• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantifying nonclassicality of multimode bosonic fields via skew information

    2021-04-28 02:26:44YueZhangandShunlongLuo
    Communications in Theoretical Physics 2021年4期

    Yue Zhangand Shunlong Luo

    1 Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    2 State Key Laboratory of Mesoscopic Physics,School of Physics,Frontiers Science Center for Nanooptoelectronics,Peking University,Beijing 100871,China

    3 Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    4 School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract We quantify the nonclassicality of multimode bosonic field states by adopting an informationtheoretic approach involving the Wigner-Yanase skew information.The fundamental properties of the quantifier such as convexity,superadditivity,monotonicity,and conservation relations are revealed.The quantifier is illustrated by a variety of typical examples,and applications to the quantification of nonclassical correlations are discussed.Various extensions are indicated.

    Keywords:Bosonic fields,nonclassicality,Wigner-Yanase skew information,multimode states,correlations

    1.Introduction

    While in the early days of its inception,quantum mechanics was also called wave mechanics,and quantum states were called wavefunctions [1],which highlighted the radical departure from the classical orbital reality of material motion,the situation is reversed in modern quantum optics,where classicality is more often related to wave nature,and nonclassicality (quantumness) is related to the particle nature of photons [2–7].The pursuit of nonclassicality leads to the emergence of quantum optics,with many theoretical predictions of the nonclassical properties of light (bosonic fields)such as squeezing,anti-bunching,sub-Poissonian statistics,Schr?dinger cat states,etc.,all of which have been experimentally realized and have even found numerous applications in quantum information processing [2–10].

    It is now widely recognized that the nonclassicality of bosonic field states is a fundamental part of quantum mechanics and a crucial resource in quantum practices,with extensive applications.Significant efforts have been made to detect and quantify the nonclassicality of states,and a variety of measures or quantifiers have been introduced.The first widely used quantity for characterizing the nonclassicality of light seems to be Mandel’s Q parameter [11],which used the deviation of the photon number from a Poissonian distribution to indicate nonclassicality.Various distance-based measures were introduced and studied in [12–19].Phase space distributions were exploited to characterize nonclassicality from many perspectives,such as nonclassical depth [20–23],measurable quadrature distributions [24,25],the negativity of phase space distributions [26–28],demarginalization [29].The negativity of normally ordered observables was investigated in [30].The moment method was invoked to characterize nonclassicality in [31,32].The conversion between nonclassicality and entanglement via beamsplitters led to the entanglement potential [33–35].Variance-based quantifiers were introduced in [36–38],and quantifiers based on the Wigner-Yanase skew information were elucidated in [39].All these quantifiers shed light on nonclassicality from different perspectives.

    In this work,we will continue to pursue the information-theoretical approach to nonclassicality via the Wigner-Yanase skew information,as initiated in [39],in which only single-mode bosonic field states were treated and thus,within which,correlations could not be addressed.In multimode bosonic fields,the nonclassical effects become even richer due to the correlations among different modes.For example,if we have entangled multimode field states,we may expect stronger nonclassical effects.Here,we will extend the single-mode case to the multimode scenario,and further apply the quantifier of nonclassicality to study correlations.

    Recall that in [39],an intuitive and simple quantifier for the nonclassicality of the single-mode bosonic field state ρ was introduced as

    where a is the annihilation operator of the bosonic field satisfying the canonical commutation relation[a,a?]=1.The motivation for this comes from the remarkable Wigner-Yanase skew information [40,41]

    which quantifies the information content of the state ρ skew to the observable X.This concept gains more significance after it is recognized that the skew information realizes a kind of quantum Fisher information [42],and can be interpreted as the quantum uncertainty of X in the state ρ [43],as the asymmetry of ρ (relative to X) [44–47],and as the quantum coherence of ρ (relative to X) [48].

    Now,if we rewrite the Wigner-Yanase skew information as

    and replace the observable (Hermitian operator) X by the non-Hermitian annihilation operator a,we readily arrive at the quantityN(ρ,a) .Accordingly,the quantifier of nonclassicality may be interpreted as an extension of the celebrated Wigner-Yanase skew information to non-Hermitian operators.It turns out thatN(ρ,a)has a variety of remarkable properties which render it a useful quantity in studying nonclassicality,as elucidated in [39].

