• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Passivation of PEA+to MAPbI3(110)surface states by first-principles calculations?

    2021-05-06 08:55:22WeiHu胡偉YingTian田穎HongTaoXue薛紅濤WenShengLi李文生andFuLingTang湯富領(lǐng)
    Chinese Physics B 2021年4期
    關(guān)鍵詞:胡偉

    Wei Hu(胡偉), Ying Tian(田穎), Hong-Tao Xue(薛紅濤),Wen-Sheng Li(李文生), and Fu-Ling Tang(湯富領(lǐng)),?

    1School of Materials Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,China

    2State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China

    3Department of Materials Engineering,Lanzhou Institute of Technology,Lanzhou 730050,China

    Keywords: first-principles calculations,surface states,passivation

    1. Introduction

    Although the photoelectric conversion efficiency (PCE)has increased rapidly since the advent of perovskite solar cells(PSCs), researchers are still facing many challenges, such as preparing large-area perovskite films,[1]improving the oxidation stability of the device,[2]and developing effective technology to passivate the surface/interface defects.[3]Besides the properties of each layer material, the surface/interface structures and properties of solar cells are also crucial to the performance, which has led to a recent research focus in pursuing higher conversion efficiency.[4–9]For PSCs,defects of the bulk phase, the grain boundary, and the surface or interface will significantly affect carrier transport and charge recombination, which hinders improving the efficiency of PSCs. In addition,the battery materials prepared under mild conditions are far from the equilibrium state. Thus, there are rich interfaces,structural disorders and defects,which can lead to lower reproducibility of experiments and poor device stability.[10]For this reason,developers try to improve battery performance by modifying and adjusting the surface or interface. Surface states are one of the reasons for low conversion efficiency and poor stability of devices.Therefore,optimizing the passivation method is also a primary way to improve the efficiency and stability of the device. Below, we briefly review some experimental results of perovskite solar cell interface research and regulation. In 2019,You et al. summarized the latest progress of effective defect passivation about perovskite solar cells and described in detail the passivation methods of traditional solar cells.[11]For example, two-dimensional perovskite,[12,13]halogen ion,[14]and other materials with wide band gap[15]are commonly used to passivate surface defects. Moreover,the national renewable energy laboratory (NREL) also introduced the necessity of passivation of bulk or surface (interface) defects by additives and summarized the performances of additives used to control surface defects of perovskite,such as metal cations, fullerene derivatives, ammonium salts, low dimensional perovskite.[16,17]Abdi-Jalebi et al. found that when KI was added to the perovskite precursor, K+would accumulate on the surface to passivate those expanding defects; thus, the perovskite film with PCE of 21.5% could be produced.[18]Lee et al. reported the advantages of adding PEA+into 3D perovskite, and the wide band gap quasi-2D perovskite based on PEA+is conducive to reducing the defect density and slowing down the degradation of the unpacked devices.[19]Compared with the traditional 3D perovskite, the low-dimensional perovskite with 2D layered structure has better phase stability due to its large organic cation; in addition, the hydrophobic effect of phenyl makes the device have better moisture resistance.[20,21]Among low-dimensional perovskites,the passivation effect of phenethylammonium iodide(PEAI)is most commendable,[22–24]probably due to the more ordered 2D passivation layer formed by PEAI, and the synergistic effect of three groups is conducive to the longitudinal transport.[25]Based on this, the first principle calculation method based on density functional theory is used to study the passivation effect of PEA+on the electronic states of MAPbI3(110)surface.

