• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111)substrate?

    2021-05-06 08:54:24XueyanWang王雪艷HuiGuo郭輝JianchenLu盧建臣HongliangLu路紅亮XiaoLin林曉ChengminShen申承民LihongBao鮑麗宏ShixuanDu杜世萱andHongJunGao高鴻鈞
    Chinese Physics B 2021年4期
    關(guān)鍵詞:郭輝

    Xueyan Wang(王雪艷), Hui Guo(郭輝), Jianchen Lu(盧建臣),Hongliang Lu(路紅亮),2,?, Xiao Lin(林曉),2, Chengmin Shen(申承民),2,Lihong Bao(鮑麗宏),2,3, Shixuan Du(杜世萱),2,3, and Hong-Jun Gao(高鴻鈞),2,3

    1Institute of Physics and University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    2CAS Center for Excellence in Topological Quantum Computation,Chinese Academy of Sciences,Beijing 100190,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: graphene,intercalation,heterostructure,tunneling barrier

    1. Introduction

    The extraordinary electronic, mechanical, and optical properties of graphene (Gr)[1]make it possible to produce high-performance electronic and optoelectronic devices, e.g.,field-effect transistors (FETs),[2,3]barristors,[4]high-speed photodetectors,[5–7]and light emitting devices,[8]if graphene is integrated with other materials, such as transition metal dichalcogenides (TMDs), semiconductors, oxides, etc. For scalable applications, large-scale and high-quality graphene is highly desired. Epitaxial growth on transition metal single crystal surfaces,[9–11]such as Ru(0001),[10,12]Ir(111),[13]Cu(111),[14]Pt(111),[11]Ni(111),[15]provides an effective way to fabricate large-area, high-quality, single-crystalline graphene. However, the strong interaction between graphene and metal substrates destroys the unique electronic structure and diminishes the intrinsic excellent properties of graphene.The conductive metal substrates also hinder its applications in electronics.

    A transfer-free approach to address these challenges is to intercalate foreign atoms or molecules at the graphene/substrate interface. It has been reported that a few atoms,[16–20]molecules,[21]and binary compounds[22–25]can be intercalated between graphene and metal substrates.The intercalation effectively decouples graphene from the metal substrates and restores its intrinsic properties. On the other hand,the intercalation technique brings new opportunities to create graphene-based heterostructures. For example,graphene/silicene van der Waals heterostructures have been successfully fabricated by intercalation technique and exhibit a well-defined Schottky rectification behavior.[26]Of particular interest,the intercalation-fabricated graphene/SiO2/metal heterostructure behaves as a gated plate capacitor,in which the ultrathin SiO2layer acting as a homogeneous dielectric spacer provides possibility to tune the graphene overlayer[27]and enables the fabrication of graphene-based electronic devices.[28]Other graphene/oxide architectures have also attracted increasingly research interests due to the potential applications in devices such as tunnel junctions[29]and spintronics.[30]Recently,two-dimensional(2D)germanium was successfully intercalated at the interface of graphene and Ir(111).[31]Therefore,whether it is possible to form germanium oxide between graphene and metal substrate by intercalation has become an interesting topic, not only because Ge is a close neighbor of Si in the periodic table, but also because germanium oxide is expected to have a wider band gap[32]than germanium.

    Here,we successfully intercalate germanium oxide at the interface of graphene and Ir(111). We first intercalate germanium beneath large-area high-quality epitaxial graphene on Ir(111). The interfacial germanium atoms are then further oxidized by oxygen intercalation. The underlying germanium oxide layer effectively decouples graphene from the Ir substrate,leaving graphene p-type doped. Low-energy electron diffraction(LEED),scanning tunneling microscopy(STM),and Raman characterizations confirm that the graphene layer is preserved after intercalation.The vertical transport measurements on such unique Gr/GeOx/Ir heterostructure reveal that the intercalated GeOxcan act as a tunneling barrier.

