• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Configurational entropy-induced phase transition in spinel LiMn2O4

    2022-09-24 08:04:02WeiHu胡偉WenWeiLuo羅文崴MuShengWu吳木生BoXu徐波andChuYingOuyang歐陽楚英
    Chinese Physics B 2022年9期
    關(guān)鍵詞:徐波胡偉羅文

    Wei Hu(胡偉) Wen-Wei Luo(羅文崴) Mu-Sheng Wu(吳木生)Bo Xu(徐波) and Chu-Ying Ouyang(歐陽楚英)

    1Department of Physics,Laboratory of Computational Materials Physics,Jiangxi Normal University,Nanchang 330022,China

    2School of Ecology and Environment,Yuzhang Normal University,Nanchang 330103,China

    Keywords: configurational entropy,LiMn2O4,phase transition,Jahn-Teller distortion

    1. Introduction

    Lithium-ion batteries (LIBs) have been widely used in many fields due to their excellent electrochemical performances, such as potable electronic devices, electric vehicles,and smart grid storage over the last few decades.[1-4]The performances of LIBs,i.e., energy density, capacity, rate capability, and cycling life, are closely related to the cathode materials. The spinel-type compound, LiMn2O4, is considered as one of the most promising materials with good electrochemical performance in LIBs due to its good thermal stability and safety, low cost, environmental benign, high energy density,etc.[5-8]At ambient temperature, the crystal structure of LiMn2O4belongs to the cubicFdˉ3mspace group,[9]

    where lithium ions are located at the tetrahedral 8asites,manganese ions at the octahedral 16dsites and oxygen ions at the 32esites.[10]Since the average valence of manganese ions in LiMn2O4is 3.5, the same numbers of Mn3+and Mn4+ions are randomly distributed at the 16dsites. However, upon cooling a first-order phase transition occurs at a temperature of ca 280 K from cubic to tetragonal(I41/amd) phase,[11-16]which hinders this compound from being put into practical application. Yamada and Tanaka[11]observed the splitting of reflections at low temperature by using thermal analysis and powder x-ray diffraction. This indicates that LiMn2O4undergoes phase transition at low temperature. Yamaguchiet al.[15]investigated an x-ray absorption fine structure (XAFS)of LiMn2O4, further confirmed the fact of the phase transition at low temperature, and reported that a phase transition occurs in the vicinity of 280 K by differential scanning calorimetric (DSC) measurement. Piszoraet al.[17]found that this phase transition is related to the Jahn-Teller effect and partial charge ordering of Mn3+and Mn4+ions,but the detailed mechanism has not been reported. The potential profile test of LiMn2O4by Abikoet al.[18]found that LiMn2O4has an additional low voltage plateau and spinel powder is pulverized by lattice stress at low temperatures. Chung and Kim[19,20]reported that the presence of the tetragonal phase of LiMn2O4particle due to a Jahn-Teller effect is one of the reasons for capacity fade by usingin situlaser probe beam deflection technique. Therefore, in order to avoid the performance degradation caused by low temperature phase transition and promote the wide application of LiMn2O4cathode, it has become an urgent topic to study phase transition mechanism of LiMn2O4at the low temperature.

    As is well known,Jahn-Teller(JT)distortion exists in the MnO6octahedron for Mn3+ions,but not for Mn4+ions. Generally speaking,the JT distortion gives rise to the lowering of the symmetry and the observed cubic phase at room temperatures seems not reasonable,as the MnO6framework is tetragonally distorted. Considering the randomly distributed Mn3+ions in the lattice,it is also possible that the orientation of the JT distortion is random,namely,the elongation of the Mn3+O6octahedron is randomly distributed along thex-,y-,andz-axis directions. That is to say, the configuration of LiMn2O4may be related to the distribution of Mn3+ions and the elongation direction of the Mn3+O6octahedron. In this way, the cubic structures can also be exit due to the JT effect of the Mn3+O6octahedron. Furthermore, Piszora[17]reported that the phase transition is induced by the JT distortion and partial charge ordering of Mn3+and Mn4+ions with temperature decreasing,indicated by using powder synchrotron radiation diffraction.On the basis of this analysis, we speculate that the structural phase transition from cubic to tetragonal phase is closely related to the configurational entropy originating from the distribution of the Mn3+and Mn4+ions and the orientation of the JT distortion direction of Mn3+O6octahedron.