    2. Methods and model

    In this work, all the calculations are performed with the code package VASP based on the density functional theory (DFT).[26,27]The exchange–correlation energy is described by the functional of Perdew–Burke–Ernzerh (PBE)[28]in the generalized gradient approximation (GGA), and the pseudopotential is described by projector-augmented wave(PAW).[29]By cutting the bulk MAPbI3along the(110)direction, when surface termination is MA+cation (as shown in Fig.1),the system contains 6 periodic atomic layers(excluding pseudo-H layer)of A-B,and the structure of the model is complete.In order to make the PEA+cations play an effective passivation role on this surface,I is made the surface terminal atom,and the top A-layer1 is deleted.The model forms a symmetrical nonpolar surface of the upper and lower atomic layers. PEA+is placed on the exposed and clean MAPbI3(110)surface with B-layer2 to establish the adsorption model. The passivation of H atom is added to eliminate the influence of the surface hanging bond of the bottom atom. The adsorption system consists of 84 atoms(43 H,6 N,13 C,17 I,and 5 Pb).The electronic configurations of Pb,I,N,C and H atoms in the crystal model are[Xe]5d106s26p2,[Kr]4d105s25p5,C 2s22p2,N 2s22p3and 1s1,respectively. The cutoff energy of MAPbI3surface and its adsorption system is 520 eV, and the k-point grids of the Brillouin region are set to 6×4×1. We use the conjugate gradient algorithm to optimize the original structure of the clean surface and the adsorption model. The convergence condition of the atomic force is set to 5×10?2eV/?A.Then, the adsorption energy and density of states (DOS) of the model are calculated according to the Bloch tetrahedron method.

    Fig.1. Atomic terminal of MAPbI3 (110)surface model.

    3. Results and discussion

    3.1. Lattice structure and electronic properties of clean MAPbI3 (110)surface

    Figure 3 shows the total density of states (TDOS) of clean MAPbI3(110) surface, and the local density of states(LDOS)of each layer,and the partial density of states(PDOS)of some atoms on the surface. From the TDOS (Fig.3(a)),it can be found that there is a peak near the Fermi level between ?1 eV and ?0.5 eV, and DOS is 11.5 at the Fermi level, which indicates the existence of electronic states. According to Figs.3(b)–3(f),it can be found that these electronic states mainly come from the first,the third,and the fifth layer of atoms. From Figs. 3(g)–3(j), the peak of density of states is mainly contributed by the I-5p, Pb-6s, and Pb-6p orbitals on the first layer of the surface near the Fermi level. These electronic states are surface states, which may have harmful effects on the surface. The main reason is that the existence of the electronic states leads to the radiation compound loss of the photo-generated carriers on the surface, which reduces the PCE of devices. Therefore, it is particularly important to find the surface passivators to weaken or even eliminate the electronic states.

    Fig.2. The optimized atomic position change of clean MAPbI3 (110)surface.

    Fig.3. (a)The TDOS of clean MAPbI3 (110)surface;(b)–(f)the LDOS of layer1–layer5;(g)–(j)the PDOS of layer1.

    Fig.5. The change of atom position in the optimized adsorption system.

    3.3. Adsorption energy and electronic properties of PEA+-MAPbI3 adsorption system

    The stability of surface adsorption is related to the adsorption energy of the system. In other words, if the adsorption energy is negative,the smaller the value,the more stable the adsorption of molecules or atoms on the surface.[30]Equation(1)is used to calculate the adsorption energy of PEA+on MAPbI3(110)surface[31]Eatom/MAPbI3and EMAPbI3represent the total energy of adsorption system and clean surface MAPbI3(110),respectively.Eatomis the total energy of the adsorbate PEA+. N is 1,which means to adsorb a molecule.The adsorption energy of the system is ?3.898 eV.The result shows that the system has higher absorbability, and it also shows that the passivator has good stability on this surface.

    Surface states (electronic states) are an unfavorable factor for solar cells. It serves as a carrier recombination center for photogenerated carriers and will thereby reduce the carrier lifetime as well as PCE.Compared Fig.3 with Fig.6,the passivation effect of PEA+on the MAPbI3(110) surface can be analyzed. It can be seen that the passivator PEA+greatly reduces the electronic states of MAPbI3surface,and its value of total DOS decreases from 11.5 to 6.5 at the Fermi level. Thus,PEA+treatment should greatly suppress trap-assisted charge recombination and improve PCE. This is basically consistent with the experimental results of Zhang et al.[22–24]Through the analysis of the PDOS,it may be seen that the decrease of the electronic states peak value is mainly due to the contribution of I-5p and Pb-6p, Pb-6s on the first layer of MAPbI3(110) surface near the Fermi level within ?1.5 to 0.3 eV.Moreover,compared with the band gap of clean MAPbI3(110)surface, the band gap of the adsorption system decreases significantly, and it also shows that PEA+can regulate the band gap of MAPbI3(110)surface. Figure 6(b)shows that the adsorption of PEA+does not introduce new electronic states,which has a good passivation effect. Compared with the local density of states of clean MAPbI3(110)surfaces(Figs.5(b)–5(e)),it can be seen that the first four layers have no DOS peak due to the addition of passivator near the Fermi level.In particular,the passivation effect of PEA+on the first and third layers is most obvious in Figs.6(c)–6(f). Figures 6(i)–6(n)show the PDOS of C, N, I, and Pb atoms at the adsorption surfaces of MAPbI3/PEA+. According to Figs.6(i),6(l)and 6(n),there is hybridization of C-2p orbital of PEA+and N-2s with the Pb-6p orbital of MAPbI3near the Fermi level within 1.5 to 2.5 eV.Figures 6(i)and 6(m)show that there is a hybridization of C-2p orbital of PEA+and I-5p orbital of MAPbI3. According to the above analysis,the adsorption of PEA+on the MAPbI3(110)surface has a good passivation effect,and the electronic orbital hybridization also promotes interaction between atoms.

