浆在线播放| 亚洲精品美女久久久久99蜜臀| 99精品在免费线老司机午夜| 亚洲专区字幕在线| 黄片大片在线免费观看| aaaaa片日本免费| 成人精品一区二区免费| 1024香蕉在线观看| 黑人巨大精品欧美一区二区mp4| 美女扒开内裤让男人捅视频| 欧美国产精品va在线观看不卡| av国产精品久久久久影院| 久久久久视频综合| svipshipincom国产片| 精品国产一区二区久久| 久久精品国产亚洲av香蕉五月 | 婷婷精品国产亚洲av在线 | 亚洲精华国产精华精| 国产精华一区二区三区| 老鸭窝网址在线观看| 欧美日韩成人在线一区二区| 青草久久国产| 无人区码免费观看不卡| 国产aⅴ精品一区二区三区波| 免费一级毛片在线播放高清视频 | 十八禁人妻一区二区| 大码成人一级视频| 精品视频人人做人人爽| 欧美另类亚洲清纯唯美| 老司机福利观看| 精品国产乱子伦一区二区三区| 制服人妻中文乱码| 国产成人av激情在线播放| 日日爽夜夜爽网站| 在线十欧美十亚洲十日本专区| ponron亚洲| 韩国精品一区二区三区| 亚洲精品在线观看二区| 欧美午夜高清在线| cao死你这个sao货| 日本wwww免费看| 欧美中文综合在线视频| 午夜91福利影院| 女同久久另类99精品国产91| 国产欧美日韩一区二区三区在线| 一级a爱片免费观看的视频| 80岁老熟妇乱子伦牲交| 国产一卡二卡三卡精品| 成人免费观看视频高清| 欧美日韩亚洲综合一区二区三区_| 在线观看午夜福利视频| 精品欧美一区二区三区在线| 国产区一区二久久| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品区二区三区| 精品国产超薄肉色丝袜足j| 在线观看66精品国产| 日本黄色视频三级网站网址 | 免费看十八禁软件| 三级毛片av免费| 中文字幕色久视频| 欧美一级毛片孕妇| svipshipincom国产片| 亚洲色图综合在线观看| 搡老熟女国产l中国老女人| 亚洲自偷自拍图片 自拍| 久久久精品区二区三区| 十八禁高潮呻吟视频| 午夜福利,免费看| 久久中文字幕人妻熟女| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看舔阴道视频| av天堂在线播放| 国产精品一区二区在线观看99| 三级毛片av免费| 在线观看舔阴道视频| 久久久国产欧美日韩av| 久久亚洲真实| 亚洲在线自拍视频| 精品电影一区二区在线| 中文字幕人妻丝袜制服| 国产片内射在线| 精品国产超薄肉色丝袜足j| 捣出白浆h1v1| 99久久精品国产亚洲精品| 啦啦啦在线免费观看视频4| 自线自在国产av| 人人妻人人澡人人爽人人夜夜| 极品人妻少妇av视频| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 十八禁人妻一区二区| 两个人看的免费小视频| 麻豆成人av在线观看| 欧美午夜高清在线| 国产成人av教育| 少妇猛男粗大的猛烈进出视频| 成人国产一区最新在线观看| 精品国产乱码久久久久久男人| 国产成人免费观看mmmm| 亚洲一区中文字幕在线| 久热这里只有精品99| 欧美亚洲 丝袜 人妻 在线| 国产单亲对白刺激| 好看av亚洲va欧美ⅴa在| 亚洲成人手机| 中文字幕av电影在线播放| 精品国产国语对白av| 亚洲午夜理论影院| 又黄又粗又硬又大视频| 岛国在线观看网站| 无限看片的www在线观看| 亚洲熟女毛片儿| 亚洲三区欧美一区| 久久久久久久国产电影| 欧美在线黄色| 亚洲第一青青草原| 久久亚洲精品不卡| 久久久国产精品麻豆| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久5区| 在线观看免费日韩欧美大片| 狂野欧美激情性xxxx| 黄色a级毛片大全视频| 久久人人爽av亚洲精品天堂| 色播在线永久视频| 精品久久久久久,| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕 | 在线天堂中文资源库| tocl精华| 老司机亚洲免费影院| 久久久久久久国产电影| 黄色视频,在线免费观看| 精品国产一区二区久久| 久久影院123| 色婷婷久久久亚洲欧美| tube8黄色片| 男女之事视频高清在线观看| 很黄的视频免费| 久久影院123| 美女国产高潮福利片在线看| a级毛片黄视频| 激情视频va一区二区三区| 精品国产亚洲在线| 国产精品香港三级国产av潘金莲| 免费高清在线观看日韩| 亚洲性夜色夜夜综合| 嫩草影视91久久| 在线观看一区二区三区激情| 欧美在线黄色| 日韩精品免费视频一区二区三区| 亚洲av日韩在线播放| 成人黄色视频免费在线看| 