    We emphasize that here,although the notion of nonclassicality is intimately related to the well-established optical nonclassicality in the Glauber-Sudarshan scheme,it actually goes beyond the latter framework,and should be understood in the general sense of quantum mechanics with its roots in the noncommutativity between operators.

    The purpose of this paper is to extend the above quantifier of nonclassicality to the multimode scenario,and study its consequences and usage in assessing correlations.This paper is organized as follows.In section 2,for simplicity,we first treat the two-mode bosonic fields,introduce an information-theoretic quantifier of nonclassicality for bipartite states,and exhibit its fundamental properties.In particular,we establish a conservation relation for nonclassicality in beamsplitters.We work out a variety of examples to illustrate the concept in section 3.We employ the quantifier of nonclassicality to characterize correlations in section 4.Finally,we discuss multimode and other extensions in section 5.

    2.Two-mode nonclassicality

    Consider a two-mode bosonic field,shared by two modes(parties) 1 and 2,mathematically described by the field operator vectora=(a1,a2)of respective annihilation operators a1and a2of the two modes satisfying the canonical communication relations

    The coherent states of the two individual modes are the respective eigenstates of the corresponding annihilation operators:

    and the joint coherent states∣α〉 ?∣β〉 are regarded as the most classical (least quantum)two-mode pure states[49–52].Any two-mode bosonic field state described by a density matrix ρ can be completely characterized by its Glauber-Sudarshan P representation as [49–51]

    In general,the P functions may exhibit negativity or high singularity and thus fail to be probability distributions for certain states.In the customary treatment of quantum optics,those states with well-defined probability distributionsP(α,β)are defined as classical states (with respect to the coherent states),and all other states are termed nonclassical.Alternatively,the classical states are precisely probabilistic mixtures of coherent states.

    For a two-mode state ρ,directly inspired by the singlemode information-theoretic quantifier of nonclassicality [39],we define

    as a quantifier of nonclassicality for the bipartite state ρ,wherea=(a1,a2).More explicitly,we have

    In particular,ifρ=∣Ψ〉〈Ψ∣is a two-mode pure state,then the above expression can be simplified as

    where 〈X〉= 〈Ψ∣X∣Ψ〉.

    For any two-mode coherent stateρ=∣α〉〈α∣?∣β〉〈β∣,we haveN(ρ,a)=1,which is the minimal value of nonclassicality for two-mode pure states.Any other two-mode pure stateρ=∣Ψ〉〈Ψ∣satisfiesN(ρ)>1.Thus,the coherent states have the smallest nonclassicality among all the pure states,in agreement with the fact that the coherent states are the most classical (least quantum) pure states.In contrast,for the two-mode Fock stateρmn=∣m〉〈m∣?∣n〉〈n∣,we haveN(ρmn,a)= 1+m+n,which shows that as the photon number increases,the nonclassicality increases,as expected.The Fock states are the most nonclassical states,in the sense that in the family of states ρ satisfyingthe Fock states∣n1〉 ?∣n?n1〉 ,n1=0,1,… ,n,achieve the maximal nonclassicality value 1+n.

    we haveN(∣Ψ±〉〈Ψ±∣,a)=N(∣Φ±〉〈Φ±∣,a)=2,while for the mixtures of Bell states

    For the mixtureρ1=p∣Φ?〉 〈Φ?∣+(1 ?p)∣0 〉 〈 0∣?∣0 〉 〈0∣of a Bell state and the two-mode vacuum state,we haveN(ρ1,a)= 1 +which is larger than 1 whenindicating nonclassicality in this case.For comparison,consider the superposition∣Φ〉=we haveN(∣Φ〉which is always larger than 1 whenp> 0.

    The quantifier of nonclassicalityN(ρ,a) has a variety of equivalent expressions,which indicate its basic significance and potential applications.

    First,it can be directly checked that

    Second,let

    be the single-mode quadrature operators with[qk,pl]=iδkl,k,l=1,2,and

    then

    whereI(ρ,q1)=I(ρ,q1?1),etc.

    The quantifier of nonclassicalityN(ρ,a)has the following desirable properties.

    (1) Convexity.For an ensemble of states{(pi,ρi)},it holds that

    Consequently,if a state ρ satisfiesN(ρ,a)>1,then it is nonclassical in the Glauber-Sudarshan scheme.This supplies a sufficient(though not necessary)criterion for detecting twomode optical nonclassicality.