    Charge density difference and Bader charge are qualitative and quantitatively described of the surface charge transfer degree,respectively. By calculating the charge density difference and Bader charge, we can fully understand the charge transfer of the whole system.[32]Charge density difference is calculated by

    Fig.6. (a)The TDOS of PEA+-MAPbI3 adsorption system;(b)the LDOS of PEA+;(c)–(g)the LDOS of layer1–layer5;(h)the LDOS of passivation H;(i)–(n)the PDOS of PEA+ and MAPbI3 (110)layer1.

    Figure 7 shows the charge density difference of PEA+adsorbed on the surface of MAPbI3(110). The increase(positive) or decrease (negative) of charge density is indicated by yellow and cyan,respectively.Figure 7(a)is the charge density difference of the adsorption system,and Fig.7(b)is a partially enlarged diagram of the charge density difference of the adsorption system. From Fig.7(a),it can be seen that the charge transfer takes place throughout the system but mainly concentrates near the surface;the farther from the surface,the smaller the charge transfer. The charge density difference culminates on the surface, and the charge transfers are directed to both sides of the surface,which will promote the bonding strength between the surface atoms,leading to strong atoms interaction on the surface. From Fig.7(b),it can be seen that I atoms gain electrons,and Pb atoms lose electrons. For the PEA+part,the number of C atoms electron is reduced while the number of N atom electron increases near the surface.

    Fig.7. Density charge difference of the PEA+-MAPbI3 adsorption system.

    The amount of charge transfer is analyzed by calculating the Bader charge of each atom of the adsorption structure surface and bulk phase. Table 1 shows the Bader charges of I,Pb,C,N atoms of MAPbI3and PEA+bulk,and that of the adsorption system near the surface. It can be found that I5,I11,and I17 atoms get 0.588e,0.669e,and 0.684e,respectively,while Pb5 atom loses 0.892e on the first layer of adsorption system MAPbI3. Compared with the Bader charge of I and Pb atoms in the original phase, I and Pb atoms of the adsorption system gain or lose more electrons. Compared Bader charge of the adsorption system PEA+with that of the independent system PEA+,it can be seen that N atom gets 2.944e,C12 atom gets 0.779e,and C13 loses 0.523e near the adsorption system surface.To sum up,through the analysis of Figs.6 and 7,combined with Bader charge,it can be seen that the decrease of the surface states of MAPbI3(110)is mainly due to the contribution of C and N atoms of passivator PEA+. The above results show that the Bader charge changes greatly before and after PEA+adsorbed on the MAPbI3surface, which indicates that the surface chemical reaction is strong. On the other hand, it can be seen that the farther away from the surface,the smaller the charge transfer.

    Table 1. Bader charges of some atoms of MAPbI3 bulk and PEA+-MAPbI3 adsorption system.

    4. Conclusion

    In this work, the passivation effect of PEA+to the electronic states of MAPbI3(110) surface is studied using VASP software based on the first principle calculations. The results show that surface electrons are redistributed and the surface states are passivated. The C and N atoms of the passivator PEA+surface can eliminate the surface states,which is mainly due to the contribution of I-5p and Pb-6p,Pb-6s on the first and the third layer of MAPbI3(110) surface near the Fermi level between ?1.5 eV and 0.3 eV by adding the passivator. The study of passivated surface provides a theoretical guideline for enhancing the transmission of photogenerated carriers and is inspiring to improve the PCE of MAPbI3-based solar cells.