操美女的视频在线观看| 亚洲熟女精品中文字幕| 狂野欧美激情性xxxx| 啦啦啦在线免费观看视频4| 成年版毛片免费区| 老汉色∧v一级毛片| 精品一品国产午夜福利视频| 久久精品国产清高在天天线| 91精品三级在线观看| 久久亚洲真实| e午夜精品久久久久久久| 正在播放国产对白刺激| 搡老熟女国产l中国老女人| 激情视频va一区二区三区| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 黄色怎么调成土黄色| 亚洲成人免费av在线播放| 色精品久久人妻99蜜桃| 9191精品国产免费久久| 他把我摸到了高潮在线观看| 国产97色在线日韩免费| 黄色 视频免费看| 极品教师在线免费播放| 亚洲欧洲精品一区二区精品久久久| 亚洲精品中文字幕在线视频| 亚洲性夜色夜夜综合| 午夜成年电影在线免费观看| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 精品久久久久久久久久免费视频 | 久久久久久久国产电影| 国产成人影院久久av| 黑人操中国人逼视频| 国产高清激情床上av| 国产精品成人在线| 少妇猛男粗大的猛烈进出视频| 成年动漫av网址| 亚洲熟女精品中文字幕| 国产精品98久久久久久宅男小说| 叶爱在线成人免费视频播放| 人妻丰满熟妇av一区二区三区 | 亚洲精华国产精华精| 久久国产亚洲av麻豆专区| 国产真人三级小视频在线观看| 中国美女看黄片| 99久久99久久久精品蜜桃| 久久狼人影院| 亚洲免费av在线视频| 亚洲精品成人av观看孕妇| 午夜福利,免费看| 欧美丝袜亚洲另类 | 久久 成人 亚洲| 欧美精品高潮呻吟av久久| 成年人黄色毛片网站| 亚洲午夜理论影院| 99在线人妻在线中文字幕 | 人妻一区二区av| 99精品久久久久人妻精品| 亚洲专区字幕在线| 人人妻人人爽人人添夜夜欢视频| 日本撒尿小便嘘嘘汇集6| 国产精品乱码一区二三区的特点 | 男人的好看免费观看在线视频 | 免费在线观看亚洲国产| 黄色怎么调成土黄色| 欧美精品啪啪一区二区三区| 国产亚洲精品第一综合不卡| 国产一卡二卡三卡精品| 中国美女看黄片| 国产成人av激情在线播放| 9热在线视频观看99| 精品一区二区三区视频在线观看免费 | 欧美日韩一级在线毛片| 中出人妻视频一区二区| 午夜福利影视在线免费观看| 亚洲欧美日韩另类电影网站| 日本欧美视频一区| 天天添夜夜摸| 欧美人与性动交α欧美精品济南到| 欧美精品av麻豆av| 女同久久另类99精品国产91| 一a级毛片在线观看| 欧美激情高清一区二区三区| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 精品乱码久久久久久99久播| 欧美成人免费av一区二区三区 | 狠狠狠狠99中文字幕| 人人澡人人妻人| 亚洲第一av免费看| 18禁黄网站禁片午夜丰满| 亚洲午夜精品一区,二区,三区| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看 | 国产不卡av网站在线观看| 日本撒尿小便嘘嘘汇集6| 午夜两性在线视频| 免费女性裸体啪啪无遮挡网站| 精品无人区乱码1区二区| 9热在线视频观看99| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 成人三级做爰电影| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 国产又爽黄色视频| 在线看a的网站| 黄色丝袜av网址大全| 亚洲专区国产一区二区| 成年人免费黄色播放视频| 国产成人欧美在线观看 | 97人妻天天添夜夜摸| 男女床上黄色一级片免费看| 欧美人与性动交α欧美精品济南到| 热re99久久国产66热| 丁香欧美五月| 欧美在线一区亚洲| 久久人人爽av亚洲精品天堂| 中文字幕制服av| 久久国产精品大桥未久av| 女人精品久久久久毛片| 亚洲色图av天堂| 午夜福利一区二区在线看| 精品国产一区二区三区久久久樱花| 久久精品国产亚洲av高清一级| 免费在线观看影片大全网站| 美女高潮到喷水免费观看| 99久久国产精品久久久| 亚洲欧美一区二区三区久久| 精品亚洲成a人片在线观看| 久久久久久久精品吃奶| 夫妻午夜视频| 国产亚洲av高清不卡| 日本黄色日本黄色录像| 国产精品秋霞免费鲁丝片| 国产成+人综合+亚洲专区| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 亚洲avbb在线观看| 亚洲中文字幕日韩| 国产一区二区激情短视频| 国产区一区二久久| 精品福利观看| 宅男免费午夜| 久久午夜亚洲精品久久| 