    2. Experimental details

    2.1. Sample preparation and characterizations

    Graphene growth and germanium intercalation were carried out in an ultra-high vacuum (UHV) molecular beam epitaxy (MBE) system with a base pressure of about 2×10?9mbar. Firstly,Ir(111)crystal surface was cleaned by repeated cycles of sputtering and annealing(1370 K).Large-area high-quality graphene was then fabricated via thermal decomposition of ethylene molecules absorbed on Ir(111)surface at 1270 K.Germanium atoms were subsequently deposited onto the graphene surface at room temperature by electron-beam evaporation, and then the sample was annealed at 750 K for intercalation. The intercalated germanium was then oxidized by further oxygen intercalation. The oxidization process was realized by exposing the sample to oxygen with a pressure of 2.5 mbar at 500 K in a furnace cell. STM images were taken at ~4.8 K. An Omicron Spectra LEED with a 4-grid detector was employed to identify the surface structure macroscopically. X-ray photoelectron spectroscopy(XPS)data were collected via a ThermoFisher Scientific ESCALAB 250x spectrometer using monochromatic Al Kαx-ray source. Raman spectra and maps were obtained by a commercial confocal Raman microscope (WiTec), using an excitation wavelength of 532 nm and a power of 2 mW.

    2.2. Device fabrication and measurements

    All the Gr/GeOx/Ir vertical heterostructure devices were fabricated by a standard electron-beam lithography technique followed by e-beam evaporation of Cr/Au (5/60 nm) as the contact electrodes. All electrical measurements were carried out in a vacuum chamber with a pressure lower than 10?5mbar,using a Keithley 4200-SCS system.

    3. Results and discussion

    Figure 1(a)schematically illustrates the procedure of germanium intercalation and oxidation at the interface between graphene and Ir(111). Large-area and high-quality monolayer graphene is epitaxially grown on a clean Ir(111) crystal surface. The germanium atoms are deposited onto the graphene surface,and then annealed to enable the intercalation. A subsequent exposure to oxygen leads to oxidation of the intercalated germanium layer. Each step is examined by XPS and the collected Ge 3d and C 1s core level spectra are shown in Figs.1(b)and 1(c). Before intercalation,the spectrum shows no germanium signal. After intercalation, the Ge 3d peak emerges and exhibits two narrow components due to spin–orbit splitting.[33]The Ge 3d peak is located at around 29 eV and no obvious peak shift is observed for Ir 4f before and after Ge intercalation (see Fig.S1 in supplementary material(SM)),indicating that the interfacial germanium is in elemental state rather than Ir germanide.[34]After oxidation, the Ge 3d peak evolves into a broad peak centered at 31.82 eV corresponding to Ge3+,indicating the formation of germanium suboxides.[35–37]Detailed oxidation process is shown in Fig.S2 in SM. There is no obvious peak shift for Ir after oxidation(see Fig.S1 in SM),suggesting that the Ir substrate is not oxidized. The thickness d of the GeOxlayer is roughly evaluated to be about 1.5 nm by the formula I =I0exp(?d/λGeOx).[38]The I0and I are the intensities of the Ir 4f7/2core level before and after GeOxintercalation, which are measured from the spectra shown in Fig.S1 in SM.The photoelectron escape depth in GeOx,λGeOx,is taken to be about 3 nm.[39]The electronic structures of graphene in different architectures are analyzed by measuring the C 1s core level spectra. As shown in Fig.1(c),the C 1s spectrum consists of a single narrow peak at 284.12 eV for the G/Ir sample,which shifts to 284.06 eV and 283.78 eV for samples of Gr/Ge/Ir and Gr/GeOx/Ir, respectively. The shifting of the C 1s peak suggests a p-type doping from both the intercalated Ge and GeOxlayers.

    To examine the quality of the graphene layer before and after intercalation, both LEED and STM were employed to characterize the samples of Gr/Ir and Gr/GeOx/Ir. Figure 2(a)is the LEED pattern of the Gr/Ir sample, showing the sharp graphene spots(indicated by the arrow)and surrounding satellite spots due to moir′e superstructures between graphene and Ir(111)surface. We find that the graphene layer is single crystalline since individual LEED patterns obtained at different locations across the entire sample remain unchanged. From the corresponding large-area (Fig.2(b)) and atomically resolved(Fig.2(c)) STM images, we can clearly see defect-free honeycomb lattices of graphene. Combining LEED pattern and STM images,we confirm that the large-area and high-quality graphene has been fabricated on Ir(111)substrate. After germanium intercalation,the diffraction spots of graphene are still clear but the satellite spots almost disappear,and a new set of diffraction spots with 2×2 periodicity appear as previously reported,[31]implying that the intercalated Ge atoms form a 2×2 superstrucure with respect to Ir(111)rather than stay on the surface of graphene. After the subsequent oxygen intercalation, the results from LEED pattern demonstrate that the 2×2 spots of germanium disappear while the graphene spots keep high intensity,as shown in Fig.2(d). The corresponding STM image(Fig.2(e))shows that the topography becomes uneven.These results indicate that the interfacial germanium has been oxidized to form amorphous structures. We note that the graphene lattice is still intact after the Ge and O intercalation,as shown in Fig.2(f).