    To further verify and understand the mechanism of phase transition, we study the transition between cubic phase and tetragonal phase by including the configurational entropy contribution to the Gibbs free energy from the thermodynamic point of view in this work.The ground state energy is obtained by using the first-principles calculations. It is shown that the average ground state energy of the cubic LiMn2O4(disordered phase)is higher than that of the tetragonal one(more ordered phase)at a temperature of 0 K.When the configurational entropy is included, the Gibbs free energy of the cubic phase lowers with the temperature increasing and finally the phase transition from cubic phase to tetragonal phase happens at a temperature of 267.8 K, which is close to the experimental result.[11,15,18]

    2. Computational method

    To optimize the structures and obtain the ground state energy values of different structures and phases, we performed density functional theory (DFT) calculations by using the Viennaab-initiosimulation package (VASP).[21-23]The method of the projected augmented wave (PAW)[24,25]pseudopotentials was used to describe the ion-electron interactions. The electron exchange and correlation functional were treated within the spin polarized generalized gradient approximation(GGA)in the form of the Perdew-Burke-Ernzerh(PBE)functional.[26]A cutoff energy of 500 eV was selected for the plane wave basis set. In order to account for the strong onsite Coulomb repulsion of Mn-3d electrons, the GGA+Umethod[27,28]was adopted,which could accurately predict the electronic structures of transition metal complexes. Based on previous reports,the effectiveUvalue for d-orbital of Mn ions was set to be 4.5 eV.[29,30]The Monkhorst-Pack scheme[31]with 3×3×3k-points sampling mesh was used for the integration in the irreducible Brillouin zone. The atomic positions and the lattice parameters were fully relaxed, and the final force was less than 0.01 eV/?A for each atom. The calculation workflow was managed by the high-throughput computational platform for battery materials.[1]

    3. Results and discussion

    The spinel-type LiMn2O4consists of 32 O,16 Mn,and 8 Li atoms in a conventional unit cell as shown in Fig. 1. According to the crystal field theory, the Mn-3d orbital will undergo an energy level splitting,producing a double degenerateeg(dx2-y2,dz2)and a triple degeneratet2g(dxy,dyz,dxz)orbitals under an octahedral crystal field as shown in Fig.2.

    Fig.1.Ball and stick models of(a)cubic and(b)tetragonal LiMn2O4,along with lattice parameters(in units of ?A).Comparing with cubic phase,the lattice c of tetragonal phase expands,while lattices a and b shrink. Arrows in the inset indicate the Jahn-Teller distortion direction of Mn3+ions.The red,green,and blue spheres represent O,Li,and Mn atoms,respectively.

    Fig.2. Schematic diagram of energy level splitting for Mn-3d orbital under an octahedral field.

    The projected density of states and corresponding electronic configuration of the Mn3+ion and Mn4+ion in the LiMn2O4are shown in Fig.3. As can be seen, the electronic configuration of the Mn-3d state of the Mn3+ion and Mn4+ion aret32ge1gandt32ge0g, respectively.[32,33]Since theegorbital is directly facing the ligand atom,it is subjected to larger Coulomb repulsion,resulting in the JT distortion of Mn3+ion in MnO6octahedron,forming four short and two long Mn-O bonds in the Mn3+O6octahedron as shown in Table 1. For Mn4+ions, theegorbital is not occupied by electrons, so the bond lengths in the Mn4+O6octahedron are approximately equal. Considering the equivalence of thex,y, andzdirections, the orientation of the JT distortion can be in any direction. If the orientation is randomly distributed along thex,y,andzdirections, the crystal structure behaves as cubic phase.In contrast, if the orientation of the JT distortion is unique in one direction,say,along thezdirection,the lattice constantcwill be larger than that ofaandband thus the crystal structure acts as tetragonal phase. Experimentally, Chung and Kim[19]also observed that the latticecexpands and the lattice a shrinks during the phase transition from cubic to tetragonal phase for LiMn2O4. In order to study the phase transition, we need to construct and simplify these two models.

    Fig.3. Projected densities of states and corresponding electronic configurations of Mn-3d orbitals for(a)Mn4+and(b)Mn3+in LiMn2O4,with Fermi levels set to be 0 eV.