    (2) Superadditivity.It holds that

    wheretr2ρis the reduced state of mode 1.The above inequality implies that global nonclassicality is larger than the sum of the local nonclassicalities,which is consistent with our intuition.

    (3) Additivity for product state.For any product stateρ=ρ1?ρ2,it holds that

    Moreover,by convexity,for any separable stateit holds that

    which may be exploited to derive some criteria for detecting entanglement.

    (4) Displacement invariance.For the two-mode phase space displacement operators

    it holds that

    (5) Rotation invariance.For the two-mode phase space rotation operators

    it holds that

    (6) Nonclassicality conservation via beamsplitters.For the beamsplitter transformationand any two-mode product stateρ=ρ1?ρ2,it holds that

    (7)Nonclassicality enhancement via squeezing.For twomode squeezing

    and any two-mode product stateρ1?ρ2,it holds that

    The proof of the above properties is straightforward.Item(1) follows from the convexity of the skew informationI(ρ,X)[40].Item (2) follows from

    which in turn are implied by the monotonic inequalityI(ρ,K? 1) ≥I(t r2ρ,K)[41].Items (3)–(7) can be readily verified by direct manipulation of the definitionN(ρ,a)=I(ρ,a1? 1)+I(ρ,1?a2).

    3.Illustration

    In order to gain a more intuitive understanding of the quantifier of nonclassicality and to illustrate its characteristic features,we now work out some typical examples.

    Example 1.For the separatively squeezed coherent state

    we have

    withζ=reiθ,r>0,we have

    Example 2.For the two-mode thermal states

    which are the product states of two single-mode thermal states with parametersλ1,λ2∈ (0 ,1) ,respectively,we have

    which decreases inλ1orλ2and shows that the two-mode thermal states are classical.In sharp contrast,for

    we have

    which is an increasing function ofλ.

    Example 3.For two-mode Gaussian states of the form

    which shows that the nonclassicality is an increasing function of the squeezing strength∣ζ∣,while for the product states of the two single-mode Gaussian states

    we have

    Let

    In sharp contrast,for states of the form

    we have

    Example 4.Forwe have

    which can equally be expressed as

    In contrast,for the Fock-diagonal state

    In particular,for the stateswe have

    Example 5.Consider a spin-j system,embedded as a(2j+1) -dimensional subspace of the two-mode bosonic field via the Schwinger realization

    of the SU(2) Lie algebra

    Let

    The Dicke states

    as the common eigenstates of the commuting operatorsJ2and JzsatisfyingJz∣j,m〉=m∣j,m〉,J2∣j,m〉=j(j+1)∣j,m〉,correspond to the two-mode Fock states

    Moreover,

    It follows that

    The spin coherent states

    can be expressed in the Dicke basis as

    and we have

    Actually,for any superposition of the Dicke states (thus any pure state of the spin-j system)

    we have

    For any mixture of the Dicke states

    This is independent of m,and implies that for any pure spin-j state∣Ψ 〉=it holds thatN∣Ψ 〉= 2j∣Ψ〉.Consequently,the total photon number is conserved in the spin-j system.The spin-j system Hilbert space Hjis the eigenspace of the total number operator N with eigenvalue2j,and the two-mode bosonic system Hilbert space H is orthogonally decomposed as

    withH0= C.This explains why all spin-j system pure states have the same nonclassicality 1 +2j: they are states with a total photon number of2j.This example shows that the quantifier of nonclassicalityN(ρ,a) cannot distinguish states in the same spin-j system,and captures the idea that nonclassicality is related to the precise number of photons.

    4.Correlations

    We wonder whether the difference between two-mode nonclassicality and local nonclassicalities can be used to capture correlations between the two modes.For this purpose,let us introduce

    It is obvious that for any product statesρ1?ρ2,we have

    Just like the quantum mutual information,which is used as a standard measure for correlations,the quantityC(ρ,a)is neither convex nor concave inρ.To see this,noting that for any separable statewe haveC(ρ,a)>0 whilewhich shows thatC(ρ)is not convex.On the other hand,let S (ρ1,ρ2)={ρ: tr2ρ=ρ1,tr1ρ=ρ2} be the set of two-mode states whose reduced states are fixed asρ1andρ2,then clearly this set is convex,andC(ρ,a)is convex on this set,indicating thatC(ρ,a)cannot be concave.Consequently,C(ρ,a)is indeed neither convex nor concave inρ.

