• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin correlations in the =1 armchair chain Ni2NbBO6 as seen from NMR*

    2021-05-06 08:55:30KaiYueZeng曾凱悅LongMa馬龍LongMengXu徐龍猛ZhaoMingTian田召明LangShengLing凌浪生andLiPi皮靂
    Chinese Physics B 2021年4期
    關(guān)鍵詞:凱悅馬龍

    Kai-Yue Zeng(曾凱悅), Long Ma(馬龍), Long-Meng Xu(徐龍猛), Zhao-Ming Tian(田召明),?,Lang-Sheng Ling(凌浪生), and Li Pi(皮靂),§

    1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,Chinese Academy of Sciences,Hefei 230031,China

    2Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    3School of Physics and Wuhan National High Magnetic Field Center,Huazhong University of Science and Technology,Wuhan 430074,China

    Keywords: low-dimensional quantum magnetism,magnetic coupling,spin excitations,nuclear magnetic resonance

    1. Introduction

    The strong quantum fluctuations in the low-dimensional(low-D) antiferromagnets always lead to exotic quantum excitations as well as attractive quantum ground states.[1–4]One of the archetype examples is the spin-1/2 Heisenberg antiferromagnetic(AFM)chain system,which is proved exactly to host the quantum critical ground state called Tomonaga–Luttinger liquid.[5]For the spin excitations of such systems, the gapless “domain wall” excitations with fractional quantum number called spinons are theoretically proposed and further experimentally verified.[6]

    After the pioneering work of Haldane in 1983,[7,8]people began to realize that chains with integer-spins (Haldane chains) are topologically different from those with half-odd spins. The ground state of Haldane chains is quantum disordered singlets, which can be viewed as a simple version of the valence bond solid state. In contrast with the gapless excitation continuum of the multi-spinon excitations,the excitations from singlets to triplets need to overcome a finite energy gap(Haldane gap).[7,8]Interestingly,the spin excitation spectrum of Haldane chains is asymmetric about the Brillouin zone boundary as a result of the maintaining translational symmetry of the crystal lattice,[9–11]very different from the ordinary N′eel ordered state. Up to now, several quasi-1D S=1 quantum magnets have been identified as ideal realizations of the quantum singlet ground state.[12–18]

    By further introducing the inter-chain coupling (J⊥) and single-ion anisotropy (D) to the integer spin Hamiltonian, a rich phase diagram can be reached in the J⊥–D space.[19,20]Novel ground states, such as Bose–Einstein condensation of magnons,[1,20,21]spin supersolids,[22,23]can be realized by tuning the competing interactions. By applying external magnetic field or physical pressure,quantum phase transitions can be triggered in such low-D spin systems. As a result, integer spin chain systems with complex structures and magnetic couplings have supplied valuable playgrounds for the condensed matter society to explore novel quantum excitations and criticality.

    The AFM insulator Ni2NbBO6, first synthesized about four decades ago,[24]exhibits complex lattice structure and magnetic interactions. The lattice structure can be viewed as coupled armchair spin chains along the crystalline b-axis, or zig-zag spin chains along the c-axis,where the magnetic Ni2+sites carry integer S = 1 spins. DC-susceptibility measurements indicate an AFM transition at TN~23.5 K for a low magnetic field and a field induced spin-flop transition nearμ0H ~3.67 T in the low temperature ordered phase, when the field is applied perpendicular to the armchair spin chain direction.[25]With density functional theory (DFT) calculations,the magnetic coupling configuration is determined,and a possible magnetic structure is proposed.[25]However, this result contradicts the conventional Goodenough–Kanamori–Anderson (GKA) rules describing the magnetic interactions in insulators.[26–28]From the Raman scattering study, most phonon peaks are identified, of which several modes exhibit strong spin-phonon coupling.[28]For the magnetic scattering,three magnetic modes are observed,with the high-energy modes assigned to two-magnon modes.[28]

    Up to now, very little research into the spin correlations in Ni2NbBO6is carried out,while at least two important questions still exist. One is about the complex coupling configuration, regarding the contradictory results shown above.The other is related to whether Ni2NbBO6should be treated as low-D antiferromagnets. Although this compound can be viewed as a spin chain from the structural point of view, the temperature dependence of dc-susceptibility is very similar to ordinary 3D antiferromagnets. The broad peak in the susceptibility, typical for low-D antiferromagnets,[29]is completely absent here.