    Table 1. The Mn-O bond length in MnO6 octahedron, where longbonds are highlighted.

    As mentioned above,there are 16 Mn ions in the unit cell of the spinel LiMn2O4. Among them, half of these Mn ions are trivalent Mn ions, and the others are tetravalent ones. On the other hand, the JT effects of Mn3+ions have three possible distortion directions(x,y,andzdirections). Therefore,the total number of possible Mn3+distributions and Mn3+O6orientation configurations in the unit cell of LiMn2O4isC816×38.For each configuration,the ground state energy of the unit cell can be different,and in this work we use an average over several typical models we employed, which will greatly reduce the happenchance of a single configuration. Owing to the vast number of possible configurations and our limited computational resource,we select only 12 configurations(as shown in Fig. 4) to optimize their structures and calculate the ground state energy. The optimized lattice parameters and the corresponding energy values for the selected 12 configurations are listed in Table 2. The average values of the lattice parameters and the ground state energy values of the cubic phase are also listed in Table 3,which are considered to be the lattice parameters and ground state energy of the cubic phase in this work.Likewise, the LiMn2O4in the tetragonal phase is also dealt with by this procedure. Owing to the sole direction of the JT distortion(zaxis in our calculations)for the tetragonal phase,the degree of freedom of the JT distortion is not considered.

    Fig. 4. Jahn-Teller distortion directions of the eight Mn3+O6 for the selected 12 cubic configurations, with horizontal, vertical, and slanted arrows representing the directions along the x,z,and y axes,respectively.

    Table 2. Lattice parameters and total energy values of selected 12 cubic configurations.

    Table 3. Lattice parameters and average ground state energy values of LiMn2O4 unit cell in cubic and tetragonal phases. Herein, the lattice parameters and total energy values are average values of various configurations calculated.

    Therefore, only the configurations with the different Mn3+distributions are considered. Here, three different configurations are used to calculate the average values of lattice parameters and the ground state energy values as listed in Table 3. Likewise,these average values are taken as the average values of the lattice parameters and ground state energy values of the tetragonal phase in this work.

    As is well known, the Gibbs free energyGcan be expressed asG=H-TS, whereHdenotes the enthalpy, andSis the entropy. For solid phase, the contribution of pressure toHcan be ignored. As a result, the change of the Gibbs free energy is influenced by the environment through the entropy. Therefore, only the configurational entropy is taken into account in this work. After the ground state energy is obtained,we need to determine the configurational entropy(Sconf),which is given asSconf=kBlnΩ,whereΩis the number of configurations,kBrepresents the Boltzmann constant. Herein, it should be pointed out that the interaction between Mn ions is ignored. Therefore, for the cubic phase,Ω=C816·38,whereas for the tetragonal phase,Ω=C816. The Gibbs free energy as a function of temperature for the cubic phase and tetragonal phase are shown in Fig. 5. As can be seen, a crossover point at a temperature of 267.8 K can be found. When the temperature is higher than 267.8 K,the cubic phase is more stable than the tetragonal one. When the temperature decreases below 267.8 K,the transition from cubic phase to tetragonal phase is expected. This theoretically predicted phase transition temperature of about 267.8 K for LiMn2O4from cubic to tetragonal phase is close to that observed experimentally (~280 K) by using x-ray absorption spectroscopy by Yamada and Tanaka,[11]Yamaguchiet al.,[15]and Abikoet al.[18]This also shows the important role of configurational entropy in the phase transition process.

    Although the phase transition temperature obtained from our calculations is close to that from experiments, there are still some factors that we did not consider in this study.Firstly,the vibrational entropy induced by the finite temperature is not included in our model. This cannot be an important fact, for the difference in vibrational entropy between the cubic phase and tetragonal phase should be small and the bonding interactions are the same in the compound. Secondly, it is worth noting that the limited configurations chosen in our calculations also influences the accuracy of the ground state energy.Despite these, we believe that the introduction of configurational entropy can qualitatively reveal the nature of transition between cubic phase and tetragonal phase, which is helpful for us to understand the phase transition of the spinel-type LiMn2O4.

    Fig.5. Plot of Gibbs free energy versus temperature of LiMn2O4 unit cell for cubic phase and tetragonal phase. Herein,the ground state energy employed is average value of the corresponding configuration as shown in Table 3.