    Fig.1. Schematic of the intercalation process and XPS spectra of samples at different stages. (a)Schematic showing the intercalation process of Ge and GeOx layer at the interface of epitaxial graphene and Ir(111)substrate. (b),(c)Ge 3d and C 1s core-level spectra of Gr/Ir,Gr/Ge/Ir,and Gr/GeOx/Ir,respectively.

    Fig.2. LEED patterns and STM images of Gr/Ir and Gr/GeOx/Ir. (a) LEED pattern, (b) the corresponding STM image (Vs =?1.54 V,It =0.05 nA), and (c) zoom-in STM image (Vs =0.05 V, It =0.3 nA) of Gr/Ir, showing a moir′e superlattice. (d) LEED pattern, (e) the corresponding STM image(Vs=?1 V,It=0.1 nA),and(f)zoom-in image(Vs=?1 V,It=0.6 nA)of Gr/GeOx/Ir,showing the formation of amorphous GeOx layer,and the top layer is graphene.

    In order to probe the effect of GeOxintercalation on the topmost graphene and examine the properties of Gr/GeOx/Ir architectures, Raman measurements were performed on both as-prepared and intercalated graphene. In the left panel of Fig.3(a), the as-prepared epitaxial graphene on Ir shows no detectable Raman signals due to the strong hybridization between graphene π-band and the Ir substrate.[18,19,40]However,after the GeOxintercalation,the characteristic Raman features of graphene appear,suggesting that the intercalated GeOxlayers effectively decouple graphene from the Ir substrate. The weak D peak in the Raman curve suggests existence of very few defects in the intercalated graphene. The G band and 2D band shift to the higher energy by about 29 cm?1and 5 cm?1compared with those of pristine graphene, respectively, indicating charge transfer or strain induced by the underlying GeOxlayer.[41,42]Moreover, both G and 2D bands appear as narrow single peaks, and the 2D peak can be well fitted by a single Lorentzian peak with full-width at half-maximum(FWHM)~42 cm?1(Fig.3(a)),suggesting that the graphene is single layer.[43]Raman maps of G peak position(left image of Fig.3(b))and corresponding histograms of G and 2D peak positions (see Fig.S3 in SM) show that the center positions of G band and 2D band remain almost constant, which indicates that the graphene has been decoupled over large area.The map of I2D/IGratio(right image of Fig.3(b))proves the single layer characteristic of graphene again. The contrast in the map of I2D/IGmay be caused by inhomogeneous strain in the graphene,[44]which can be introduced by uneven intercalated GeOxinterlayer. These results demonstrate that GeOxhas been intercalated under graphene uniformly and prove the formation of large-area Gr/GeOx/Ir architectures.

    Fig.3. Raman characterizations of graphene. (a)Left: Raman spectra measured on Gr/Ir and Gr/GeOx/Ir. Right: 2D band of GeOx intercalated graphene and the fitting curve of single Lorentzian peak. (b)Raman maps showing the peak positions of G bands and the intensity ratio of 2D and G bands of Gr/GeOx/Ir,respectively.

    To explore the potential applications of Gr/GeOx/metal vertical heterostructures, the current density–voltage (J–V)characteristics along the vertical direction were measured and shown in Fig.4(a). Such unique structures provide ultra-clean interfaces. The result shows obvious non-linear behavior,suggesting the existence of an energy barrier from the intercalated GeOx.The typical resistivity near zero-bias is ~200 M?·μm2for the Gr/GeOx/Ir structure. The vertical current density in the Gr/GeOx/Ir structure at 10 mV bias and 100 K, as shown in Fig.4(b),is only ~1×10?3A/cm2,indicating competitive insulating properties of the intercalated GeOxlayer. To obtain a better insight into the mechanism of transport through GeOxbarriers, the temperature dependence of the tunneling current is measured. For the Gr/GeOx/Ir heterostructure, the current across the intercalated GeOx(Fig.4(a)) shows a weak temperature dependence at low-temperature region and a strong temperature dependence at high-temperature region. It clearly shows a crossover(Tcross)at around 180 K,as demonstrated in Fig.4(b). The different transport behaviors at the two temperature regions suggest that there are two different dominating mechanisms. At temperatures higher than Tcross,the transport of carriers is dominated by thermal activation. While at temperatures lower than Tcross, the carrier transport is dominated by the tunneling process. The extracted barrier height is about 0.9 eV by Simmons fit based on the tunneling(see Fig.S4 in SM).[45,46]This vertical transport property is similar to that observed in Gr/WS2heterostructures, suggesting that the intercalated GeOxthin film can act as a tunneling barrier like WS2.