    With nuclei as a natural probe sitting on the lattice site,NMR is very useful in studying static magnetism and lowenergy spin excitations in the quantum antiferromagnets. In this paper, we report the study of the spin correlations in Ni2NbBO6via11B NMR spectroscopy as well as relaxation measurements. The AFM long-ranged order is indicated from the line splitting with a magnetic field applied along the b-axis.By the spectral analysis based on the lattice symmetry,this fact supports the magnetic coupling configuration previously proposed by the DFT calculations instead of the GKA rules.[25–27]From the spin-lattice relaxation rates, a prominent peak at T ~35 K is observed, which is well above the N′eel temperature. In contrast with the temperature dependence of the Knight shift and dc-susceptibility, this peak originates from the short-ranged AFM correlations,which is the typical characteristic of quasi-1D AFM spin chains.Based on these observations, the Ni2NbBO6compound can be viewed as strongly ferromagnetically coupled armchair S=1 spin chains along the crystalline b-axis.

    2. Experimental setup

    Single crystals of Ni2NbBO6are synthesized with the conventional flux method as described elsewhere.[24,25]Dark green crystals with typical dimensions of 1.5×1.5×1 mm3are chosen for our NMR measurements. The crystal directions are identified by single-crystal x-ray diffraction. The precise alignment of the magnetic field with the crystalline axis is guaranteed by placing the sample on a piezoelectric nanorotation stage. Our NMR measurements are conducted on the11B nuclei (γn/2π =13.655 MHz/T, I =3/2) with a phase coherent NMR spectrometer. The11B NMR spectra are obtained by summing up the frequency-swept spin-echo intensities. The spin-lattice relaxation rates are measured by the conventional inversion-recovery pulse sequence, and fitting the nuclear magnetization to the standard recovery function for nuclei with I=3/2.

    3. Results and discussion

    The Ni2NbBO6crystallizes in the orthorhombic structure with the pnma space group.[24]The lattice structure is sketched in Fig.1(a). Along the crystalline b-axis, double edge-shared[NiO6]octahedra are linked by the[NbO6]octahedra and[BO4]tetrahedra,forming the armchair shaped spin chain. Alternatively,the lattice can also be viewed as a zigzag spin chain along the c-axis. Only one position of11B-site exists in the lattice.The[BO4]tetrahedra share their corners with the[NiO6]octahedra,leading to the strong coupling between the11B nuclei and the spins located on Ni2+,and making the11B-NMR a very sensitive local probe of the magnetism.

    Fig.1.(a)The crystal structure of Ni2NbBO6 with distorted[NiO6]/[NbO6]octahedra and[BO4]tetrahedra shown by the respective polyhedra. (b)Typical 11B NMR spectrum at the paramagnetic state(T =140 K)with a 12 T field applied along three different crystalline axes. The red lines are fitting to the data by the Lorentz peak function.

    We start to discuss our NMR results by presenting typical frequency-swept NMR spectra with the magnetic field applied along three different crystalline axes in Fig.1(b). For fields along the a- or c-axis, three resonance peaks are identified,with one central peak and double satellite peaks symmetrically located on both sides. Applying the field along the b-axis,we observe only one sharp peak. All the peaks can be well reproduced by the Lorentz peak function, as shown by the fitting lines.as[30–32]

    Here K is the Knight shift defined as the relative line shift with respect to the nuclear Larmor frequency. The X,Y, Z directions are the principal axes of the electric field gradient(EFG)tensor {Vij}, and the η formulated by η ≡(VXX?VYY)/VZZis the in-plane anisotropy of the EFG. In the high magnetic field regime,the resonance frequency can be calculated by the first-order perturbation theory

    where quadrupolar frequency ωQis equal to 3e2qQ/(ˉh2I(2I ?1)), and m is the magnetic quantum number. As a result,one can expect to observe three transitions for11B nuclei with I=3/2 for most magnetic field angles,while only one transition for some special angles(here isμ0H||b-axis).

    In Fig.2,we show11B NMR spectra at different temperatures with the field applied along three different crystalline axes. With the magnetic field applied parallel with the a-or caxis(Figs.2(a)and 2(c)),the temperature dependence of11B spectra share a similar behavior. All the three peaks shift to the low frequency side with the sample cooling down for the paramagnetic state (T >TN=20 K). When the spin system enters the AFM state,the spectral frequency tends to become temperature independent.For theμ0H||b-axis case(Fig.2(b)),the single peak first shifts to the high frequency side above TN, and splits symmetrically into double peaks in the AFM ordered state. For all the three field orientations, the spectra broaden gradually upon cooling.

    Fig.2. The 11B NMR spectra at different temperatures with a 12 T field applied along the crystalline a-axis(a),b-axis(b),and c-axis(c).