    Acknowledgment

    This work was performed in the Gansu Supercomputer Center.

    猜你喜歡
    胡偉
    Configurational entropy-induced phase transition in spinel LiMn2O4
    新工科背景下計(jì)算機(jī)專業(yè)創(chuàng)新創(chuàng)業(yè)人才培養(yǎng)探究
    客聯(lián)(2022年3期)2022-05-31 04:28:08
    輪式拖拉機(jī)前驅(qū)動橋使用調(diào)整
    Adsorption of propylene carbonate on the LiMn2O4(100)surface investigated by DFT+U calculations?
    Coherent Controlling Single Photon Asymmetric Transmission in the Atom Chirally Coupled Waveguide System?
    復(fù)雜地質(zhì)條件下鐵路隧道施工難點(diǎn)與解決措施
    胡偉
    中國篆刻(2017年7期)2017-09-05 10:01:35
    胡偉藝術(shù)作品
    思想者的藝術(shù)表達(dá)——胡偉訪談錄
    詐騙共犯:的哥老爸“擇婿”進(jìn)班房
    国产成人啪精品午夜网站| 亚洲精品久久国产高清桃花| 欧美性猛交╳xxx乱大交人| 欧美日韩乱码在线| 一个人观看的视频www高清免费观看 | 久久久久久大精品| 男插女下体视频免费在线播放| 欧美一级毛片孕妇| 91九色精品人成在线观看| 精品电影一区二区在线| 国产黄a三级三级三级人| 久久精品91无色码中文字幕| 亚洲第一欧美日韩一区二区三区| 激情在线观看视频在线高清| 日韩 欧美 亚洲 中文字幕| 免费看美女性在线毛片视频| 老司机午夜十八禁免费视频| 好看av亚洲va欧美ⅴa在| 99久久久亚洲精品蜜臀av| 一进一出好大好爽视频| 俺也久久电影网| www.精华液| 亚洲国产精品合色在线| 九九久久精品国产亚洲av麻豆 | 特大巨黑吊av在线直播| 亚洲欧美精品综合久久99| 中出人妻视频一区二区| 亚洲精品456在线播放app | 精品福利观看| 精品国产超薄肉色丝袜足j| 成人国产一区最新在线观看| 亚洲自拍偷在线| 99久久精品热视频| 一二三四社区在线视频社区8| www.999成人在线观看| 亚洲精品粉嫩美女一区| 午夜亚洲福利在线播放| 一级毛片高清免费大全| 看黄色毛片网站| 国产精品国产高清国产av| 日韩中文字幕欧美一区二区| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| 欧美色视频一区免费| 麻豆av在线久日| 欧美乱妇无乱码| av片东京热男人的天堂| 色尼玛亚洲综合影院| 亚洲 欧美一区二区三区| 熟妇人妻久久中文字幕3abv| 欧美日韩综合久久久久久 | 国内少妇人妻偷人精品xxx网站 | 亚洲精品456在线播放app | 日本成人三级电影网站| 三级国产精品欧美在线观看 | 在线观看日韩欧美| 久久性视频一级片| 97超级碰碰碰精品色视频在线观看| svipshipincom国产片| 在线国产一区二区在线| 老熟妇乱子伦视频在线观看| 我的老师免费观看完整版| 精品人妻1区二区| 亚洲精品色激情综合| 精品国产乱码久久久久久男人| 午夜福利在线观看吧| 国产精品美女特级片免费视频播放器 | 中文字幕高清在线视频| 亚洲国产精品合色在线| 两个人的视频大全免费| 啦啦啦免费观看视频1| 久久婷婷人人爽人人干人人爱| 久久中文看片网| 精品久久久久久久毛片微露脸| 母亲3免费完整高清在线观看| 一本久久中文字幕| 日本黄色片子视频| 国产又黄又爽又无遮挡在线| 国产亚洲精品综合一区在线观看| 国产精品国产高清国产av| 精品不卡国产一区二区三区| 日韩人妻高清精品专区| 