    Let us further consider some typical examples.

    (1) For the mixture states

    with reduced states

    we have

    which is an increasing function ofλ.

    (2) For the Bell states∣Ψ±〉 ,∣Φ±〉,we have

    (3) For the two-mode squeezed vacuum statewe have

    It is interesting to compare this quantity of correlations with entanglement,as quantified by the marginal von Neumann entropy

    of the reduced states ρ1= tr2∣Φ〉〈Φ∣,ρ2= tr1∣Φ〉〈Φ∣.Both are monotonic and increasing functions ofr.

    (4) We now consider the correlations generated by beamsplitters in terms of nonclassicality.Recall that a typical beamsplitter transformation sending the input two-mode field a=(a1,a2)to the output two-mode field b=(b1,b2)is implemented byvia [53]

    Since

    Considering the situation of a balanced beamsplitterif the single-mode input states are squeezing vacuum statesthen we have

    If the input two-mode state isρ=∣n〉 ?∣0〉 for the balanced beamsplitter,then

    and we have

    which shows that nonclassical correlations are generated via the beamsplitter since

    5.Discussion

    Inspired by an information-theoretical quantifier of the nonclassicality of single-mode bosonic field states,we have introduced a quantifier of nonclassicality for two-mode bosonic field states,which can be naturally generalized to multimode bosonic fields as

    with the mode-annihilation operators of the d-mode bosonic field aj,j= 1,… ,d ,and a=(a1,… ,ad).We have further revealed its basic properties,elucidated its various features,and explicitly worked out several examples to illustrate its significance and intuitive meaning.We have also applied the nonclassicality to the quantification of correlations.It may be interesting to seek further applications of the results in concrete physical systems.

    Though the present two-mode quantifier of nonclassicality,which does not involve any optimization,is easy to calculate,it only captures some special features of nonclassicality.To gain a more complete picture,we may consider more quantities.

    (1) To distinguish the nonclassicality of states with a conserved total photon number,we may introduce

    (2) To distinguish the nonclassicality of states generated by{∣n 〉 ?∣n 〉 ,n=0,1,… },we may introduce

    (3) Moveover,we may generalize N (ρ ,a)by considering the quantity

    which yields a family of quantifiers of two-mode nonclassicality

    parameterized by r=(r1,r2),rj=1,2,…

    Together,these quantifiers can capture more aspects of nonclassicality,and further characterize correlations by the means given in section 4.

    Nonclassicality in multimode bosonic fields exhibits many new effects due to the interaction between different modes,and it is desirable to further explore the interplay between nonclassicality and correlations in order to obtain a deeper understanding of the fields.

    Acknowledgments

    This work was supported by the National Key R&D Program of China,Grant No.2020YFA0712700,and the National Natural Science Foundation of China,Grant Nos.11 875 317 and 61 833 010.