    4. Conclusions

    In this work, the phase transition of the spinel LiMn2O4between cubic phase and tetragonal phase are studied through DFT calculations combined with thermodynamic analysis.The ground state energy is calculated through DFT for each configuration at zero temperature, while the entropy is evaluated through atomic configurational evaluation. It is found that the ground state energy of the cubic phase with the disordered JT distortion direction of the Mn3+ion is higher than that of the tetragonal phase with the ordered orientation of the JT distortion. On the other hand, the configurational entropy of the cubic phase is higher than that of the tetragonal phase.As a result,the cubic phase is more stable at high temperatures while the tetragonal phase is more stable at relatively low temperature. The phase transition temperature is evaluated to be 267.8 K through combining the calculated total ground state energy with the configurational entropy,which is comparable to the experimental value. These findings help further understand the phase transition of LiMn2O4at low temperature,and serve as a complement to experimental studies. In particular,the failure of LiMn2O4cathode is more clearly recognized at low temperature,which helps broaden the application scope of LiMn2O4.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12174162,51962010,12064015,and 12064014).

    猜你喜歡
    徐波胡偉羅文
    羅文濤作品
    江蘇蘇派教育集團(tuán) 徐波
    生生不息,固本造新:“生生的智慧與轉(zhuǎn)向”學(xué)術(shù)研討會綜述
    羅文亮(作家)
    Coherent Controlling Single Photon Asymmetric Transmission in the Atom Chirally Coupled Waveguide System?
    2019年高考數(shù)學(xué)模擬試題(四)
    胡偉
    中國篆刻(2017年7期)2017-09-05 10:01:35
    胡偉藝術(shù)作品
    思想者的藝術(shù)表達(dá)——胡偉訪談錄
    霸道書記權(quán)、錢、色的多面人生
    新傳奇(2016年32期)2016-07-09 21:36:08