久久精品夜夜夜夜夜久久蜜豆| 天堂√8在线中文| 91在线精品国自产拍蜜月 | 午夜激情福利司机影院| 欧美大码av| 特级一级黄色大片| 99久久久亚洲精品蜜臀av| 中文字幕人成人乱码亚洲影| 久久精品影院6| 啪啪无遮挡十八禁网站| 成人性生交大片免费视频hd| 校园春色视频在线观看| 国产欧美日韩精品一区二区| 亚洲色图av天堂| 久久久久亚洲av毛片大全| 在线永久观看黄色视频| 九九热线精品视视频播放| 麻豆av在线久日| 色视频www国产| 久久人妻av系列| 国产亚洲精品一区二区www| 成人特级黄色片久久久久久久| 欧美日本亚洲视频在线播放| 岛国视频午夜一区免费看| 日本免费a在线| 好男人在线观看高清免费视频| 色综合欧美亚洲国产小说| 啦啦啦韩国在线观看视频| 手机成人av网站| 久久欧美精品欧美久久欧美| 美女黄网站色视频| 日本a在线网址| 可以在线观看的亚洲视频| 成人18禁在线播放| 国产伦在线观看视频一区| 12—13女人毛片做爰片一| 国内揄拍国产精品人妻在线| 国产精品日韩av在线免费观看| 亚洲精华国产精华精| 成年免费大片在线观看| 国产人伦9x9x在线观看| 免费在线观看视频国产中文字幕亚洲| 悠悠久久av| 九九久久精品国产亚洲av麻豆 | 国产v大片淫在线免费观看| 看片在线看免费视频| 日韩中文字幕欧美一区二区| 他把我摸到了高潮在线观看| 色综合站精品国产| 高清毛片免费观看视频网站| 亚洲一区高清亚洲精品| 99精品在免费线老司机午夜| 黄色日韩在线| 亚洲成人中文字幕在线播放| 国产成人福利小说| www.www免费av| 亚洲欧美精品综合久久99| 亚洲国产欧美网| 不卡一级毛片| 精品乱码久久久久久99久播| 丰满人妻一区二区三区视频av | 国产不卡一卡二| 成年女人永久免费观看视频| 性色avwww在线观看| 亚洲第一欧美日韩一区二区三区| 人人妻人人看人人澡| 国产午夜福利久久久久久| 亚洲片人在线观看| 免费看美女性在线毛片视频| 亚洲人成电影免费在线| 亚洲国产精品久久男人天堂| 老司机深夜福利视频在线观看| 悠悠久久av| 丰满人妻一区二区三区视频av | 嫩草影院精品99| 后天国语完整版免费观看| 亚洲国产精品久久男人天堂| 色综合婷婷激情| 不卡一级毛片| 黄片小视频在线播放| 91久久精品国产一区二区成人 | 国产一区二区激情短视频| 亚洲av第一区精品v没综合| 精品熟女少妇八av免费久了| 午夜成年电影在线免费观看| 国产成+人综合+亚洲专区| 91字幕亚洲| 88av欧美| 丝袜人妻中文字幕| 亚洲国产精品久久男人天堂| 不卡av一区二区三区| 精品人妻1区二区| 亚洲狠狠婷婷综合久久图片| 久9热在线精品视频| 久久久久久久久免费视频了| 婷婷精品国产亚洲av| 18禁黄网站禁片免费观看直播| 色综合站精品国产| 成年人黄色毛片网站| 成人18禁在线播放| 免费无遮挡裸体视频| 日韩成人在线观看一区二区三区| 亚洲av电影在线进入| 国产三级黄色录像| 青草久久国产| 国产欧美日韩一区二区精品| 国产成人啪精品午夜网站| 激情在线观看视频在线高清| 亚洲国产精品999在线| 噜噜噜噜噜久久久久久91| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人精品一区久久| 精品不卡国产一区二区三区| 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 好男人电影高清在线观看| 国产欧美日韩精品亚洲av| 男人的好看免费观看在线视频| 成人18禁在线播放| 黄色成人免费大全| 久久99热这里只有精品18| 国产精品久久视频播放| 熟女少妇亚洲综合色aaa.