    Fig.4. Transport measurements on vertical Gr/GeOx/Ir heterostructure. (a)Current density–voltage(J–V)characteristics of Gr/GeOx/Ir heterostructure at different temperatures. The inset is the schematic of the device structure. (b)Current density(J)as a function of the reciprocal of temperature at different bias voltage for Gr/GeOx/Ir heterostructure.

    In our experiments, we found that the intercalated Ge is difficult to be oxidized in the MBE chamber. We realized the oxidation of intercalated Ge in a quartz tube furnace with a higher oxygen pressure and lower temperature. This two-step intercalation method, i.e., intercalation of one element in ultra-high vacuum MBE chamber and then oxidation in a furnace, may be helpful for intercalation of other oxides between graphene and metal substrates or construction of graphene/oxide heterostructures. In addition,the intercalation of germanium oxide interlayer can also serve as a universal method to study the intrinsic properties or promote the device performance of other low-dimensional structures.[47]

    4. Conclusions

    In summary,we have studied the germanium oxide intercalation of large-area and high-quality epitaxial graphene on Ir(111)by using LEED,STM,XPS,and Raman spectroscopy.First, germanium is intercalated below graphene, and then GeOxintercalation is realized through a subsequent intercalation of oxygen. Germanium oxide intercalation induces ptype doping of graphene. The graphene lattice keeps intact after intercalation, and more importantly, the intercalated layer effectively weakens the interaction between graphene and the substrate,making graphene more like the intrinsic one. Electrical transport measurements on Gr/GeOx/Ir heterostructure show two carrier-transport mechanisms at different temperature ranges, and the intercalated GeOxlayer can act as an effective tunneling barrier.

