• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy

    2021-04-28 02:25:56GnaneswaraReddyNaveenKumarPrasannakumaraRudraswamyandGaneshKumar
    Communications in Theoretical Physics 2021年4期

    M Gnaneswara Reddy,Naveen Kumar R,B C Prasannakumara,N G Rudraswamy and K Ganesh Kumar

    1 Department of Mathematics,Acharya Nagarjuna University Campus,Ongole—523 001,India

    2 Department of Studies and Research in Mathematics,Davangere University,Shivagangothri,Davangere-577007,Karnataka,India

    3 Department of Mathematics,P.C.Jabin Science Collage,Hubballi-580031,India

    Abstract This research work explores the effect of hybrid nanoparticles on the flow over a rotating disk by using an activation energy model.Here,we considered molybdenum disulfide and ferro sulfate as nanoparticles suspended in base fluid water.The magnetic field is pragmatic normal to the hybrid nanofluid flow direction.The derived nonlinear ordinary differential equations are nondimensionalized and worked out numerically with the help of Maple software by the RKF-45 method.The scientific results for a non-dimensionalized equation are presented for both nanoparticle and hybrid nanoparticle case.Accoutrements of various predominant restrictions on flow and thermal fields are scanned.Computation estimation for friction factor,local Nusselt number and Sherwood number are also executed.Results reveal that the reduction of the heat transfer rate is greater in hybrid nanoparticles when compared to nanoparticles for increasing values of Eckert Number and the thermal field enhances for the enhanced values of volume fraction.

    Keywords: porous medium,MHD,hybrid nanoparticles,activation energy

    Nomenclature

    Greek symbols

    Subscript

    1.Introduction

    In the year 1889,Sweden’s Nobel laureate Arrhenius embarked upon a theory encompassing the reaction rate of numerous chemical processes.The theory averred the relationship between temperature and reaction rate in an equation form termed the Arrhenius equation.He stated that the minimum energy required to begin a chemical reaction is called the activation energy.Later,the term was coined as Arrhenius activation energy.Furthermore,the nature of Arrhenius activation energy was re-examined by Menzinger and Wolfgang [1].Jensen [2] scrutinized the contemporary use of the Arrhenius equation and activation energy through ICs.Hayat et al [3] addressed the influence of activation energy in the flow of dyadic chemically reactive third-grade fluid through a rotating disk.Khan et al [4] exhibited the influence of dyadic chemical reaction and Arrhenius activation energy with second-law scrutiny on nanofluid flow.Salahuddin et al [5] examined the inner energy change and stable-state 3D change in visco-elastic fluid flow in revolving state with added convective boundary conditions.The impact of Arrhenius activation energy on tangent hyperbolic fluid flow above an impelling stretched surface with zero mass-flux conditions was revealed by Kumar et al [6].Khan et al [7]calculated the effect of Arrhenius activation energy on chemically reactive rotating flow subject to heat source and nonlinear heat flux.Asma et al[8]numerically examined the magnetohydrodynamic (MHD) flow of nanofluid due to a rotating disk with the effect of activation energy and chemical reaction.

    MHD flow has a wide range of applications in engineering,geophysics,astrophysics,the study of earthquakes,aerospace engineering and biological fields.Ramzan et al[9]used Eyring–Powell nanofluid to illustrate MHD flow,taking account of chemical reactions.Zeeshan et al [10] scrutinized the MHD Couette–Poiseuille nanofluid flow by considering activation energy along with the chemical reaction.Stagnation-point flow and the effect of Newtonian heating over the surface of a nanofluid were investigated by Hakeem et al[11].Lu et al [12] scrutinized the MHD flow with the help of Carreau nanofluid by applying zero mass-flux condition.Khan et al [13] considered 3D flow over a two-directional stretching sheet by using the Carreau rheological model.In researching magnetic effect,heat generation/absorption is taken into the account.The outcome of the research revealed that the velocity is dependent on Hartmann number.Reddy and Sandeep [14] explained the phenomena of MHD flow of Carreau nanofluid through the analysis of the different effects.