    To study the spin susceptibility and the magnetic interactions, we plot the temperature dependence of the Knight shift and the internal field for the AFM state respectively in Figs.3(a)and 3(b). The Knight shift is a good measure of the spin susceptibility with the general expression[32]

    The tensor{Aij}is the coupling constant between the nuclear and electronic spins. The second-order correction to the resonance frequency of the central transition is very small,thus is neglected in the calculation of Knight shifts. For the present sample with μ0H||a- or c- axis, the element of the coupling tensor happens to be negative, resulting in the Knight shifts with negative values. The temperature dependence of |K|(Fig.3(a))shows a typical upturn behavior upon cooling,indicating the enhancement of the spin susceptibility. This is consistent with the dc-susceptibility measurements. With the field along the b-axis,we can precisely determine the line width of the only resonance peak(shown in Fig.3(a)inset). The temperature dependence of the line width also shows an upturn behavior at low temperatures, which can be well scaled with the Knight shift. Thus,the line broadening originates from the enhanced Knight shift at low temperatures.

    Next,we study the magnetic interactions via the spectral analysis below TN. Line splitting due to the setup of magnetic ordering is observed below TNwith the magnetic field applied along the b-axis. In the AFM state, the magnetic unit cell is doubled as compared with the crystalline one. One can expect a non-zero staggered internal field on the nuclear sites. When the external field is applied along the direction of the internal field, the total field can be calculated as Htot= Hext±Hint,leading to the line splitting in the AFM state.[33,34]In the present sample, the line splitting with μ0H||b-axis indicates the staggered internal field along this crystalline direction.The measured internal field serving as the order parameter of the AFM transition is plotted against temperature in Fig.3(b). By fitting the data near TNto the function Hint∝(1?T/TN)β,the critical exponent β is determined to be ~0.35. This is consistent with the 3D characteristic of the AFM transition.[34,35]

    Fig.3. (a)The temperature dependence of the Knight shift for different magnetic field orientations. The Knight shift data 11K withμ0H||a andμ0H||c is multiplied by ?1 to get rid of the influence of the minus hyperfine coupling constant. Inset: The line width as a function of temperature withμ0H||b. (b)The internal field is calculated from the frequency gap of the splitting peaks compared with that at T =2 K versus temperature. (c)The simplified crystalline structure with the magnetic coupling J1, J2, and J3 marked. Only the 11B sites and the magnetic Ni2+ sites are shown for clarity. The six adjacent Ni2+ magnetic sites with respect to the 11B sites are shown on the righthand side,with the distance between them marked respectively.

    Our data support the magnetic coupling configuration proposed by the DFT calculations[25]instead of the GKA rules. We show the simplified crystal structure in Fig.3,only presenting the magnetic Ni2+and11B sites. The nearestneighbour, next-nearest-neighbour, and next-next-nearestneighbour magnetic coupling are marked with J1, J2, and J3,respectively. For every11B, six adjacent Ni2+magnetic moments labeled as 1,1′,etc.,contribute to the internal field(see the enlarged version). Locally,the mirror symmetry about the plane perpendicular to the b-axis is maintained. In the magnetically ordered state,the internal field contributed by 1-sites can be generally written as[36]

    where the 2-ranked tensor {Aij} describes the coupling between11B nuclear spins and the magnetic moments located on Ni2+1-sites. Under the mirror symmetry operation, the coupling tensor between11B and the 1′-sites is obtained to be

    As proposed by DFT calculations,[25]the J2coupling is AFM,while J1and J3couplings are ferromagnetic.Because the magnetic frustration can be neglected in this compound,[25]the magnetic structure at low temperatures is determined by the magnetic interactions. Based on this configuration, the internal field at the11B sites contributed from the 1- and 1′-sites can be calculated as

    For both 2-and 2′-sites and 3-and 3′-sites,similar results can be obtained.

    From the temperature dependence of dc-susceptibility and the field induced spin-flop transition with the field along the c-axis,the ordered moment aligned with the c-axis can be easily determined in our sample,which is different from the reported a-axis.[25]However, this inconsistency does not affect the analysis here. Thus, one can imagine the staggered internal fields along the b-axis for11B nuclei stacking on different positions along the b-axis. As the Mbcomponent is zero, the line-splitting with μ0H||a-axis is absent. This is fully consistent with our NMR results. For the strong NMR magnetic field along c-axis,the line-splitting is also absent,further suggest that the magnetic moments flop to the crystalline a-axis in our sample.

    Our observations contradict the magnetic coupling configuration indicated by GKA rules.[26–28]According to the GKA rules for the superexchange magnetic coupling in insulators,the sign of interaction strongly depends on the bond angle between the magnetic sites and the intermediate ligands.From the lattice structure,the J3-coupling is determined to be AFM,while the J1and J2-couplings are FM.Based on this configuration,the internal field contributed from 1-and 1′-sites is

    This contradicts the line-splitting with μ0H||b-axis observed in our NMR data. The failure of GKA rules in the present sample may be related to the coupling of other side groups with the intermediate ligands,[39]which also implies the complicated magnetic coupling in the sample.