    猜你喜歡
    郭輝
    北京自來水集團(tuán)職工攝影作品選登
    工會博覽(2023年34期)2024-01-02 10:51:38
    Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111)substrate
    Full color ghost imaging by using both time and code division multiplexing technologies
    Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
    著名詩人郭輝
    鴨綠江(2021年17期)2021-10-13 07:05:22
    祝融峰
    詩歌月刊(2021年6期)2021-07-01 14:09:40
    雪 人
    雪人
    Fabrication of large-scale graphene/2D-germaniumheterostructure by intercalation?
    Low-tem perature grow th of large-scale,single-crystallinegrapheneon Ir(111)*
    少妇的逼水好多| 亚洲男人天堂网一区| 免费播放大片免费观看视频在线观看| 国产精品一二三区在线看| 欧美精品av麻豆av| 2018国产大陆天天弄谢| 最近最新中文字幕免费大全7| 久久久久久伊人网av| 亚洲伊人久久精品综合| 1024视频免费在线观看| 亚洲视频免费观看视频| 久久久精品区二区三区| 亚洲精品国产av成人精品| 日本vs欧美在线观看视频| 香蕉丝袜av| 久久毛片免费看一区二区三区| 国产av国产精品国产| 国产成人精品一,二区| 中国国产av一级| av福利片在线| 亚洲,欧美精品.| 久久精品久久久久久噜噜老黄| 黑丝袜美女国产一区| 免费看不卡的av| 999久久久国产精品视频| 色哟哟·www| 91aial.com中文字幕在线观看| 亚洲男人天堂网一区| 三上悠亚av全集在线观看| 青春草国产在线视频| 91在线精品国自产拍蜜月| 精品福利永久在线观看| 国产精品久久久av美女十八| 男女国产视频网站| 精品少妇黑人巨大在线播放| 少妇猛男粗大的猛烈进出视频| 女人精品久久久久毛片| 国产一区二区激情短视频 | 男女啪啪激烈高潮av片| 久久精品aⅴ一区二区三区四区 | 久热久热在线精品观看| 一本色道久久久久久精品综合| 女性生殖器流出的白浆| 国产成人欧美| 高清av免费在线| 亚洲人成77777在线视频| 久久97久久精品| 国产女主播在线喷水免费视频网站| 美女视频免费永久观看网站| av在线播放精品| av免费在线看不卡| 成人毛片60女人毛片免费| 亚洲三区欧美一区| 性少妇av在线| 亚洲欧美精品自产自拍| 大香蕉久久网| 亚洲成色77777| 热99久久久久精品小说推荐| 欧美av亚洲av综合av国产av | 亚洲欧美一区二区三区久久| 国产人伦9x9x在线观看 | 亚洲国产成人一精品久久久| 女性被躁到高潮视频| 久久99热这里只频精品6学生| 日本猛色少妇xxxxx猛交久久| 国产精品 欧美亚洲| 电影成人av| 不卡视频在线观看欧美| 高清在线视频一区二区三区| 国产精品熟女久久久久浪| 91久久精品国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看| av福利片在线| 人人妻人人澡人人爽人人夜夜| 亚洲三级黄色毛片| 免费不卡的大黄色大毛片视频在线观看| 久久久欧美国产精品| 另类精品久久| 成人国语在线视频| 天天躁夜夜躁狠狠久久av| 欧美老熟妇乱子伦牲交| 少妇精品久久久久久久| 97在线人人人人妻| 美女视频免费永久观看网站| 亚洲四区av| 国产av国产精品国产| 久久ye,这里只有精品| 99久久中文字幕三级久久日本| 久久99蜜桃精品久久| 精品国产一区二区三区久久久樱花| 18+在线观看网站| 青春草视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲高清精品| 亚洲精品中文字幕在线视频| 国产亚洲一区二区精品| 国产乱来视频区| 国精品久久久久久国模美| 777米奇影视久久| 亚洲精品自拍成人| 亚洲av日韩在线播放| 99久久人妻综合| 免费观看无遮挡的男女| 亚洲av福利一区| 寂寞人妻少妇视频99o| 涩涩av久久男人的天堂| 熟妇人妻不卡中文字幕| 中文乱码字字幕精品一区二区三区| 精品卡一卡二卡四卡免费| 97人妻天天添夜夜摸| 水蜜桃什么品种好| 国产成人aa在线观看| 激情视频va一区二区三区| av不卡在线播放| 亚洲 欧美一区二区三区| 精品一区在线观看国产| 成年女人毛片免费观看观看9 | av在线app专区| 久久人人97超碰香蕉20202| 久久久久久免费高清国产稀缺| 精品少妇一区二区三区视频日本电影 | 