    ORCID iDs

    偷拍熟女少妇极品色| 又黄又爽又刺激的免费视频.| 精品少妇黑人巨大在线播放| 日日啪夜夜撸| 亚洲欧洲日产国产| 国内精品宾馆在线| 国产 一区 欧美 日韩| 成人高潮视频无遮挡免费网站| 久久久亚洲精品成人影院| 成人国产av品久久久| 麻豆精品久久久久久蜜桃| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 三级经典国产精品| 欧美亚洲 丝袜 人妻 在线| 国产精品无大码| 国产精品av视频在线免费观看| 一级二级三级毛片免费看| 下体分泌物呈黄色| 赤兔流量卡办理| 制服丝袜香蕉在线| 国产男女内射视频| 国产 精品1| 欧美一级a爱片免费观看看| 精品国产一区二区三区久久久樱花 | 国产欧美日韩一区二区三区在线 | 亚洲国产精品成人综合色| 国产亚洲一区二区精品| 一个人看视频在线观看www免费| 免费看a级黄色片| 免费电影在线观看免费观看| 欧美成人一区二区免费高清观看| 亚洲天堂国产精品一区在线| 亚洲欧美日韩东京热| 国产黄频视频在线观看| 精品少妇久久久久久888优播| 久久久久国产精品人妻一区二区| 国产午夜精品一二区理论片| 男人舔奶头视频| 色哟哟·www| 久久久久网色| 精品视频人人做人人爽| 91午夜精品亚洲一区二区三区| 少妇的逼好多水| 亚洲最大成人手机在线| 一级毛片aaaaaa免费看小| 身体一侧抽搐| 2018国产大陆天天弄谢| 亚洲四区av| 老女人水多毛片| 欧美最新免费一区二区三区| 久久久久久伊人网av| 美女内射精品一级片tv| 99久久人妻综合| 三级经典国产精品| 大码成人一级视频| 水蜜桃什么品种好| 亚洲性久久影院| 2021天堂中文幕一二区在线观| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 久久这里有精品视频免费| 欧美精品人与动牲交sv欧美| 国产成人福利小说| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 午夜福利在线在线| 久久97久久精品| 国产欧美日韩一区二区三区在线 | 午夜老司机福利剧场| 久久久久久久久久久丰满| 国产白丝娇喘喷水9色精品| 少妇丰满av| 色播亚洲综合网| 中文字幕免费在线视频6| 国产成人精品福利久久| 亚洲国产av新网站| 2021少妇久久久久久久久久久| tube8黄色片| 熟女电影av网| 精品久久久久久久久av| 美女高潮的动态| 久久久久久久久久成人| 最新中文字幕久久久久| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 成年女人看的毛片在线观看| 成人特级av手机在线观看| 麻豆乱淫一区二区| 看免费成人av毛片| 免费电影在线观看免费观看| 久久精品夜色国产| 十八禁网站网址无遮挡 | 我的老师免费观看完整版| 国产高清有码在线观看视频| 国产日韩欧美亚洲二区| 边亲边吃奶的免费视频| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 欧美日本视频| 91aial.com中文字幕在线观看| 精品一区二区三区视频在线| 极品少妇高潮喷水抽搐| 1000部很黄的大片| 亚洲最大成人av| 超碰97精品在线观看| 亚洲欧美日韩东京热| 又大又黄又爽视频免费| 在现免费观看毛片| 欧美激情国产日韩精品一区| 欧美日韩视频精品一区| av国产久精品久网站免费入址| 国产亚洲av片在线观看秒播厂| 亚洲国产高清在线一区二区三| 久久久国产一区二区| 久久精品夜色国产| 成年版毛片免费区| 国产男女内射视频| 成人鲁丝片一二三区免费| 亚洲国产日韩一区二区| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 大又大粗又爽又黄少妇毛片口| 久久精品人妻少妇| av国产精品久久久久影院| 直男gayav资源| 欧美三级亚洲精品| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 大香蕉久久网| 大片电影免费在线观看免费| 免费在线观看成人毛片| 99re6热这里在线精品视频| 欧美日韩精品成人综合77777| 性插视频无遮挡在线免费观看| av在线app专区| 在线看a的网站| av一本久久久久| 女人被狂操c到高潮| 国产黄片美女视频| 国产一区二区亚洲精品在线观看| 成人亚洲精品av一区二区| .