    Next, we focus on the question of whether Ni2NbBO6can be viewed as low-D magnets. For the AFM chain system,a typical broad peak in the temperature dependence of the susceptibility can be expected, which results from the buildup of short-range correlations at low temperatures.[29]However, the susceptibility of Ni2NbBO6follows a well-defined Curie–Weiss upturn behavior from room temperature down to TN, similar to other ordinary 3D antiferromagnets. We study the spin excitations through the spin-lattice relaxation measurements.The spin-lattice relaxation rate(SLRR)formulated as[30,31]

    In Fig.4, we present the temperature dependence of(T1T)?1for three different field directions. For μ0H||a- and c-axis,(T1)?1is obtained by fitting the nuclear magnetization recovery curve to the standard function for the 1/2 ??1/2 transition of the nuclei with I=3/2,[37]

    For μ0H||b-axis, the single exponential magnetization recovery function is used as all the three transitions are excited in the experiment. In the present single crystal, all the fitting curves are perfect without any stretching or other different T1-components. This further indicates the uniform excitation behavior in our sample. With the sample cooling from high temperature,(T1T)?1shows an upturn behavior which can be described by the Curie–Weiss law,(T1T)?1∝1/(T+θ)(shown by the fitting lines in Fig.4). When the temperature is further lowered,(T1T)?1begins to deviate from the Curie–Weiss law,and start to drop at T*~35 K,well above the AFM transition TN=20 K. With the sample entering the AFM long-rangeordered state, (T1T)?1shows a typical power-law temperature dependence, which is clearly shown by the dashed line in Fig.4 inset.

    Fig.4. The spin-lattice relaxation rate divided by temperature (11T1T)?1 plotted versus temperature for different field directions. The solid lines are fitting to the Curie–Weiss law (see the main text). Inset: The temperature dependence of the spin-lattice relaxation rates(11T1)?1.

    4. Conclusion

    To conclude, we have carried out a detailed NMR study on the spin correlations in Ni2NbBO6compound. The AFM long-ranged order is monitored by the line splitting with a magnetic field along the b-axis. By the spectral analysis based on local crystalline symmetry,the magnetic coupling configuration proposed by DFT calculations is supported. The deviation from the general GKA rules is proposed to originate from the coupling of other side groups with the intermediate ligands. From the spin-lattice relaxation rates,a prominent broad peak at T*=35 K is observed in the temperature dependence of(T1T)?1.This behavior is contributed from the short-ranged AFM correlations with a typical energy scale of ~3 meV,further indicating the low-D characteristic of the magnetic behavior in Ni2NbBO6. As a result,Ni2NbBO6can be viewed as a strongly coupled armchair spin chain system along the b-axis lying on the 1D-3D crossover regime,which has placed strong constraints on the theoretical models describing this material.