    国产麻豆成人av免费视频| 成人欧美大片| 国产爱豆传媒在线观看| 巨乳人妻的诱惑在线观看| 亚洲美女视频黄频| 精品久久久久久久毛片微露脸| 国产精华一区二区三区| 国产成人av激情在线播放| 国产毛片a区久久久久| 久久欧美精品欧美久久欧美| 亚洲熟妇中文字幕五十中出| 18美女黄网站色大片免费观看| 色av中文字幕| 白带黄色成豆腐渣| 他把我摸到了高潮在线观看| av视频在线观看入口| 99热6这里只有精品| 国产欧美日韩精品一区二区| 成人国产一区最新在线观看| 国产精品爽爽va在线观看网站| 久久久国产成人免费| 国产又黄又爽又无遮挡在线| 麻豆久久精品国产亚洲av| 香蕉av资源在线| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 老司机在亚洲福利影院| 国产免费av片在线观看野外av| 91在线精品国自产拍蜜月 | 香蕉国产在线看| 一卡2卡三卡四卡精品乱码亚洲| 午夜日韩欧美国产| 好男人电影高清在线观看| 波多野结衣高清作品| 午夜免费激情av| 在线播放国产精品三级| 九九在线视频观看精品| 日本精品一区二区三区蜜桃| 国产淫片久久久久久久久 | 久久久久九九精品影院| 亚洲男人的天堂狠狠| 少妇熟女aⅴ在线视频| 日韩成人在线观看一区二区三区| 岛国在线免费视频观看| 在线播放国产精品三级| 三级国产精品欧美在线观看 | 欧美日本视频| 五月伊人婷婷丁香| 欧美成人一区二区免费高清观看 | 老汉色av国产亚洲站长工具| 18禁黄网站禁片午夜丰满| 成人一区二区视频在线观看| 男人舔女人的私密视频| 我要搜黄色片| 亚洲国产精品久久男人天堂| 精品国产亚洲在线| 久久久久久久午夜电影| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 在线观看一区二区三区| 男插女下体视频免费在线播放| 欧美大码av| 日本成人三级电影网站| 精品乱码久久久久久99久播| 亚洲欧美日韩高清专用| netflix在线观看网站| 日本五十路高清| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 亚洲无线观看免费| 一区福利在线观看| 美女cb高潮喷水在线观看 | 亚洲av电影在线进入| 国产成人av教育| 99国产精品99久久久久| 欧美又色又爽又黄视频| 亚洲av熟女| 成熟少妇高潮喷水视频| 久久香蕉精品热| 黄片小视频在线播放| 免费观看的影片在线观看| 国产精品一区二区免费欧美| 999久久久国产精品视频| 国产精品日韩av在线免费观看| 在线观看免费午夜福利视频| 久久久久免费精品人妻一区二区| 中文字幕人成人乱码亚洲影| 青草久久国产| 中文字幕av在线有码专区| 国产三级中文精品| 欧美zozozo另类| 欧洲精品卡2卡3卡4卡5卡区| 99视频精品全部免费 在线 | 不卡av一区二区三区| 亚洲国产看品久久| 麻豆av在线久日| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 九九热线精品视视频播放| 免费在线观看成人毛片| 国产精品一区二区精品视频观看| 日韩欧美三级三区| 桃色一区二区三区在线观看| 亚洲av五月六月丁香网| 五月玫瑰六月丁香| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 免费av毛片视频| 国产精华一区二区三区| 麻豆一二三区av精品| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 蜜桃久久精品国产亚洲av| 一二三四在线观看免费中文在| 香蕉av资源在线| 午夜精品在线福利| 国产午夜精品论理片| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 可以在线观看毛片的网站| 亚洲 国产 在线| av在线天堂中文字幕| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 一进一出好大好爽视频| 三级毛片av免费| 国产亚洲精品一区二区www| 五月伊人婷婷丁香| 99在线视频只有这里精品首页| 中文字幕av在线有码专区| 亚洲国产精品sss在线观看| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 国产极品精品免费视频能看的| 变态另类丝袜制服| 少妇的丰满在线观看| 亚洲色图av天堂| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 欧美高清成人免费视频www| 午夜福利18| 老鸭窝网址在线观看| 久久热在线av| 午夜影院日韩av| 91久久精品国产一区二区成人 | 成人一区二区视频在线观看| 亚洲国产看品久久| 亚洲人成电影免费在线| 国产精品国产高清国产av| 久久天堂一区二区三区四区| 午夜精品久久久久久毛片777| 韩国av一区二区三区四区| 欧美在线黄色| 一本一本综合久久| 亚洲va日本ⅴa欧美va伊人久久| 国产精品av视频在线免费观看| 欧美乱妇无乱码| 亚洲av片天天在线观看| 免费av毛片视频| 欧美日韩福利视频一区二区| 日韩精品中文字幕看吧| 国产精品日韩av在线免费观看| 久久草成人影院| av福利片在线观看| 亚洲av成人av| 99热这里只有精品一区 | 久9热在线精品视频| 中文字幕高清在线视频| 久久99热这里只有精品18| 禁无遮挡网站| 在线观看舔阴道视频| 国产主播在线观看一区二区| 国产真实乱freesex| 特级一级黄色大片| 国产欧美日韩精品亚洲av| 免费在线观看亚洲国产| 日本黄色视频三级网站网址| 香蕉丝袜av| www.