    The fluid flow over a surface of rotating disks has attracted tremendous interest from scientists due to its several technical and aerospace applications.Greater effort from researchers is required in order to discover the hidden properties of rotating disks.This is because the fluid flow conduction through rotating disks is not only of speculative interest,but has practical significance in the use of medical equipment,gas turbines,chemical processes and rotating machines.Therefore,research into liquid flow over an infinite disk with rotation was first initiated by Karmann [15].Turkyilmazoglu [16] investigated the well-known Karmann viscous pump problem over a stretchable disk with rotation.The flow of nanofluid through a rotating disk was scrutinized by Turkyilmazoglu[17].Hayat et al[18]investigated the Jeffrey nanofluid flow with convection between two rotating stretchable disks.The heat variation of nanofluid flow through a rotating disk with a consistent escalation rate and three different nanoparticles was appraised by Yin et al [19].The quantitative simulation of radiative flow with carbon nanotubes and partial slip of nanofluid was done by Hayat et al[20].Rehman et al [21] gave the numerical solution of non-Newtonian fluid flow over a rigid inflexible rotating disk.Rafiq and Mustafa [22] analyzed the swirling unsteady nanofluid flow around a decelerating porous rotating disk.Turkyilmazoglu [23] proposed the idea of the interaction of fluid flow with suspended particles over a stretching rotating disk.Tassaddiq et al [24] probed the incompressible hybrid nanofluid flow in the presence of a magnetic field over an infinite impervious rotating disk.

    Nanofluid flow has attracted the attention of engineers and scientists over the past two decades.Nanofluid is an innovative engineering material that has numerous applications in biology,cancer diagnosis,nuclear industries,drilling and oil recovery,electronic cooling,heat exchangers,cooling of microelectronics,vehicle cooling and vehicle heat management.To improve the thermal conductivity of nanofluids and evaluate the properties of heat transfer,hybrid nanofluids were introduced.A mixture of dual diverse nanoparticles yields hybrid nanofluids.Recently,several researchers scrutinized the mono and hybrid nanofluid flow over different surfaces.Ramesh et al [25] studied the influence of thermal radiation on MHD stagnation-point flow of nanofluid over a stretching surface with variable thickness.Sheikholeslami et al [26] scrutinized the impact of thermal radiation on natural convection ofFe3O4-ethylene glycol nanofluid,taking account of the electric field in a porous enclosure.Kumar et al scrutinized[27]the impact of Joule and viscous dissipation on 3D flow of nanoliquid in slip flow regime under timedependent rotational oscillations.Sharma et al [28] investigated the flow of nanofluids driven by the mutual effects of peristaltic pumping and external electric field past a microchannel,taking account of double-diffusive convection.Prakash et al[29]gave the mathematical modeling of electroosmotic flow of non-Newtonian nanofluids through a microchannel in the presence of Joule heating and peristalsis.Ramesh et al[30]scrutinized the flow of hybrid nanomaterial subjected to the convergent/divergent channel.Several researchers studied the nanofluid flow over different surfaces,taking account of the Joule effect,viscous dissipation and other influencing factors [31–35].

    Inspired by all the above studies,the present work elucidates the activation energy flow associated with different nanoparticles,which was not considered in previous works.Hence,the earnest attempt made to probe the thermo-physical properties of nanofluid on MHD flow with the rotating disk.The present research problem is solved numerically.The results obtained are presented graphically and discussed briefly.

    2.Mathematical formulation

    Consider the 3D steady flow of incompressible hybrid nanofluid suspended with different kinds of nanoparticles over an infinite stretching rotating disk,under the influence of a magnetic field.The disk rotates about the z-axis with an angular velocity Ω.The heat transfer process is examined subject to dissipation and Joule heating.Geometrical representation of the considered flow problem is depicted in figure 1.In addition,we have considered the impact of the activation energy and binary chemical reaction aspects in analyzing the mass transfer.

    The modeled governing equations are as follows:

    with boundary conditions,

    Here,(u,v,w) are the velocity components T,Tw,T∞,the temperature of the fluid,wall temperature and ambient temperature,respectively.

    We consider the transformations:

    Figure 1.Flow configuration.

    In view of equation (8),the continuity equation is satisfied exactly and equations (2)–(7) reduced as below:

    Similarly,the transformed boundary conditions are:

    where

    Table 1.Thermo-physical properties of nanoparticles.

    Here,σ-reaction rate,E-activation energy,δ-temperature difference andλ,Sc,M,Ec,Pr,Re,Aare the porosity parameter,Schmidt number,Hartmann number,Eckert number,Prandtl number,local Reynolds number and stretching parameter,respectively.

    Equation(9)is differentiated with respect toηas follows:

    where,(ρhnf,μhnf,khnfand(ρCp)hnf) are given below:

    TheSh,NuandCfare given as:

    The non-dimensional form ofRe?1/2Sh,Re?1/2NuandRe1/2Cfxare:

    3.Result and discussion

    This section covers the outcomes of the MHD flow over a rotating disk with suspension of different nanoparticles.Two types of oxides,namely molybdenum disulfide and ferro sulfate,are suspended in base fluid water.The powerful numerical mechanism RKF fourth-fifth order along with a shooting technique is used to deal the non-dimensional governing equations of the present problem.Table 1 presents the thermo-physical properties of each base fluid and the nanoparticles.In order to provide insight,the effects of various governing parameters on thef′(η),g(η),θ(η) andχ(η) are discussed graphically.