    猜你喜歡
    凱悅馬龍
    馬龍遇到恩師教練
    國(guó)際乒聯(lián)盛贊馬龍奪冠
    砂塵試驗(yàn)箱原理分析改進(jìn)及相關(guān)標(biāo)準(zhǔn)探討
    人間處處有幸福
    景德鎮(zhèn)陶溪川酒店凱悅臻選
    航天箭體用薄壁結(jié)構(gòu)機(jī)械加工噪聲分析及防治
    Relativistic effect on synergy of electron cyclotron and lower hybrid waves on EAST
    三大獨(dú)立空間,滿足多場(chǎng)景應(yīng)用 徐州蘇寧凱悅商務(wù)中心智能案例
    第十一屆凱悅仲夏夜慈善晚宴順利舉辦
    要命的存在感:遛“名貴鳥(niǎo)”遛出了命案
    舔av片在线| 中文在线观看免费www的网站| 一级黄片播放器| 91精品国产九色| 精品99又大又爽又粗少妇毛片| 精品99又大又爽又粗少妇毛片| 欧美成人免费av一区二区三区| 久久精品国产亚洲网站| 99在线视频只有这里精品首页| 91精品伊人久久大香线蕉| 18禁在线播放成人免费| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久电影网 | 精品酒店卫生间| 国产高清不卡午夜福利| 国产高潮美女av| 黄片无遮挡物在线观看| 久久精品久久久久久噜噜老黄 | 午夜激情福利司机影院| 99热6这里只有精品| 美女高潮的动态| 久久精品夜夜夜夜夜久久蜜豆| 亚洲无线观看免费| 草草在线视频免费看| 国产精品日韩av在线免费观看| 性色avwww在线观看| 亚洲不卡免费看| 高清视频免费观看一区二区 | 亚州av有码| 国产在视频线精品| 直男gayav资源| 亚洲,欧美,日韩| 日本黄色视频三级网站网址| 在线观看av片永久免费下载| 日本五十路高清| 91av网一区二区| 我的女老师完整版在线观看| 国产av不卡久久| 久久久成人免费电影| 国产国拍精品亚洲av在线观看| 国产av不卡久久| 淫秽高清视频在线观看| 免费搜索国产男女视频| 国产精品熟女久久久久浪| 久久久久性生活片| 欧美另类亚洲清纯唯美| 国产一区有黄有色的免费视频 | 亚洲人与动物交配视频| 中文字幕亚洲精品专区| 日本一本二区三区精品| 国产欧美日韩精品一区二区| 大香蕉久久网| 亚洲精品成人久久久久久| 一级毛片久久久久久久久女| 色视频www国产| 亚洲精华国产精华液的使用体验| 免费看a级黄色片| 狂野欧美激情性xxxx在线观看| 最近2019中文字幕mv第一页| 国产大屁股一区二区在线视频| 国产成人午夜福利电影在线观看| 久久精品国产亚洲av涩爱| 一级黄色大片毛片| 亚洲电影在线观看av| 波多野结衣高清无吗| 99久久中文字幕三级久久日本| 亚洲精品乱久久久久久| 我要看日韩黄色一级片| 国产成人a∨麻豆精品| 成人av在线播放网站| 狂野欧美白嫩少妇大欣赏| 别揉我奶头 嗯啊视频| 国产白丝娇喘喷水9色精品| 在线观看一区二区三区| 狠狠狠狠99中文字幕| 亚洲国产精品成人久久小说| 欧美3d第一页| 国产精品永久免费网站| 看黄色毛片网站| 国产精品1区2区在线观看.| 精品国产露脸久久av麻豆 | 亚洲天堂国产精品一区在线| 精品久久久噜噜| 日日摸夜夜添夜夜添av毛片| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 中文字幕人妻熟人妻熟丝袜美| 色网站视频免费| 亚洲av男天堂| 国产亚洲精品久久久com| 欧美97在线视频| 1000部很黄的大片| 国产不卡一卡二| 国产成人福利小说| 国产成人a∨麻豆精品| 97热精品久久久久久| 亚洲av免费高清在线观看| 超碰97精品在线观看| 国产精品蜜桃在线观看| 成人美女网站在线观看视频| 亚洲精品自拍成人| 久久99热这里只频精品6学生 | 精品一区二区三区人妻视频| 国产精品女同一区二区软件| 别揉我奶头 嗯啊视频| 国产av码专区亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品人妻视频免费看| 18禁在线播放成人免费| 国产真实乱freesex| 日韩一区二区三区影片| 国产 一区 欧美 日韩| 日韩国内少妇激情av| 三级国产精品欧美在线观看| 黄片无遮挡物在线观看| 成人国产麻豆网| 欧美性猛交╳xxx乱大交人| 亚洲国产最新在线播放| 99久久成人亚洲精品观看| 精品国产露脸久久av麻豆 | 国内少妇人妻偷人精品xxx网站| 最新中文字幕久久久久| 变态另类丝袜制服| 色播亚洲综合网| 中文乱码字字幕精品一区二区三区 | 国产精品一区二区在线观看99 | 男人舔女人下体高潮全视频| 午夜精品在线福利| 欧美日本视频| 亚洲欧洲国产日韩| 好男人视频免费观看在线| 老师上课跳d突然被开到最大视频| 亚洲中文字幕日韩| 激情 狠狠 欧美| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 