| 欧美绝顶高潮抽搐喷水| 精品人妻1区二区| 舔av片在线| 亚洲人成伊人成综合网2020| 一级毛片精品| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 成年人黄色毛片网站| 99热这里只有是精品50| 国产视频一区二区在线看| 国产免费av片在线观看野外av| 一个人观看的视频www高清免费观看 | 国产aⅴ精品一区二区三区波| 白带黄色成豆腐渣| 国产高清激情床上av| 一个人观看的视频www高清免费观看 | 午夜久久久久精精品| 三级男女做爰猛烈吃奶摸视频| 国产伦精品一区二区三区视频9 | 90打野战视频偷拍视频| 久99久视频精品免费| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 长腿黑丝高跟| 成人性生交大片免费视频hd| 麻豆一二三区av精品| 老熟妇仑乱视频hdxx| 一进一出好大好爽视频| 免费人成视频x8x8入口观看| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 最近视频中文字幕2019在线8| 成年免费大片在线观看| 又紧又爽又黄一区二区| 搡老妇女老女人老熟妇| 99久久99久久久精品蜜桃| 国产精品免费一区二区三区在线| 亚洲avbb在线观看| 成人国产一区最新在线观看| 观看美女的网站| av片东京热男人的天堂| 看黄色毛片网站| 亚洲精品一区av在线观看| 久久中文字幕一级| 又爽又黄无遮挡网站| 不卡av一区二区三区| 国产不卡一卡二| 精品久久久久久久末码| 久久午夜综合久久蜜桃| 国产一区二区三区视频了| 欧美黑人欧美精品刺激| 亚洲成av人片免费观看| 欧美一级a爱片免费观看看| 黄色 视频免费看| 成人午夜高清在线视频| 欧美日韩一级在线毛片| 可以在线观看毛片的网站| 国产精品综合久久久久久久免费| 久久久国产精品麻豆| 国产97色在线日韩免费| 色老头精品视频在线观看| 99久久精品热视频| 99riav亚洲国产免费| 久久久精品大字幕| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 久久精品国产99精品国产亚洲性色| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 性色avwww在线观看| 久久久精品大字幕| 国产三级中文精品| 观看美女的网站| 亚洲avbb在线观看| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 熟女人妻精品中文字幕| 少妇的逼水好多| 欧美av亚洲av综合av国产av| 欧美黑人巨大hd| 夜夜躁狠狠躁天天躁| 日韩精品青青久久久久久| 国产精品av久久久久免费| 成人18禁在线播放| 婷婷六月久久综合丁香| 成熟少妇高潮喷水视频| 18禁黄网站禁片免费观看直播| 精品无人区乱码1区二区| 身体一侧抽搐| 男人和女人高潮做爰伦理| 曰老女人黄片| 亚洲欧美日韩卡通动漫| 欧美日韩瑟瑟在线播放| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 国产精品自产拍在线观看55亚洲| 亚洲午夜理论影院| 听说在线观看完整版免费高清| 色av中文字幕| 色综合婷婷激情| 日韩欧美 国产精品| 国产欧美日韩一区二区三| 一夜夜www| 日韩欧美国产在线观看| 国产乱人视频| 一夜夜www| 欧美大码av| 久久精品夜夜夜夜夜久久蜜豆| 欧美丝袜亚洲另类 | 精品无人区乱码1区二区| 日韩欧美 国产精品| 毛片女人毛片| 一区二区三区激情视频| cao死你这个sao货| 国产黄片美女视频| 天天躁日日操中文字幕| 成人国产综合亚洲| 亚洲欧美日韩卡通动漫| 亚洲av五月六月丁香网| 欧美黑人巨大hd| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 怎么达到女性高潮| 国产成年人精品一区二区| 黄色丝袜av网址大全| 国产不卡一卡二| 久久久久国产一级毛片高清牌| 亚洲精品一区av在线观看| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 国产精品久久视频播放| 91在线观看av| 午夜a级毛片| 18美女黄网站色大片免费观看| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av在线| 亚洲精品久久国产高清桃花| 