美女福利国产在线| 日本五十路高清| а√天堂www在线а√下载 | 99久久人妻综合| 欧美日韩乱码在线| 久久久精品国产亚洲av高清涩受| 在线观看免费高清a一片| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 日韩制服丝袜自拍偷拍| 国产一区二区三区在线臀色熟女 | 在线av久久热| 国产精品久久久久成人av| 国产一区有黄有色的免费视频| 狠狠狠狠99中文字幕| svipshipincom国产片| 一区二区三区激情视频| 国产精品九九99| 亚洲人成伊人成综合网2020| 窝窝影院91人妻| videos熟女内射| a级毛片在线看网站| av天堂久久9| 大型黄色视频在线免费观看| 一夜夜www| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 日本精品一区二区三区蜜桃| 免费在线观看黄色视频的| 日日摸夜夜添夜夜添小说| 国产精品久久久久久精品古装| 日韩欧美免费精品| 欧美大码av| 亚洲精品国产区一区二| 色94色欧美一区二区| 首页视频小说图片口味搜索| 亚洲午夜精品一区,二区,三区| 日韩欧美一区二区三区在线观看 | 国产成人免费观看mmmm| 中文字幕av电影在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 日韩大码丰满熟妇| 一级毛片女人18水好多| 嫩草影视91久久| 一级片免费观看大全| 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 国产精品 国内视频| 怎么达到女性高潮| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91| 男女高潮啪啪啪动态图| 999久久久国产精品视频| 亚洲aⅴ乱码一区二区在线播放 | 国产又色又爽无遮挡免费看| a在线观看视频网站| 美女高潮到喷水免费观看| 天天操日日干夜夜撸| 国产麻豆69| 色老头精品视频在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲色图 男人天堂 中文字幕| 9191精品国产免费久久| 免费av中文字幕在线| 午夜91福利影院| 天天影视国产精品| 亚洲精华国产精华精| 国产精品欧美亚洲77777| 一区二区三区激情视频| 午夜福利免费观看在线| 亚洲欧美激情综合另类| 久久这里只有精品19| 免费在线观看亚洲国产| 久久国产精品影院| 亚洲av美国av| 校园春色视频在线观看| 天天躁夜夜躁狠狠躁躁| 国产精品 国内视频| 人人妻人人添人人爽欧美一区卜| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 亚洲一区中文字幕在线| 亚洲国产精品sss在线观看 | 看片在线看免费视频| 精品一品国产午夜福利视频| 免费在线观看黄色视频的| 美女国产高潮福利片在线看| 一个人免费在线观看的高清视频| 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 一夜夜www| 人人澡人人妻人| 精品视频人人做人人爽| av福利片在线| 动漫黄色视频在线观看| av欧美777| 午夜老司机福利片| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利免费观看在线| 久久人妻av系列| 99re在线观看精品视频| 18禁黄网站禁片午夜丰满| 又黄又粗又硬又大视频| 国产一区二区激情短视频| 久久草成人影院| 国产精品久久久久久精品古装| 大型av网站在线播放| 国产成人免费无遮挡视频| 天天影视国产精品| 欧美人与性动交α欧美精品济南到| 老熟妇乱子伦视频在线观看| 亚洲av成人av| 国产精品免费大片| 自线自在国产av| 国产av又大| 岛国在线观看网站| 国产三级黄色录像| 大码成人一级视频| 嫩草影视91久久| tocl精华| 老司机在亚洲福利影院| 久久久久精品人妻al黑| www.