久久精品久久精品一区二区三区| 精品久久久久久成人av| 人妻夜夜爽99麻豆av| 欧美性猛交黑人性爽| 青春草国产在线视频| 少妇熟女aⅴ在线视频| 国产精品av视频在线免费观看| 日韩欧美精品免费久久| 欧美变态另类bdsm刘玥| 亚洲av中文av极速乱| 国产黄a三级三级三级人| 亚洲精品影视一区二区三区av| 亚洲欧美精品综合久久99| 最近最新中文字幕大全电影3| 亚洲丝袜综合中文字幕| 欧美不卡视频在线免费观看| ponron亚洲| 有码 亚洲区| 国产精品国产三级国产专区5o | 国产成人a∨麻豆精品| 国产色爽女视频免费观看| 身体一侧抽搐| 亚洲欧美日韩卡通动漫| 天堂av国产一区二区熟女人妻| 人人妻人人澡欧美一区二区| 男插女下体视频免费在线播放| 天堂av国产一区二区熟女人妻| 久久国产乱子免费精品| 国产淫片久久久久久久久| 日韩成人伦理影院| 日韩大片免费观看网站 | 午夜福利在线观看免费完整高清在| 成年女人永久免费观看视频| 亚洲人与动物交配视频| 秋霞伦理黄片| 美女脱内裤让男人舔精品视频| 国产精品无大码| 欧美性猛交黑人性爽| 99在线视频只有这里精品首页| 亚洲精品一区蜜桃| 色5月婷婷丁香| 看十八女毛片水多多多| 网址你懂的国产日韩在线| 亚洲乱码一区二区免费版| 菩萨蛮人人尽说江南好唐韦庄 | av又黄又爽大尺度在线免费看 | 毛片女人毛片| 久久精品国产99精品国产亚洲性色| 午夜久久久久精精品| 伦理电影大哥的女人| 国产精品一区二区性色av| 国产一区亚洲一区在线观看| 亚洲va在线va天堂va国产| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区免费观看| 国产乱人视频| 在线观看一区二区三区| 91精品伊人久久大香线蕉| 简卡轻食公司| 尤物成人国产欧美一区二区三区| 免费无遮挡裸体视频| 国产精品无大码| 少妇的逼水好多| 高清视频免费观看一区二区 | 美女国产视频在线观看| 精品久久久久久久末码| 国产v大片淫在线免费观看| 成人午夜精彩视频在线观看| 亚洲精品,欧美精品| 久久久久久大精品| 午夜激情福利司机影院| 3wmmmm亚洲av在线观看| 综合色丁香网| 女人被狂操c到高潮| 日日摸夜夜添夜夜添av毛片| 自拍偷自拍亚洲精品老妇| 男女国产视频网站| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 赤兔流量卡办理| 精品人妻偷拍中文字幕| 五月玫瑰六月丁香| 亚洲精品国产av成人精品| 久久久a久久爽久久v久久| 久久精品人妻少妇| 毛片一级片免费看久久久久| 中文资源天堂在线| 变态另类丝袜制服| 久久久久久久国产电影| 日韩一本色道免费dvd| 毛片一级片免费看久久久久| 欧美人与善性xxx| 精品午夜福利在线看| 免费看日本二区| 成人毛片60女人毛片免费| 狠狠狠狠99中文字幕| 国产精品电影一区二区三区| 七月丁香在线播放| 简卡轻食公司| 91狼人影院| 91av网一区二区| 一区二区三区四区激情视频| 蜜桃亚洲精品一区二区三区| 伦精品一区二区三区| 又粗又爽又猛毛片免费看| 一级毛片久久久久久久久女| 国产又黄又爽又无遮挡在线| 婷婷色综合大香蕉| 国产视频内射| 国产成人精品久久久久久| 免费观看性生交大片5| 国产色爽女视频免费观看| 久久国产乱子免费精品| 三级国产精品片| 成年女人看的毛片在线观看| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 欧美一区二区国产精品久久精品| 成人美女网站在线观看视频| 色综合亚洲欧美另类图片| 美女高潮的动态| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 看片在线看免费视频| 亚洲欧美成人综合另类久久久 | 日韩一本色道免费dvd| 一区二区三区乱码不卡18| 熟妇人妻久久中文字幕3abv| 亚洲最大成人av| 真实男女啪啪啪动态图| 美女国产视频在线观看| 国产精品蜜桃在线观看| 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 一个人看视频在线观看www免费| 国产黄a三级三级三级人| 99久久成人亚洲精品观看| 亚洲国产精品sss在线观看| 成人性生交大片免费视频hd| 国产一级毛片七仙女欲春2| 91精品伊人久久大香线蕉| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| 乱码一卡2卡4卡精品| 免费观看a级毛片全部| 久久精品夜色国产| 久久热精品热| 国产精品久久久久久精品电影小说 | 国产一区二区在线av高清观看| 亚洲图色成人| 亚洲欧美成人综合另类久久久 | 国产精品一及| 久久久久久久久久久丰满| 村上凉子中文字幕在线| 麻豆成人午夜福利视频| 内射极品少妇av片p| 亚洲怡红院男人天堂| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 午夜a级毛片| 午夜福利在线观看吧| videos熟女内射| 