久久精品国产a三级三级三级| 欧美 亚洲 国产 日韩一| 99久久综合免费| 9191精品国产免费久久| 日本av手机在线免费观看| 成人影院久久| 在线观看三级黄色| 亚洲国产av新网站| 最近最新中文字幕免费大全7| 国产麻豆69| av福利片在线| 永久免费av网站大全| 黄色配什么色好看| 黄色 视频免费看| 老女人水多毛片| 99久久精品国产国产毛片| 婷婷色综合www| 国产av国产精品国产| 久久这里只有精品19| √禁漫天堂资源中文www| av电影中文网址| 熟妇人妻不卡中文字幕| 国产成人精品福利久久| 国产精品偷伦视频观看了| 国产亚洲午夜精品一区二区久久| 亚洲欧美一区二区三区久久| 国产野战对白在线观看| 日韩,欧美,国产一区二区三区| 日本欧美视频一区| 一级黄片播放器| 99热网站在线观看| 日韩精品有码人妻一区| 菩萨蛮人人尽说江南好唐韦庄| 少妇被粗大猛烈的视频| 99国产综合亚洲精品| 国产又色又爽无遮挡免| 亚洲,欧美,日韩| 精品国产一区二区三区久久久樱花| 亚洲美女黄色视频免费看| 欧美日韩亚洲国产一区二区在线观看 | 九草在线视频观看| 欧美日韩综合久久久久久| 永久免费av网站大全| 七月丁香在线播放| 在线观看三级黄色| 中文精品一卡2卡3卡4更新| 亚洲欧洲国产日韩| 精品久久蜜臀av无| 亚洲一级一片aⅴ在线观看| 搡老乐熟女国产| 日韩免费高清中文字幕av| 妹子高潮喷水视频| 欧美精品亚洲一区二区| 美女国产高潮福利片在线看| 精品一区在线观看国产| 久久久精品94久久精品| av片东京热男人的天堂| 亚洲成国产人片在线观看| 日本av免费视频播放| 国产极品天堂在线| 免费观看av网站的网址| av视频免费观看在线观看| www.自偷自拍.com| 少妇被粗大的猛进出69影院| 亚洲三区欧美一区| 久久久精品区二区三区| 日韩 亚洲 欧美在线| 欧美精品亚洲一区二区| 婷婷色av中文字幕| 国产成人精品一,二区| 熟女av电影| 国产av精品麻豆| 亚洲精品日韩在线中文字幕| 亚洲欧洲国产日韩| 国产亚洲午夜精品一区二区久久| 美女福利国产在线| 五月天丁香电影| 国产一级毛片在线| 午夜影院在线不卡| 欧美老熟妇乱子伦牲交| 看免费成人av毛片| 国产精品一区二区在线观看99| 男女下面插进去视频免费观看| 91午夜精品亚洲一区二区三区| 香蕉国产在线看| 国产成人91sexporn| 国产激情久久老熟女| 日韩成人av中文字幕在线观看| 午夜老司机福利剧场| 热re99久久精品国产66热6| 丁香六月天网| 看免费成人av毛片| 18在线观看网站| 亚洲国产精品一区二区三区在线| 久久国产精品大桥未久av| 久久久精品免费免费高清| 久久精品国产亚洲av天美| 在现免费观看毛片| 一本—道久久a久久精品蜜桃钙片| 一区在线观看完整版| 国产欧美亚洲国产| 熟女av电影| 久久久欧美国产精品| 日韩在线高清观看一区二区三区| 秋霞伦理黄片| 丝袜喷水一区| 赤兔流量卡办理| 国产有黄有色有爽视频| 丝袜美腿诱惑在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 另类亚洲欧美激情| 夫妻性生交免费视频一级片| 国产黄频视频在线观看| 国产在视频线精品| 色婷婷久久久亚洲欧美| 日韩一区二区三区影片| 美女午夜性视频免费| 免费女性裸体啪啪无遮挡网站| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜爱| 亚洲成人一二三区av| 欧美+日韩+精品| 国产 一区精品| 99久久综合免费| 欧美精品高潮呻吟av久久| 制服丝袜香蕉在线| 久久99蜜桃精品久久| 亚洲国产精品一区三区| 少妇人妻精品综合一区二区| 亚洲精品国产av蜜桃| 国产淫语在线视频| 亚洲av欧美aⅴ国产| 国产成人精品婷婷| 色婷婷久久久亚洲欧美| 亚洲精品一区蜜桃| 深夜精品福利| 丝袜美腿诱惑在线| 老司机影院毛片| 欧美日韩综合久久久久久| 亚洲一区二区三区欧美精品| 69精品国产乱码久久久| 18禁裸乳无遮挡动漫免费视频| 久久久久人妻精品一区果冻| 大片免费播放器 马上看| 777久久人妻少妇嫩草av网站| 国产精品蜜桃在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 成人国产av品久久久| 精品久久蜜臀av无| 色吧在线观看| 大片电影免费在线观看免费| 日韩伦理黄色片| 99久久中文字幕三级久久日本| 中文精品一卡2卡3卡4更新| 精品一区二区免费观看| 欧美人与性动交α欧美精品济南到 | 美女视频免费永久观看网站| 国产无遮挡羞羞视频在线观看| 999久久久国产精品视频| 国产免费又黄又爽又色| 秋霞伦理黄片| 宅男免费午夜| 欧美日韩精品网址| 国产成人aa在线观看| 亚洲美女搞黄在线观看| 精品一区二区三卡| 国产xxxxx性猛交| 亚洲,欧美精品.