    Figures 2–4 show the domination ofMoverf′(η),g(η),andθ(η) for the cases of hybrid nanoparticles and nanoparticles.Here,an escalating integrity ofMdecays thef′(η),andg(η) (see figures 2 and 3).Likewise,the thickness of the corresponding layer reduces for enhanced values ofM.In addition,the velocity of the fluid is lower in nanofluid when treated with hybrid nanofluid.Substantially larger values ofMincreased the Lorenz force.Consequently,the accelerated Lorentz force generates extra drag to the ambulation of the fluid flow and nanoparticles.From figure 4 it can be seen thatθ(η) results in larger integrities ofM.Furthermore,the corresponding thermal field increases for largerM.The impact ofλonf′(η) ,andg(η)is shown in figures 5,6.Here,it is contemplated that the escalating values ofλdecrease both the profilesf′(η) ,andg(η) of both the nanoparticle and hybrid nanoparticle case.Besides the interrelated thickness of the layer scales back for largerλ.In addition,the velocity of the fluid is lower in nanoparticles when treated with hybrid nanoparticles.

    Figure 2.Influence of M onf′(η).

    Figure 3.Influence of M on gη ().

    Figure 4.Influence of M onθ (η).

    Figure 5.Influence ofλ onf′(η).

    Figure 6.Influence ofλ on gη ().

    The influence of ?1onf′(η),andθ(η) profiles for both MoS2?H2O andFe3O4?H2O nanoparticle cases are depicted in figures 7,8.Here,it is noted enlarged values of volume fraction declines the velocity profile,but enhances the thermal profile.Furthermore,the compactness of the corresponding layers also provides for growing values ofK.Furthermore,the enhancement of fluid flow is higher in nanoparticles than that of hybrid nanoparticles.Figures 9,10 reproducef′(η),andθ(η)of both the hybrid nanoparticle and nanoparticle case for different values of ?2.One may observe from these figure that the velocity profile is declined and thermal profile is enhanced for increased integrates of volume fraction ?2.The compactness of momentum of both hybrid nanoparticle and nanoparticle cases declines for increasing values of ?2parameter,but the opposite trend can be seen for thermal profile.

    Figure 7.Influence of ?1 onf′(η).

    Figure 8.Influence of ?1 onθ (η).

    Figure 9.Influence of ?2 onf′(η).

    Figure 10.Influence of ?2 onθ (η).

    Figure 11.Influence ofEc onθ (η).

    The influence of Eckert number on the thermal field of the nanofluid and hybrid nanofluid is displayed in figure 11.The increasing Eckert number increases the thermal field.In the case of a large magnetic force system,the major disruption of the temperature field induced by each member is an interesting result.These physical phenomena are attributable to the cumulative effect of heat energy stored in the nanofluid and hybrid nanofluid due to fractional heating.The variation in thermal field of the nanofluid and hybrid nanofluid versus Prandtl numberPris shown in figure 12.The graph shows that the thermal field and thermal layer thickness decline whenever thePrvalues are boosted.This is really caused by the fact that with the greater Prandtl number,fluids will have a comparatively low conductivity,which mostly diminishes the heat transfer and thickness of the thermal fluid flow and therefore the temperature of the fluid reduces.The effect ofPr on Newtonian fluids is close to what we are seeing in nanofluid.These characteristics are thus already retained by nanofluids.

    Figure 12.Influence of Pr onθ (η).

    Figure 13.Influence ofSc onχ (η).

    Figure 13 shows the denouement of theScparameter on theχ(η) profile for both the nanoparticle and hybrid nanoparticle case.Here,it is essential to mention that the extreme values ofScscale back the fluid concentration.Furthermore,the solutal layer of both the nanoparticle and hybrid nanoparticle case reduces for higher values ofSc.The influence ofσon the solutal field of the nanofluid and hybrid nanofluid is shown in figure 14.One may observe that the solutal field is scaled back for increment values ofσ.The compactness of the solutal layer of both the hybrid nanoparticle and nanoparticle case reduces for increasing values of the material parameter.In addition,the concentration of the fluid is much faster in the nanoparticle case when compared with the hybrid nanoparticle case.TheσandEonχ(η) for both the hybrid nanoparticle and nanoparticle case are depicted in figures 15,16.Here,it is observed that an increasing value ofEscales back the concentration of the fluid flow in both nanoparticle cases.