熟女人妻精品国产| 午夜福利18| 十八禁人妻一区二区| 波多野结衣巨乳人妻| 色噜噜av男人的天堂激情| 亚洲五月婷婷丁香| 日韩精品中文字幕看吧| 亚洲av电影在线进入| 亚洲男人的天堂狠狠| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 日韩大尺度精品在线看网址| 日韩 欧美 亚洲 中文字幕| 国产精华一区二区三区| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 老司机午夜福利在线观看视频| 黑人巨大精品欧美一区二区mp4| 九九热线精品视视频播放| 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 美女高潮的动态| 亚洲人成网站在线播放欧美日韩| 搡老妇女老女人老熟妇| 波多野结衣巨乳人妻| 热99在线观看视频| 在线看三级毛片| 日本成人三级电影网站| 精品国产乱码久久久久久男人| 中文字幕最新亚洲高清| 村上凉子中文字幕在线| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 嫩草影院精品99| 欧美大码av| 日本与韩国留学比较| 桃红色精品国产亚洲av| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 国产精品一区二区免费欧美| 国产精品av视频在线免费观看| 国产精品美女特级片免费视频播放器 | 日韩国内少妇激情av| 99热只有精品国产| 色综合欧美亚洲国产小说| 黄色 视频免费看| 日本a在线网址| 国产激情欧美一区二区| 久久99热这里只有精品18| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 91av网站免费观看| 日日摸夜夜添夜夜添小说| 一a级毛片在线观看| 麻豆成人午夜福利视频| 久久香蕉精品热| 免费观看人在逋| 男女那种视频在线观看| 国产伦精品一区二区三区视频9 | 日韩欧美国产在线观看| 一级a爱片免费观看的视频| 香蕉国产在线看| 757午夜福利合集在线观看| 九色成人免费人妻av| 国产精品 欧美亚洲| 日韩精品青青久久久久久| 性色avwww在线观看| 91九色精品人成在线观看| 欧美黄色片欧美黄色片| 精品99又大又爽又粗少妇毛片 | 校园春色视频在线观看| 亚洲乱码一区二区免费版| 欧美成狂野欧美在线观看| 日韩国内少妇激情av| 久久香蕉国产精品| 国产人伦9x9x在线观看| 午夜福利18| 99精品久久久久人妻精品| 婷婷精品国产亚洲av| 国产一区二区三区在线臀色熟女| 99久久精品一区二区三区| 男女做爰动态图高潮gif福利片| 97超级碰碰碰精品色视频在线观看| 亚洲国产高清在线一区二区三| а√天堂www在线а√下载| 日日夜夜操网爽| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 亚洲精品在线美女| 欧美成人一区二区免费高清观看 | 18禁裸乳无遮挡免费网站照片| 香蕉久久夜色| 亚洲中文av在线| 国产aⅴ精品一区二区三区波| 91av网一区二区| 熟女人妻精品中文字幕| 悠悠久久av| 岛国在线免费视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 天天添夜夜摸| 看黄色毛片网站| 国产成年人精品一区二区| 国产成人啪精品午夜网站| 国产三级在线视频| 无人区码免费观看不卡| 亚洲成人久久性| 一本久久中文字幕| 欧美日韩综合久久久久久 | 色综合婷婷激情| 国产成年人精品一区二区| 国产久久久一区二区三区| 亚洲乱码一区二区免费版| 国产美女午夜福利| 国产爱豆传媒在线观看| 一级作爱视频免费观看| 亚洲中文字幕日韩| 丝袜人妻中文字幕| 国产精品1区2区在线观看.| 久久中文字幕一级| 在线观看舔阴道视频| 麻豆国产97在线/欧美| 久久人妻av系列| 国产高清激情床上av| 欧美丝袜亚洲另类 | 桃色一区二区三区在线观看| 午夜免费成人在线视频| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 欧美乱妇无乱码| 欧美日韩综合久久久久久 | 午夜日韩欧美国产| 国产精品爽爽va在线观看网站| 啦啦啦观看免费观看视频高清| 色综合亚洲欧美另类图片| 熟女少妇亚洲综合色aaa.