国产精品久久| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 久久久久久久久久成人| 黑人高潮一二区| 少妇 在线观看| 久久久久久久久久成人| 国产精品人妻久久久影院| 国产 精品1| 特级一级黄色大片| 国产欧美另类精品又又久久亚洲欧美| 美女高潮的动态| 网址你懂的国产日韩在线| 丰满人妻一区二区三区视频av| 国产成人aa在线观看| 欧美+日韩+精品| 菩萨蛮人人尽说江南好唐韦庄| 热99国产精品久久久久久7| 精品久久久久久久人妻蜜臀av| 深夜a级毛片| 丰满少妇做爰视频| 99久久精品一区二区三区| 黄片无遮挡物在线观看| 毛片女人毛片| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| 一本久久精品| 伦精品一区二区三区| 亚洲美女视频黄频| 亚洲精品成人av观看孕妇| 一个人看视频在线观看www免费| 美女国产视频在线观看| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片| av.在线天堂| 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| 永久网站在线| 亚洲aⅴ乱码一区二区在线播放| 一级爰片在线观看| 美女主播在线视频| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 视频中文字幕在线观看| 青春草视频在线免费观看| 国产黄频视频在线观看| 国模一区二区三区四区视频| 中国美白少妇内射xxxbb| 国产伦精品一区二区三区视频9| 好男人在线观看高清免费视频| 色5月婷婷丁香| 少妇人妻久久综合中文| 成年免费大片在线观看| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 亚洲在线观看片| 91aial.com中文字幕在线观看| 国产在视频线精品| 久久鲁丝午夜福利片| 亚洲一级一片aⅴ在线观看| 免费在线观看成人毛片| av在线蜜桃| 午夜亚洲福利在线播放| 国产探花在线观看一区二区| 亚洲国产精品专区欧美| 久久99热6这里只有精品| 大陆偷拍与自拍| 丰满乱子伦码专区| 国产成人精品一,二区| 亚洲欧美精品专区久久| 久久久久网色| 久久久久久久久久人人人人人人| 亚洲av一区综合| 老师上课跳d突然被开到最大视频| 国产乱人视频| 亚洲精品影视一区二区三区av| 国产伦精品一区二区三区四那| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影小说 | 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区三区| 日本三级黄在线观看| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 波多野结衣巨乳人妻| 久久精品久久久久久噜噜老黄| 亚洲欧美中文字幕日韩二区| 欧美区成人在线视频| 搡老乐熟女国产| 尤物成人国产欧美一区二区三区| 日本色播在线视频| 97精品久久久久久久久久精品| h日本视频在线播放| 亚洲欧洲日产国产| 在线观看一区二区三区激情| 亚洲伊人久久精品综合| 国产视频内射| 22中文网久久字幕| 男插女下体视频免费在线播放| 在线精品无人区一区二区三 | 午夜老司机福利剧场| 80岁老熟妇乱子伦牲交| 丰满人妻一区二区三区视频av| 免费看日本二区| 欧美精品一区二区大全| 一区二区三区乱码不卡18| 色5月婷婷丁香| 亚洲av福利一区| 亚洲av不卡在线观看| 男的添女的下面高潮视频| 校园人妻丝袜中文字幕| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频 | 我的女老师完整版在线观看| 内地一区二区视频在线| 免费观看a级毛片全部| 国产人妻一区二区三区在| 少妇人妻 视频| 精品一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线 | 大香蕉97超碰在线| 女人久久www免费人成看片| 亚洲精品国产成人久久av| 在线观看人妻少妇| 国产 一区精品| 成年人午夜在线观看视频| 国产黄片美女视频| 免费观看无遮挡的男女| 亚洲国产精品999| 国产成人精品婷婷| 国产乱人偷精品视频| 欧美日韩在线观看h| 中文乱码字字幕精品一区二区三区| 成人免费观看视频高清| 久久97久久精品| 18+在线观看网站| 97超视频在线观看视频| 涩涩av久久男人的天堂| 99久久精品热视频| 美女视频免费永久观看网站| 亚洲欧美精品专区久久| 水蜜桃什么品种好| 中文天堂在线官网| 国产精品熟女久久久久浪| 色综合色国产| 女人十人毛片免费观看3o分钟| 国产成人午夜福利电影在线观看| 一级a做视频免费观看| 在线观看人妻少妇| 高清日韩中文字幕在线| 日日啪夜夜爽| 草草在线视频免费看| 久久99热6这里只有精品| 男的添女的下面高潮视频| 国产在视频线精品| 九九在线视频观看精品| 