精华液| 婷婷精品国产亚洲av在线 | 国产精品国产高清国产av | 好看av亚洲va欧美ⅴa在| 91成年电影在线观看| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 少妇猛男粗大的猛烈进出视频| 午夜福利,免费看| 亚洲avbb在线观看| 久久久国产欧美日韩av| 欧美色视频一区免费| 国产精品1区2区在线观看. | 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 欧美日韩成人在线一区二区| 女性被躁到高潮视频| 国产精品久久电影中文字幕 | 老汉色av国产亚洲站长工具| 成人国语在线视频| 丝袜在线中文字幕| 一边摸一边抽搐一进一小说 | 免费女性裸体啪啪无遮挡网站| 日日夜夜操网爽| 亚洲视频免费观看视频| 成年女人毛片免费观看观看9 | 成人免费观看视频高清| 91大片在线观看| 村上凉子中文字幕在线| 视频区图区小说| 午夜视频精品福利| 国产黄色免费在线视频| 美女国产高潮福利片在线看| 极品教师在线免费播放| 欧美最黄视频在线播放免费 | av中文乱码字幕在线| 久久九九热精品免费| 变态另类成人亚洲欧美熟女 | 国产亚洲精品久久久久5区| 窝窝影院91人妻| 男女床上黄色一级片免费看| 多毛熟女@视频| 精品一区二区三卡| 十分钟在线观看高清视频www| 男人舔女人的私密视频| 高清毛片免费观看视频网站 | 黑人操中国人逼视频| 99在线人妻在线中文字幕 | a级片在线免费高清观看视频| 久久草成人影院| 十八禁高潮呻吟视频| 精品熟女少妇八av免费久了| 免费在线观看影片大全网站| 高清毛片免费观看视频网站 | 国产高清国产精品国产三级| www日本在线高清视频| 伊人久久大香线蕉亚洲五| 一区在线观看完整版| 岛国在线观看网站| 天堂中文最新版在线下载| 久久 成人 亚洲| 亚洲精品粉嫩美女一区| 大片电影免费在线观看免费| 免费看a级黄色片| 国产熟女午夜一区二区三区| 精品电影一区二区在线| 中文欧美无线码| 国产免费男女视频| 国产成人精品在线电影| 男男h啪啪无遮挡| 日本五十路高清| 国产91精品成人一区二区三区| 久久久久视频综合| 十八禁高潮呻吟视频| 三级毛片av免费| 欧美成人午夜精品| 母亲3免费完整高清在线观看| 在线观看免费高清a一片| 在线观看免费视频网站a站| 午夜免费成人在线视频| 亚洲精品一二三| 日本wwww免费看| 亚洲色图av天堂| 日韩精品免费视频一区二区三区| 久久午夜亚洲精品久久| 欧美乱码精品一区二区三区| 久久久精品免费免费高清| 99精品久久久久人妻精品| www日本在线高清视频| 亚洲,欧美精品.| 欧美丝袜亚洲另类 | 国产高清国产精品国产三级| 大型黄色视频在线免费观看| 日韩欧美免费精品| 夫妻午夜视频| 国产在线一区二区三区精| 精品福利永久在线观看| 精品久久久久久久久久免费视频 | 久久久久久亚洲精品国产蜜桃av| 曰老女人黄片| 国产精品.久久久| 国产精品免费大片| 黄色 视频免费看| 国产一区二区三区在线臀色熟女 | 久久久久久亚洲精品国产蜜桃av| 男女午夜视频在线观看| 国产精品秋霞免费鲁丝片| 韩国精品一区二区三区| 亚洲人成电影免费在线| 亚洲专区中文字幕在线| 在线观看免费午夜福利视频| 精品电影一区二区在线| 99热国产这里只有精品6| 身体一侧抽搐| 亚洲人成电影免费在线| 精品电影一区二区在线| 99热国产这里只有精品6| 午夜视频精品福利| 精品熟女少妇八av免费久了| 日韩免费av在线播放| 女警被强在线播放| 三上悠亚av全集在线观看| 久久性视频一级片| 国产无遮挡羞羞视频在线观看| 夜夜爽天天搞| 欧美日韩瑟瑟在线播放| 国产精品自产拍在线观看55亚洲 | 男女床上黄色一级片免费看| 久久热在线av| 亚洲片人在线观看| 免费久久久久久久精品成人欧美视频| 两个人免费观看高清视频| 国产精品永久免费网站| 精品人妻在线不人妻| 男女高潮啪啪啪动态图| 国产又色又爽无遮挡免费看| 美女扒开内裤让男人捅视频| 人妻 亚洲 视频| 搡老乐熟女国产| 国产91精品成人一区二区三区| 久久ye,这里只有精品| av欧美777| 成人18禁高潮啪啪吃奶动态图| 亚洲av美国av| 日本一区二区免费在线视频| 国产精品 欧美亚洲| avwww免费| 亚洲人成伊人成综合网2020| av线在线观看网站| 18禁黄网站禁片午夜丰满| 99久久人妻综合| 亚洲第一欧美日韩一区二区三区| 99re在线观看精品视频| 日韩欧美在线二视频 | 日韩欧美三级三区| 国产亚洲欧美精品永久| 一进一出好大好爽视频| av网站在线播放免费| 精品一区二区三卡| 久久ye,这里只有精品| 精品一区二区三区视频在线观看免费 | 免费在线观看亚洲国产| 国产在线观看jvid| 精品第一国产精品| 国产精品.久久久| 国产精品国产高清国产av | 久久人人97超碰香蕉20202| 国产成人免费观看mmmm| 一进一出好大好爽视频| 免费一级毛片在线播放高清视频 | 妹子高潮喷水视频| 亚洲人成电影免费在线| 免费少妇av软件| 校园春色视频在线观看| 亚洲精品美女久久av网站| 国产亚洲精品一区二区www | 热re99久久精品国产66热6| 日本撒尿小便嘘嘘汇集6| 久久精品aⅴ一区二区三区四区| 一级毛片女人18水好多| 18禁美女被吸乳视频|