| 无遮挡黄片免费观看| 女警被强在线播放| 亚洲专区中文字幕在线| 亚洲人与动物交配视频| ponron亚洲| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 免费看美女性在线毛片视频| 男女那种视频在线观看| 深夜精品福利| 国产高清三级在线| 久久久久久久久久黄片| 国产高清三级在线| 国产成年人精品一区二区| 天堂影院成人在线观看| 久久精品aⅴ一区二区三区四区| 99久国产av精品| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 麻豆久久精品国产亚洲av| 美女cb高潮喷水在线观看 | 午夜激情欧美在线| 日韩人妻高清精品专区| 狂野欧美白嫩少妇大欣赏| 99久久久亚洲精品蜜臀av| 午夜免费激情av| 黑人巨大精品欧美一区二区mp4| 夜夜爽天天搞| www日本在线高清视频| 精品国产乱码久久久久久男人| netflix在线观看网站| 色综合站精品国产| netflix在线观看网站| 90打野战视频偷拍视频| 黑人操中国人逼视频| 久久久久久大精品| 黑人操中国人逼视频| 淫秽高清视频在线观看| 久久精品国产综合久久久| 亚洲av日韩精品久久久久久密| 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 久久久精品大字幕| 长腿黑丝高跟| 一级毛片高清免费大全| 午夜福利免费观看在线| netflix在线观看网站| 一个人免费在线观看的高清视频| 在线国产一区二区在线| 听说在线观看完整版免费高清| 日韩欧美在线乱码| 香蕉丝袜av| 国产精品亚洲美女久久久| 免费看美女性在线毛片视频| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 亚洲va日本ⅴa欧美va伊人久久| 黄频高清免费视频| 国产精品一区二区三区四区免费观看 | 日本 欧美在线| 国产精品99久久99久久久不卡| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 日本 欧美在线| av福利片在线观看| 国产精华一区二区三区| 午夜视频精品福利| 很黄的视频免费| 日韩欧美国产一区二区入口| 色视频www国产| 亚洲乱码一区二区免费版| 成人鲁丝片一二三区免费| 日韩成人在线观看一区二区三区| 欧美极品一区二区三区四区| 国产高清激情床上av| 国产av一区在线观看免费| 免费av毛片视频| 最近最新中文字幕大全电影3| 丰满人妻一区二区三区视频av | 亚洲午夜理论影院| 亚洲av电影在线进入| 国产熟女xx| 国产伦人伦偷精品视频| 国产精品一区二区三区四区免费观看 | 久久久久国内视频| 精品一区二区三区视频在线观看免费| 99精品久久久久人妻精品| 999久久久国产精品视频| 在线免费观看不下载黄p国产 | 午夜成年电影在线免费观看| 国产私拍福利视频在线观看| 亚洲欧洲精品一区二区精品久久久| 久久精品国产清高在天天线| 亚洲在线自拍视频| 欧美一区二区国产精品久久精品| 搡老熟女国产l中国老女人| 欧美日韩乱码在线| 网址你懂的国产日韩在线| 亚洲精华国产精华精| 全区人妻精品视频| 99精品久久久久人妻精品| 欧美+亚洲+日韩+国产| 非洲黑人性xxxx精品又粗又长| 2021天堂中文幕一二区在线观| 亚洲精品456在线播放app | 亚洲av成人精品一区久久| 99在线人妻在线中文字幕| 中文字幕高清在线视频| 一个人免费在线观看电影 | 亚洲色图 男人天堂 中文字幕| 国产高清视频在线播放一区| 国产亚洲欧美98| 美女大奶头视频| 精品99又大又爽又粗少妇毛片 | 99精品在免费线老司机午夜| 亚洲狠狠婷婷综合久久图片| 不卡av一区二区三区| 母亲3免费完整高清在线观看| av福利片在线观看| 最近在线观看免费完整版| 日韩免费av在线播放| 国产视频内射| 一区福利在线观看| 精品一区二区三区av网在线观看| 亚洲中文av在线| 欧美日韩国产亚洲二区| 日本 欧美在线| 亚洲电影在线观看av| 最近在线观看免费完整版| 神马国产精品三级电影在线观看| 人妻久久中文字幕网| 久久精品国产亚洲av香蕉五月| 观看免费一级毛片| 国产一区二区激情短视频| 午夜福利在线观看免费完整高清在 | 久久久成人免费电影| 国产在线精品亚洲第一网站| 亚洲av电影在线进入| 亚洲欧美日韩东京热| 午夜福利在线观看吧| 麻豆久久精品国产亚洲av| 国内精品久久久久久久电影| www日本黄色视频网| 