| www.av在线官网国产| 激情视频va一区二区三区| 在线免费观看不下载黄p国产| 如何舔出高潮| 亚洲图色成人| 国产不卡av网站在线观看| 99热全是精品| 亚洲av综合色区一区| 久久久精品区二区三区| 欧美 日韩 精品 国产| 国产无遮挡羞羞视频在线观看| 国产黄色视频一区二区在线观看| 亚洲国产精品成人久久小说| 在线免费观看不下载黄p国产| 午夜精品国产一区二区电影| 日韩欧美精品免费久久| 欧美人与性动交α欧美软件| 婷婷色综合www| 国产亚洲一区二区精品| 丝袜喷水一区| 99国产精品免费福利视频| 天堂中文最新版在线下载| 边亲边吃奶的免费视频| 在线观看免费日韩欧美大片| av在线观看视频网站免费| 亚洲av.av天堂| 精品少妇久久久久久888优播| 侵犯人妻中文字幕一二三四区| 人妻 亚洲 视频| 成年美女黄网站色视频大全免费| 又粗又硬又长又爽又黄的视频| 久久久久网色| 在线观看一区二区三区激情| 波野结衣二区三区在线| 国产97色在线日韩免费| 日韩成人av中文字幕在线观看| 9热在线视频观看99| 欧美97在线视频| 交换朋友夫妻互换小说| 极品人妻少妇av视频| 人人妻人人添人人爽欧美一区卜| 亚洲欧美中文字幕日韩二区| 亚洲av在线观看美女高潮| 国产精品不卡视频一区二区| 在线观看免费日韩欧美大片| 日本猛色少妇xxxxx猛交久久| 国语对白做爰xxxⅹ性视频网站| 飞空精品影院首页| 人妻一区二区av| 久久精品亚洲av国产电影网| 午夜激情久久久久久久| 美女福利国产在线| 国产精品一二三区在线看| 精品视频人人做人人爽| 精品国产一区二区三区久久久樱花| 这个男人来自地球电影免费观看 | 欧美日韩一区二区视频在线观看视频在线| 中文字幕人妻熟女乱码| 91在线精品国自产拍蜜月| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 极品人妻少妇av视频| 午夜福利影视在线免费观看| 国产乱来视频区| 久久久久久久大尺度免费视频| 久久久久久久大尺度免费视频| 18禁国产床啪视频网站| 国产淫语在线视频| 国产深夜福利视频在线观看| 高清视频免费观看一区二区| 成人亚洲精品一区在线观看| 99热国产这里只有精品6| 亚洲精品乱久久久久久| 久久97久久精品| 天天躁夜夜躁狠狠躁躁| 伦理电影大哥的女人| 亚洲熟女精品中文字幕| 男女边吃奶边做爰视频| 欧美日韩av久久| 久热这里只有精品99| 中文字幕人妻丝袜制服| 黄片无遮挡物在线观看| 国产精品女同一区二区软件| av不卡在线播放| 精品亚洲乱码少妇综合久久| 大香蕉久久网| 日韩不卡一区二区三区视频在线| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品古装| 丝袜喷水一区| 电影成人av| 最近最新中文字幕免费大全7| 好男人视频免费观看在线| 国产黄色视频一区二区在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品美女久久久久99蜜臀 | 国产精品免费大片| 国产精品一二三区在线看| 久久久精品免费免费高清| 91午夜精品亚洲一区二区三区| 精品久久蜜臀av无| 人妻人人澡人人爽人人| 波多野结衣av一区二区av| 高清在线视频一区二区三区| 国产成人精品福利久久| 免费高清在线观看日韩| av片东京热男人的天堂| 9191精品国产免费久久| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| 少妇被粗大猛烈的视频| 久久青草综合色| 亚洲综合精品二区| 国产乱人偷精品视频| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 一边摸一边做爽爽视频免费| 在线天堂中文资源库| 搡女人真爽免费视频火全软件| 午夜免费鲁丝| 久热久热在线精品观看| 不卡视频在线观看欧美| 久久久精品国产亚洲av高清涩受| 久久久精品94久久精品| 国产成人av激情在线播放| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 中文字幕亚洲精品专区| 老熟女久久久| 美女中出高潮动态图| 伦精品一区二区三区| 国产白丝娇喘喷水9色精品| 女人久久www免费人成看片| 天天操日日干夜夜撸| 欧美日韩成人在线一区二区| 少妇被粗大猛烈的视频| 日本wwww免费看| 最近最新中文字幕免费大全7| 欧美另类一区| 久久人人爽av亚洲精品天堂| 国产人伦9x9x在线观看 | 亚洲av免费高清在线观看| 777久久人妻少妇嫩草av网站| 免费看av在线观看网站| 久久精品国产鲁丝片午夜精品| 80岁老熟妇乱子伦牲交| 国产av精品麻豆| 中文字幕人妻熟女乱码| 国产男人的电影天堂91| 啦啦啦中文免费视频观看日本| 黄网站色视频无遮挡免费观看| 国产精品二区激情视频| 看非洲黑人一级黄片| 欧美人与性动交α欧美软件| 久久久久久久亚洲中文字幕| 如日韩欧美国产精品一区二区三区| 久久国产亚洲av麻豆专区| 亚洲国产精品国产精品| 90打野战视频偷拍视频| 国产成人免费观看mmmm| 国产精品无大码| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 国产精品久久久久久久久免| av.