国产精品野战在线观看| 中文字幕人成人乱码亚洲影| 男人和女人高潮做爰伦理| 无限看片的www在线观看| 在线免费观看的www视频| 在线免费观看不下载黄p国产 | 巨乳人妻的诱惑在线观看| 天天添夜夜摸| 日韩欧美在线二视频| 999久久久国产精品视频| 99国产精品一区二区蜜桃av| 午夜久久久久精精品| 日韩欧美国产一区二区入口| 日本 欧美在线| 国产成人精品久久二区二区免费| 男女做爰动态图高潮gif福利片| 好男人在线观看高清免费视频| 久久精品国产综合久久久| 婷婷六月久久综合丁香| 可以在线观看的亚洲视频| 网址你懂的国产日韩在线| 老汉色av国产亚洲站长工具| 老司机午夜福利在线观看视频| 欧美日韩综合久久久久久 | 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 国内精品美女久久久久久| 噜噜噜噜噜久久久久久91| 真实男女啪啪啪动态图| 久久久久亚洲av毛片大全| 一个人观看的视频www高清免费观看 | 老司机午夜十八禁免费视频| av福利片在线观看| 欧美一区二区国产精品久久精品| 久久伊人香网站| 99国产极品粉嫩在线观看| 俺也久久电影网| 亚洲欧美日韩东京热| 久久精品影院6| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av在线| 国产亚洲精品久久久com| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| 国产v大片淫在线免费观看| 亚洲精品在线美女| 制服丝袜大香蕉在线| 国产aⅴ精品一区二区三区波| av天堂在线播放| 国产精品久久视频播放| 韩国av一区二区三区四区| 88av欧美| 亚洲男人的天堂狠狠| www.自偷自拍.com| 久久久久九九精品影院| 国产伦在线观看视频一区| 亚洲激情在线av| 亚洲成a人片在线一区二区| 亚洲中文字幕日韩| 男女之事视频高清在线观看| 脱女人内裤的视频| 日韩欧美精品v在线| 午夜精品久久久久久毛片777| 老熟妇乱子伦视频在线观看| 床上黄色一级片| 国产人伦9x9x在线观看| 亚洲中文字幕日韩| 俄罗斯特黄特色一大片| 亚洲av成人精品一区久久| 久久精品夜夜夜夜夜久久蜜豆| xxxwww97欧美| 99久久久亚洲精品蜜臀av| 欧美xxxx黑人xx丫x性爽| 国产成人精品久久二区二区免费| 一区福利在线观看| 国产亚洲av嫩草精品影院| 亚洲色图av天堂| 黄色视频,在线免费观看| 久久热在线av| av中文乱码字幕在线| 香蕉国产在线看| 成人国产综合亚洲| 国产高清视频在线观看网站| 国产成人欧美在线观看| 全区人妻精品视频| 日本免费a在线| 99精品在免费线老司机午夜| 男女下面进入的视频免费午夜| 国产成人aa在线观看| 日本成人三级电影网站| 我要搜黄色片| 国产欧美日韩精品一区二区| 国产91精品成人一区二区三区| 久久久国产成人精品二区| 人妻夜夜爽99麻豆av| 欧美zozozo另类| 精品久久久久久久人妻蜜臀av| 亚洲无线在线观看| 国产美女午夜福利| 亚洲av五月六月丁香网| 欧美性猛交黑人性爽| 国产成人啪精品午夜网站| 久久久久亚洲av毛片大全| 欧美色视频一区免费| 国产精品一区二区三区四区免费观看 | 欧美3d第一页| 我的老师免费观看完整版| 国产伦人伦偷精品视频| 国产探花在线观看一区二区| 五月伊人婷婷丁香| 欧美日韩一级在线毛片| 黄色日韩在线| 免费看美女性在线毛片视频| 脱女人内裤的视频| 国产91精品成人一区二区三区| 成人三级做爰电影| 久久久久亚洲av毛片大全| 一级作爱视频免费观看| 日韩中文字幕欧美一区二区| 69av精品久久久久久| 亚洲无线观看免费| 久久香蕉国产精品| 男女那种视频在线观看| 国产主播在线观看一区二区| 欧美黄色淫秽网站| www.