嫩草影院入口| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 亚洲国产精品成人综合色| 极品少妇高潮喷水抽搐| 国产 一区精品| 韩国av在线不卡| 亚洲av日韩在线播放| videossex国产| 精品酒店卫生间| 久久综合国产亚洲精品| 免费看不卡的av| 有码 亚洲区| 日本一本二区三区精品| 国产精品国产三级国产av玫瑰| 国产爽快片一区二区三区| 欧美日韩在线观看h| 久久久久国产精品人妻一区二区| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 亚洲av日韩在线播放| 插阴视频在线观看视频| 人体艺术视频欧美日本| 亚洲aⅴ乱码一区二区在线播放| 特级一级黄色大片| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡 | 中国三级夫妇交换| 国产亚洲av片在线观看秒播厂| 国产精品av视频在线免费观看| 如何舔出高潮| 97人妻精品一区二区三区麻豆| 韩国高清视频一区二区三区| 街头女战士在线观看网站| 亚洲精品成人av观看孕妇| 国内少妇人妻偷人精品xxx网站| 一区二区三区乱码不卡18| 久久久久久久久久久免费av| 六月丁香七月| 色网站视频免费| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看 | 日本一二三区视频观看| 在线a可以看的网站| 国产成人免费无遮挡视频| 国产成人freesex在线| 国产高清国产精品国产三级 | 国产乱人视频| 一级黄片播放器| 亚洲一区二区三区欧美精品 | 欧美日韩精品成人综合77777| 美女高潮的动态| av在线观看视频网站免费| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站| 大香蕉97超碰在线| 交换朋友夫妻互换小说| 成年人午夜在线观看视频| 大话2 男鬼变身卡| 亚洲国产色片| 男的添女的下面高潮视频| 男人爽女人下面视频在线观看| 亚洲av日韩在线播放| 男人和女人高潮做爰伦理| 永久网站在线| 国产精品久久久久久精品电影小说 | 纵有疾风起免费观看全集完整版| 国产片特级美女逼逼视频| 亚洲欧美精品自产自拍| 亚洲欧美中文字幕日韩二区| 亚洲一区二区三区欧美精品 | 少妇丰满av| 国产欧美日韩一区二区三区在线 | 国产 一区 欧美 日韩| 国产精品一及| 一级爰片在线观看| 日本猛色少妇xxxxx猛交久久| 你懂的网址亚洲精品在线观看| 久久人人爽av亚洲精品天堂 | 国产极品天堂在线| 国产69精品久久久久777片| 国产黄频视频在线观看| 国产v大片淫在线免费观看| 婷婷色综合大香蕉| av线在线观看网站| 各种免费的搞黄视频| 观看免费一级毛片| 九色成人免费人妻av| 美女被艹到高潮喷水动态| 午夜激情久久久久久久| 99久久精品一区二区三区| 欧美少妇被猛烈插入视频| 看黄色毛片网站| 久久久精品94久久精品| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| 亚洲va在线va天堂va国产| 全区人妻精品视频| 男人爽女人下面视频在线观看| av网站免费在线观看视频| 午夜爱爱视频在线播放| 亚洲真实伦在线观看| 青春草国产在线视频| 久久99蜜桃精品久久| 久热久热在线精品观看| 国产伦精品一区二区三区视频9| 日日啪夜夜爽| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| av一本久久久久| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 亚洲精品日本国产第一区| 91久久精品电影网| 日韩一区二区三区影片| 黄片wwwwww| 亚洲不卡免费看| 亚洲av.av天堂| 精品久久久噜噜| 一级a做视频免费观看| 午夜免费男女啪啪视频观看| 青青草视频在线视频观看| www.av在线官网国产| 欧美xxxx黑人xx丫x性爽| 国产成人精品福利久久| 亚洲精品国产av成人精品| av在线蜜桃| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| 免费看日本二区| 亚洲av成人精品一二三区| 国产综合懂色| 一级片'在线观看视频| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| 人人妻人人澡人人爽人人夜夜| 插阴视频在线观看视频| 久久久久久九九精品二区国产| 国产成人aa在线观看| 日日啪夜夜撸| 中文字幕免费在线视频6| 七月丁香在线播放| 99久久精品一区二区三区| av在线天堂中文字幕| 精品酒店卫生间| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花 | 亚洲欧洲日产国产| 在线精品无人区一区二区三 | 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩精品成人综合77777| 亚洲av在线观看美女高潮| 各种免费的搞黄视频| 久热这里只有精品99| 在线观看美女被高潮喷水网站| 国产黄片美女视频| 成年人午夜在线观看视频| 亚洲精品久久久久久婷婷小说| 亚洲精品456在线播放app| 九九久久精品国产亚洲av麻豆| 成人美女网站在线观看视频| 亚洲精品国产色婷婷电影| 伊人久久精品亚洲午夜| 男插女下体视频免费在线播放| 久久热精品热| 18禁动态无遮挡网站| 最近最新中文字幕免费大全7| 精品视频人人做人人爽| 日韩成人av中文字幕在线观看| .国产精品久久| 男人爽女人下面视频在线观看| av在线观看视频网站免费| 亚洲久久久久久中文字幕| 五月玫瑰六月丁香| 亚洲性久久影院| 六月丁香七月| 久久久久久九九精品二区国产| 女人被狂操c到高潮| 国产精品久久久久久精品电影| av在线老鸭窝| 日韩强制内射视频| h日本视频在线播放| 色婷婷久久久亚洲欧美| 亚洲成人精品中文字幕电影| 中文在线观看免费www的网站| 国产成人福利小说| 亚洲国产日韩一区二区| 99久国产av精品国产电影| 午夜日本视频在线| 国产爽快片一区二区三区| 在线观看三级黄色| 欧美日本视频| 能在线免费看毛片的网站| 久久热精品热| 精品99又大又爽又粗少妇毛片| 大码成人一级视频| 欧美激情国产日韩精品一区| 春色校园在线视频观看| 亚洲精品,欧美精品| 国产乱人偷精品视频| 久久久久久久午夜电影| 白带黄色成豆腐渣| 久久久久精品性色| 亚洲精品成人久久久久久| 日本一本二区三区精品| 一级毛片久久久久久久久女| 99精国产麻豆久久婷婷| 99热全是精品| 日日撸夜夜添| 97超碰精品成人国产| 丝袜美腿在线中文| 人妻夜夜爽99麻豆av| 美女高潮的动态| 我的女老师完整版在线观看| 熟女av电影| 日韩一区二区三区影片| 亚洲成人中文字幕在线播放| 国产色婷婷99| 亚洲色图综合在线观看| 亚洲精品aⅴ在线观看| 婷婷色av中文字幕| 亚洲av免费在线观看| 熟女av电影| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 97在线人人人人妻| 听说在线观看完整版免费高清| 在线a可以看的网站| 久久人人爽人人片av| 菩萨蛮人人尽说江南好唐韦庄| 欧美变态另类bdsm刘玥| 精品久久久久久久末码| 久久久午夜欧美精品| av黄色大香蕉| 久久ye,这里只有精品| 国产高清不卡午夜福利| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 日日摸夜夜添夜夜添av毛片| 一本久久精品| 亚洲欧美日韩无卡精品| 成人综合一区亚洲| 亚洲,一卡二卡三卡| 边亲边吃奶的免费视频| 亚洲久久久久久中文字幕| 久久精品综合一区二区三区| 国产精品一区二区在线观看99| 少妇人妻精品综合一区二区| 国产成人91sexporn| 日韩电影二区| av在线天堂中文字幕| 欧美激情久久久久久爽电影| 91精品伊人久久大香线蕉| 欧美区成人在线视频| 热99国产精品久久久久久7| 国产爱豆传媒在线观看| 99热这里只有是精品在线观看| 最近最新中文字幕免费大全7| 91狼人影院| 国产精品熟女久久久久浪| 精华霜和精华液先用哪个| 精品一区二区三卡| 色播亚洲综合网| 国产黄色免费在线视频| 观看免费一级毛片| 久久99热这里只频精品6学生| av在线蜜桃| 国产爽快片一区二区三区| 激情五月婷婷亚洲| 欧美日韩综合久久久久久| 国产精品国产三级国产专区5o| 一本色道久久久久久精品综合| 欧美老熟妇乱子伦牲交| 日本一二三区视频观看| 婷婷色综合大香蕉| 波多野结衣巨乳人妻| 最后的刺客免费高清国语| 亚洲自拍偷在线| 青春草视频在线免费观看| 毛片一级片免费看久久久久| 久久精品人妻少妇| 国产 一区 欧美 日韩| 久久99热这里只频精品6学生| 男的添女的下面高潮视频| 久久久久久久久久久丰满| 久久人人爽av亚洲精品天堂 | 亚洲av福利一区| 成人免费观看视频高清| 日韩一区二区三区影片| 亚洲自偷自拍三级| 伦理电影大哥的女人| 在线免费观看不下载黄p国产| 日韩大片免费观看网站| 国产成人freesex在线| 国产精品99久久99久久久不卡 | 在线观看一区二区三区激情| 69av精品久久久久久| 汤姆久久久久久久影院中文字幕| 亚洲人成网站高清观看| 亚洲国产精品成人综合色| 日产精品乱码卡一卡2卡三| 天堂网av新在线| av卡一久久| 午夜福利在线在线| 午夜精品一区二区三区免费看| 一二三四中文在线观看免费高清| 日韩一本色道免费dvd| tube8黄色片| 午夜福利视频精品|