在线天堂| 夫妻午夜视频| 欧美成人午夜精品| 国产高清不卡午夜福利| 大片电影免费在线观看免费| 最近2019中文字幕mv第一页| 久久精品国产亚洲av涩爱| 精品一区二区免费观看| 精品国产国语对白av| 精品一区二区三卡| 午夜日本视频在线| 亚洲,一卡二卡三卡| 久久久a久久爽久久v久久| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 亚洲av在线观看美女高潮| 日本免费在线观看一区| 伦理电影免费视频| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| 夫妻午夜视频| 欧美亚洲日本最大视频资源| 伦理电影大哥的女人| 一本—道久久a久久精品蜜桃钙片| 9热在线视频观看99| 国产成人一区二区在线| 国产极品粉嫩免费观看在线| 在现免费观看毛片| 国产精品不卡视频一区二区| 日韩制服骚丝袜av| 久久人人爽人人片av| 色94色欧美一区二区| 亚洲内射少妇av| 九九爱精品视频在线观看| 亚洲欧美一区二区三区黑人 | 青春草国产在线视频| 99国产精品免费福利视频| √禁漫天堂资源中文www| 自线自在国产av| 日韩一本色道免费dvd| 久久精品国产综合久久久| av视频免费观看在线观看| 欧美日韩视频精品一区| 夜夜骑夜夜射夜夜干| 亚洲精品美女久久av网站| 国产国语露脸激情在线看| 午夜福利影视在线免费观看| 美女中出高潮动态图| 欧美日韩综合久久久久久| 亚洲国产av新网站| 好男人视频免费观看在线| 超碰97精品在线观看| 人妻一区二区av| 麻豆av在线久日| 久久久精品94久久精品| 老司机影院成人| 少妇精品久久久久久久| 岛国毛片在线播放| 欧美日韩一级在线毛片| 人人澡人人妻人| 少妇人妻精品综合一区二区| 精品视频人人做人人爽| 色网站视频免费| 久久久久视频综合| 色婷婷久久久亚洲欧美| 考比视频在线观看| 亚洲熟女精品中文字幕| 国产成人a∨麻豆精品| 精品亚洲乱码少妇综合久久| 亚洲成人av在线免费| 亚洲国产欧美在线一区| 在现免费观看毛片| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级| 久久久a久久爽久久v久久| 免费观看a级毛片全部| 免费日韩欧美在线观看| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 男女无遮挡免费网站观看| 国产一区二区在线观看av| 飞空精品影院首页| 18在线观看网站| 水蜜桃什么品种好| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 亚洲中文av在线| 毛片一级片免费看久久久久| 久久亚洲国产成人精品v| 午夜激情久久久久久久| 乱人伦中国视频| 亚洲天堂av无毛| 婷婷色av中文字幕| 香蕉国产在线看| 另类精品久久| 免费观看a级毛片全部| 999久久久国产精品视频| 免费观看a级毛片全部| 亚洲国产成人一精品久久久| 国产熟女午夜一区二区三区| 欧美日韩精品网址| 国产免费现黄频在线看| 少妇猛男粗大的猛烈进出视频| 欧美+日韩+精品| av一本久久久久| 波多野结衣av一区二区av| av免费在线看不卡| 乱人伦中国视频| 久久这里只有精品19| 免费黄网站久久成人精品| 人人妻人人澡人人看| 男女午夜视频在线观看| 日日撸夜夜添| 久久久a久久爽久久v久久| 免费不卡的大黄色大毛片视频在线观看| 精品亚洲成国产av| 亚洲伊人久久精品综合| 国产爽快片一区二区三区| 精品国产乱码久久久久久小说| 欧美成人精品欧美一级黄| av免费观看日本| 久久久久久人妻| 日韩制服骚丝袜av| 伊人久久大香线蕉亚洲五| 亚洲欧美成人综合另类久久久| 18禁观看日本| 日韩伦理黄色片| 丰满饥渴人妻一区二区三| 一区在线观看完整版| 十八禁高潮呻吟视频| 久久久久久伊人网av| 少妇精品久久久久久久| 免费av中文字幕在线| 久久国产精品男人的天堂亚洲| 国产男人的电影天堂91| 欧美在线黄色| 亚洲精品国产一区二区精华液| 国产淫语在线视频| 熟女少妇亚洲综合色aaa.| 久久精品熟女亚洲av麻豆精品| 91久久精品国产一区二区三区| 人人妻人人爽人人添夜夜欢视频| 卡戴珊不雅视频在线播放| 人人妻人人澡人人爽人人夜夜| av国产久精品久网站免费入址| 亚洲第一区二区三区不卡| 一级毛片我不卡| 亚洲av日韩在线播放| 一级a爱视频在线免费观看| 黄片无遮挡物在线观看| 精品99又大又爽又粗少妇毛片| 少妇人妻久久综合中文| 99久久人妻综合| 国产成人91sexporn| 天天影视国产精品| 国产男女内射视频| 另类亚洲欧美激情| 亚洲国产成人一精品久久久| 亚洲美女黄色视频免费看| 婷婷色av中文字幕|