自偷自拍.com| 国产淫片久久久久久久久 | 床上黄色一级片| 国产人伦9x9x在线观看| 18禁黄网站禁片免费观看直播| aaaaa片日本免费| 国产爱豆传媒在线观看| 午夜免费激情av| 国产精品一区二区精品视频观看| 免费大片18禁| 一区二区三区国产精品乱码| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 成人国产一区最新在线观看| 青草久久国产| 国产精品一区二区精品视频观看| 日本免费a在线| 9191精品国产免费久久| 欧美黑人欧美精品刺激| 国产在线精品亚洲第一网站| 日本 av在线| 精品久久久久久成人av| 国产不卡一卡二| 精品日产1卡2卡| 国产成人系列免费观看| 国产精品亚洲av一区麻豆| 国产av在哪里看| 美女 人体艺术 gogo| 国产精品综合久久久久久久免费| 欧美色视频一区免费| av在线蜜桃| 久久午夜亚洲精品久久| 欧美三级亚洲精品| 毛片女人毛片| 黄色成人免费大全| a级毛片在线看网站| 国语自产精品视频在线第100页| 免费人成视频x8x8入口观看| 婷婷亚洲欧美| 日韩av在线大香蕉| 成年版毛片免费区| 午夜福利在线观看吧| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲真实| 欧美日韩综合久久久久久 | 午夜精品久久久久久毛片777| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| 一本一本综合久久| 亚洲一区二区三区色噜噜| 香蕉国产在线看| 亚洲成人久久性| 可以在线观看的亚洲视频| 999久久久国产精品视频| 国产成人aa在线观看| 又粗又爽又猛毛片免费看| 三级毛片av免费| 婷婷精品国产亚洲av在线| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 99久久综合精品五月天人人| 亚洲欧美日韩无卡精品| 色综合欧美亚洲国产小说| 在线观看一区二区三区| 99热这里只有精品一区 | 久久性视频一级片| 日本黄大片高清| 在线观看免费午夜福利视频| 成人国产一区最新在线观看| 欧美色欧美亚洲另类二区| 久久国产乱子伦精品免费另类| 狂野欧美激情性xxxx| 国产精品久久久av美女十八| 婷婷丁香在线五月| 久久精品aⅴ一区二区三区四区| 日本三级黄在线观看| 久久久成人免费电影| 男女那种视频在线观看| АⅤ资源中文在线天堂| 天堂av国产一区二区熟女人妻| 久久久久久大精品| 一本综合久久免费| 国产精品久久久久久人妻精品电影| 亚洲成人免费电影在线观看| 禁无遮挡网站| 成年女人看的毛片在线观看| 亚洲色图 男人天堂 中文字幕| 免费在线观看影片大全网站| 狂野欧美白嫩少妇大欣赏| 欧美又色又爽又黄视频| 美女高潮的动态| 国产精品香港三级国产av潘金莲| 高清在线国产一区| 哪里可以看免费的av片| 国产亚洲精品av在线| 亚洲av熟女| 又紧又爽又黄一区二区| 禁无遮挡网站| 国产乱人视频| 性欧美人与动物交配| 最新中文字幕久久久久 | 精品无人区乱码1区二区| 日本免费一区二区三区高清不卡| 免费在线观看成人毛片| 精华霜和精华液先用哪个| 美女扒开内裤让男人捅视频| 久久精品国产清高在天天线| 高潮久久久久久久久久久不卡| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 淫秽高清视频在线观看| 免费看光身美女| 麻豆av在线久日| 不卡一级毛片| 99久久国产精品久久久| 国产精品久久久av美女十八| 久久伊人香网站| 亚洲精品美女久久久久99蜜臀| 国产成人精品久久二区二区免费| 嫩草影院精品99| 日韩精品中文字幕看吧| 久久久久九九精品影院| 国产精品综合久久久久久久免费| e午夜精品久久久久久久| 中文字幕人成人乱码亚洲影| 中文字幕最新亚洲高清| 床上黄色一级片| 特级一级黄色大片| 免费看十八禁软件| 亚洲中文字幕一区二区三区有码在线看 | 亚洲在线观看片| 中文字幕熟女人妻在线| 亚洲最大成人中文| 国产精华一区二区三区| 成人国产一区最新在线观看| 欧美一级毛片孕妇| 久久中文看片网| 久久久久久久久中文| 国产成人精品无人区| 欧美三级亚洲精品| 精品一区二区三区四区五区乱码| 18禁黄网站禁片免费观看直播| 欧美大码av| 国产精品爽爽va在线观看网站|