亚洲国产高清在线一区二区三| 久久久精品94久久精品| 欧美3d第一页| 亚洲最大成人中文| 成人国产麻豆网| 国产精品一区www在线观看| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆| av视频在线观看入口| a级毛色黄片| 看十八女毛片水多多多| 最近最新中文字幕免费大全7| 熟女人妻精品中文字幕| 国产精品乱码一区二三区的特点| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲三级黄色毛片| 国产精品一区二区性色av| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 美女脱内裤让男人舔精品视频| 亚洲精品色激情综合| 桃色一区二区三区在线观看| 久久鲁丝午夜福利片| 九九久久精品国产亚洲av麻豆| 99在线视频只有这里精品首页| 亚洲国产日韩欧美精品在线观看| 人人妻人人澡欧美一区二区| 丝袜美腿在线中文| 欧美成人免费av一区二区三区| 国产精品久久久久久久电影| 成年女人永久免费观看视频| 91精品国产九色| 精品熟女少妇av免费看| or卡值多少钱| 欧美成人午夜免费资源| 国产av码专区亚洲av| 九色成人免费人妻av| 亚洲一区高清亚洲精品| 伦精品一区二区三区| 国产精品av视频在线免费观看| 国产亚洲av嫩草精品影院| 国产午夜精品一二区理论片| 男人舔女人下体高潮全视频| 亚洲国产最新在线播放| 丝袜喷水一区| 亚洲精品日韩在线中文字幕| 日日摸夜夜添夜夜爱| 色尼玛亚洲综合影院| 精品人妻偷拍中文字幕| 欧美激情在线99| 国产又黄又爽又无遮挡在线| 日本免费一区二区三区高清不卡| 成人毛片60女人毛片免费| 免费大片18禁| 又爽又黄a免费视频| 26uuu在线亚洲综合色| 男人狂女人下面高潮的视频| 精华霜和精华液先用哪个| 国产精品伦人一区二区| 久久精品国产自在天天线| 久久草成人影院| 亚洲国产精品sss在线观看| 欧美3d第一页| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| 色噜噜av男人的天堂激情| 如何舔出高潮| 日韩精品有码人妻一区| 久久久久久久久久久丰满| 草草在线视频免费看| 欧美成人午夜免费资源| 亚洲av男天堂| 亚洲av成人精品一区久久| 美女黄网站色视频| 真实男女啪啪啪动态图| 日本色播在线视频| 国产麻豆成人av免费视频| 在线观看66精品国产| 亚洲av成人av| 欧美丝袜亚洲另类| 国产成人一区二区在线| 黄片wwwwww| 乱系列少妇在线播放| 国产免费男女视频| 久久久久久久久久黄片| 久久久久久久久久黄片| 99热这里只有是精品50| 国产精品一区二区三区四区久久| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 99热6这里只有精品| 汤姆久久久久久久影院中文字幕 | 热99re8久久精品国产| 男人舔奶头视频| 国产精品国产三级国产专区5o | 国产在视频线在精品| 热99在线观看视频| 国产亚洲av片在线观看秒播厂 | 99九九线精品视频在线观看视频| 不卡视频在线观看欧美| 亚洲五月天丁香| 美女脱内裤让男人舔精品视频| 久久久久九九精品影院| 91久久精品电影网| 99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 色尼玛亚洲综合影院| 我的女老师完整版在线观看| 国产精品电影一区二区三区| 欧美性猛交╳xxx乱大交人| 国产探花极品一区二区| 免费搜索国产男女视频| 亚洲国产高清在线一区二区三| 亚洲四区av| 国产女主播在线喷水免费视频网站 | 51国产日韩欧美| 国产亚洲5aaaaa淫片| 婷婷色av中文字幕| 日韩制服骚丝袜av| 天堂网av新在线| 有码 亚洲区| 亚洲成av人片在线播放无| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜 | 少妇人妻精品综合一区二区| 人人妻人人澡欧美一区二区| 99热这里只有精品一区| 亚洲av免费在线观看| 99热精品在线国产| 欧美一区二区亚洲| 人人妻人人澡人人爽人人夜夜 | 国产亚洲一区二区精品| 色噜噜av男人的天堂激情| 精品久久久久久久久久久久久| 亚洲av免费在线观看| 精品无人区乱码1区二区| 22中文网久久字幕| 日本黄色片子视频| 免费播放大片免费观看视频在线观看 | 国产精品.