国产人伦9x9x在线观看| 久久精品综合一区二区三区| 一个人看视频在线观看www免费 | 最近最新中文字幕大全电影3| 亚洲熟妇熟女久久| 国产免费男女视频| 中国美女看黄片| 成人av一区二区三区在线看| 桃色一区二区三区在线观看| 国产蜜桃级精品一区二区三区| 一级毛片女人18水好多| 免费看美女性在线毛片视频| 日本成人三级电影网站| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 丰满人妻熟妇乱又伦精品不卡| 老汉色av国产亚洲站长工具| 亚洲专区字幕在线| 18美女黄网站色大片免费观看| 黄色 视频免费看| 日本黄色片子视频| 亚洲激情在线av| 窝窝影院91人妻| 午夜亚洲福利在线播放| 九九在线视频观看精品| 非洲黑人性xxxx精品又粗又长| 午夜福利欧美成人| 精品久久久久久久久久免费视频| 最近视频中文字幕2019在线8| 激情在线观看视频在线高清| tocl精华| 亚洲自拍偷在线| 欧美国产日韩亚洲一区| 国产一区二区激情短视频| 日韩国内少妇激情av| 一本久久中文字幕| 亚洲精品一区av在线观看| 美女扒开内裤让男人捅视频| 变态另类丝袜制服| 亚洲国产精品合色在线| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 中文字幕精品亚洲无线码一区| 日韩 欧美 亚洲 中文字幕| 91老司机精品| 叶爱在线成人免费视频播放| 黑人巨大精品欧美一区二区mp4| 女警被强在线播放| 久久精品夜夜夜夜夜久久蜜豆| 怎么达到女性高潮| а√天堂www在线а√下载| 精品国产亚洲在线| 女人被狂操c到高潮| 久久中文看片网| 欧美日本视频| 在线观看午夜福利视频| av天堂在线播放| 在线播放国产精品三级| 国产精品爽爽va在线观看网站| 国语自产精品视频在线第100页| 在线观看日韩欧美| 少妇丰满av| 国产精品电影一区二区三区| 欧美成人性av电影在线观看| 日本黄大片高清| 少妇的丰满在线观看| 岛国视频午夜一区免费看| 国产伦一二天堂av在线观看| 国产亚洲av嫩草精品影院| 村上凉子中文字幕在线| 黑人欧美特级aaaaaa片| 精品国产乱码久久久久久男人| 日韩中文字幕欧美一区二区| 成人鲁丝片一二三区免费| 97超视频在线观看视频| 国产午夜精品论理片| 亚洲精品久久国产高清桃花| 两个人的视频大全免费| 成熟少妇高潮喷水视频| 国产成人福利小说| 精品福利观看| 可以在线观看的亚洲视频| 国内揄拍国产精品人妻在线| 波多野结衣巨乳人妻| 亚洲精华国产精华精| 男人舔奶头视频| av黄色大香蕉| 国产精品自产拍在线观看55亚洲| 全区人妻精品视频| 狂野欧美激情性xxxx| 国产精品一区二区三区四区久久| 欧美乱色亚洲激情| 国产欧美日韩一区二区精品| 中文字幕人成人乱码亚洲影| 国产激情欧美一区二区| 亚洲国产欧美一区二区综合| 午夜福利在线在线| 国产高清三级在线| 亚洲七黄色美女视频| 三级国产精品欧美在线观看 | 日本精品一区二区三区蜜桃| 在线十欧美十亚洲十日本专区| 一级作爱视频免费观看| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区免费| 又大又爽又粗| 色在线成人网| 国内精品久久久久精免费| 国产成人精品久久二区二区91| 悠悠久久av| 日韩欧美在线二视频| a级毛片a级免费在线| 国产亚洲av高清不卡| 国产精品亚洲av一区麻豆| 美女高潮喷水抽搐中文字幕| 亚洲国产精品合色在线| 无人区码免费观看不卡| 久久中文看片网| 在线十欧美十亚洲十日本专区| 日韩有码中文字幕| 一进一出好大好爽视频| 老司机深夜福利视频在线观看| 一级作爱视频免费观看| 99久久精品热视频| 国产伦在线观看视频一区| 国产欧美日韩一区二区精品| 热99在线观看视频| 久久久久免费精品人妻一区二区| 久久久色成人| 精品国产三级普通话版| 在线观看舔阴道视频| 真人一进一出gif抽搐免费| 精品国产三级普通话版| 在线观看舔阴道视频| 亚洲欧美日韩高清专用| 久久精品aⅴ一区二区三区四区| 黑人操中国人逼视频| 午夜精品在线福利| 精品国产三级普通话版| 91九色精品人成在线观看| 亚洲欧美日韩高清专用| 久久婷婷人人爽人人干人人爱| 国产伦一二天堂av在线观看| 成人av在线播放网站| 一进一出好大好爽视频| 99国产精品一区二区三区| 99精品久久久久人妻精品| 精品国产美女av久久久久小说| 熟妇人妻久久中文字幕3abv| 后天国语完整版免费观看| 草草在线视频免费看| 久久精品亚洲精品国产色婷小说| 真人一进一出gif抽搐免费| 婷婷六月久久综合丁香| 国产精品99久久久久久久久| 国产成人aa在线观看|