久久久| 性色avwww在线观看| 国产免费一级a男人的天堂| 99热6这里只有精品| 成人三级黄色视频| av黄色大香蕉| 国产精品日韩av在线免费观看| 国产成人一区二区在线| 久久午夜福利片| 国产极品精品免费视频能看的| 国产精品嫩草影院av在线观看| 男女啪啪激烈高潮av片| 99久国产av精品| 免费av毛片视频| 夜夜爽夜夜爽视频| 免费看美女性在线毛片视频| 国产黄片美女视频| 亚洲国产色片| 美女大奶头视频| 国产乱人偷精品视频| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜添av毛片| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 三级国产精品片| 在线观看一区二区三区| 夜夜爽夜夜爽视频| 免费观看人在逋| 搞女人的毛片| 天美传媒精品一区二区| 高清视频免费观看一区二区 | 精品久久久久久成人av| 五月玫瑰六月丁香| 欧美日韩国产亚洲二区| 观看美女的网站| 亚洲精华国产精华液的使用体验| 欧美一区二区亚洲| 在线a可以看的网站| 综合色av麻豆| 99久久成人亚洲精品观看| 色噜噜av男人的天堂激情| 成人鲁丝片一二三区免费| 蜜臀久久99精品久久宅男| 国产人妻一区二区三区在| 亚洲中文字幕一区二区三区有码在线看| 少妇猛男粗大的猛烈进出视频 | 能在线免费看毛片的网站| 黄色一级大片看看| 久久综合国产亚洲精品| 99热精品在线国产| 97超视频在线观看视频| 尤物成人国产欧美一区二区三区| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| 亚洲电影在线观看av| 国产精品久久视频播放| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 欧美日本视频| 久久久久久久午夜电影| 秋霞伦理黄片| 有码 亚洲区| 免费一级毛片在线播放高清视频| 久久人人爽人人爽人人片va| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 老师上课跳d突然被开到最大视频| 国产亚洲午夜精品一区二区久久 | 啦啦啦观看免费观看视频高清| 欧美性感艳星| 国产熟女欧美一区二区| 青春草国产在线视频| 色综合亚洲欧美另类图片| 波多野结衣巨乳人妻| 天堂网av新在线| 我要搜黄色片| 亚洲第一区二区三区不卡| 久99久视频精品免费| 五月伊人婷婷丁香| 国产淫语在线视频| 99国产精品一区二区蜜桃av| 国产高潮美女av| 18禁动态无遮挡网站| 国产亚洲91精品色在线| 日本熟妇午夜| 国产淫片久久久久久久久| 日韩中字成人| 久久精品熟女亚洲av麻豆精品 | 性插视频无遮挡在线免费观看| 搞女人的毛片| 免费观看人在逋| 国产亚洲精品av在线| 18禁在线播放成人免费| 熟妇人妻久久中文字幕3abv| 69人妻影院| 久久久久久久久久成人| 亚洲av一区综合| 亚洲,欧美,日韩| 两个人视频免费观看高清| 女人久久www免费人成看片 | 国产精品一区二区在线观看99 | 免费搜索国产男女视频| 日韩人妻高清精品专区| 国产久久久一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产毛片a区久久久久| 亚洲国产色片| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| 嫩草影院新地址| 国产女主播在线喷水免费视频网站 | 亚洲国产精品国产精品| 舔av片在线| 亚洲中文字幕日韩| 亚洲精品456在线播放app| 又粗又硬又长又爽又黄的视频| 国产精品不卡视频一区二区| 最近中文字幕高清免费大全6| 国产精品一区二区三区四区免费观看| 一个人免费在线观看电影| 两性午夜刺激爽爽歪歪视频在线观看| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看| 久久6这里有精品| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 国产成人a∨麻豆精品| .国产精品久久| 性色avwww在线观看| 午夜福利在线观看免费完整高清在| 国模一区二区三区四区视频| 熟女电影av网| 国产人妻一区二区三区在| 日产精品乱码卡一卡2卡三| 免费看av在线观看网站| 97人妻精品一区二区三区麻豆| 欧美成人免费av一区二区三区| 99久久精品热视频| 日本一本二区三区精品| 国产高清国产精品国产三级 | 纵有疾风起免费观看全集完整版 | 床上黄色一级片| 国产探花在线观看一区二区| 精品午夜福利在线看| 久久久久久久亚洲中文字幕| 久久久久久久久久黄片| 免费一级毛片在线播放高清视频| 搡老妇女老女人老熟妇| 欧美最新免费一区二区三区| 老司机影院成人| 国产午夜精品久久久久久一区二区三区| 午夜福利成人在线免费观看| 最近最新中文字幕免费大全7| a级一级毛片免费在线观看| 在线观看美女被高潮喷水网站| 人人妻人人澡人人爽人人夜夜 | 免费观看人在逋| 岛国毛片在线播放| 男女视频在线观看网站免费| 夫妻性生交免费视频一级片| 欧美成人一区二区免费高清观看| .国产精品久久| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产色片| 白带黄色成豆腐渣| 性插视频无遮挡在线免费观看| 天天一区二区日本电影三级| 免费大片18禁| 色5月婷婷丁香| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站|