    Figure 14.Influence ofδ onχ (η).

    Figure 15.Influence ofσ onχ (η).

    Figure 16.Influence of E onχ (η).

    Figure 17.Influence ofλ versus ?1 on Cfx.

    Figure 18.Influence of Ec and Pr on Re?1/2Nu.

    The impact ofλand ?1onRe1/2Cfxis delineated in figure 17.Here,it is contemplated that the escalating values ofλand ?1scale back the friction factor for both the hybrid nanoparticle and nanoparticle case.Besides,there is an interrelated thickness of the layer downturn for largerλand?.1Furthermore,the reduction of the friction factor is less in hybrid nanoparticles when compared to nanoparticles.Figure 18 represents the encounter ofEcandPronRe?1/2Nufor both the hybrid nanoparticle and nanoparticle case.One may observe that boosted values ofPr reduce the temperature of the fluid for both the hybrid nanoparticle and nanoparticle case.Hence,Re?1/2Nuis scaled back,while the opposite trend is observed for higher values ofEc.Figure 19 reproduces theRe?1/2Shfor varyingScandδfor both the hybrid nanoparticle and nanoparticle case.Here,it is essential to mention that larger values ofEcenhance theRe?1/2Shin both the hybrid nanoparticle and nanoparticle case.

    Figure 19.Influence ofδ andSc on Re?1/2Sh.

    Table 2.Numerical values of Cfx for different physical parameter values.

    Table 2.Numerical values of Cfx for different physical parameter values.

    Re Cfx 12 M λ ?1 ?2 Nanofluid Hybrid nanofluid 0.5 ?1.127 498 ?1.106 825 1.0 ?1.177 467 ?1.153 211 1.5 ?1.192 089 ?1.192 160 0.1 0.977 902 ?1.094 206 0.2 ??1.084 503 ?1.145 167 0.3 ?1.144 617 ?1.199 912 0.1 ?0.137 800 ?0.184 883 0.2 ?0.122 279 ?0.164 147 0.3 ?0.106 240 ?0.142 617 0.1 ?0.144 872 ?0.157 821 0.2 ?0.125 478 ?0.148 756 0.3 ?0.104 887 ?0.954 71

    Table 3.Numerical values of Re?1/2Nufor different physical parameter values for both the hybrid and nanofluid case.

    Table 4.Numerical values of Re?1/2Shfor different physical parameter values for both the hybrid and nanofluid case.

    Table 5.Comparison of of statistical values with Miklavcic and Wang[36]in the absence of M,ε,λ Pressure gradient,nanoparticles,energy and mass effects.

    The effects of diversified governing flow parameters on the friction coefficientsRe1/2Cfx,Re?1/2NuandRe?1/2Share listed in tables 2–4.From table 2,it can be seen that the fiction coefficient is enhanced by increasingMandλ,but a reverse trend is observed for both ?1and ?2.Furthermore,from table 2 it is noted that the value of the heat transfer rate scale back can be established by accumulating values of Pr,?1and ?2.While,a reverse trend is observed for booster values of bothMandEc.From table 4 it can be seen that the rate of mass transfer declined for increasing values ofScandσ.Table 5 gives the comparison of statistical values of the current problem with published results and it shows good agreement.

    4.Conclusion

    A hybrid nanoparticle performance of Arrhenius activation energy over a rotating disk by considering MHD is examined numerically.A powerful numerical mechanism RKF fourth and fifth order by adopting a shooting approach is used to deal with the non-dimensional governing equations of the present problem.The outcome of the velocity,concentration and temperature profile of both nanoparticle cases for distinct values of non-dimensional parameter are presented graphically and analyzed.Based on these graphs and tables we conclude that:

    ? enhanced values ofλdecrease the velocity profile for both cases

    ? enhancement of heat transfer is greater in hybrid nanoparticles when compared to nanoparticles for different values ofM

    ?f′(η)andg(η)is decreased for enhancing values of both?1and ?2

    ? largerσandScreduces the solutal boundary layer

    ? larger-scaleMandλslows down the fluid velocity of both nanoparticle cases

    ? thermal field enhances for increasing values of both?1and ?2.

    Future work may add further value to the present topic by the investigation of hybrid nanofluid flow through new physical mechanisms,relevant influencing factors and a combination of different nanoparticles suspended in diverse carrier liquids.

    Acknowledgments

    The authors gratefully acknowledge the financial support from Dr D S Kothari Post-Doctoral Fellowship Scheme,University Grants Commission,New Delhi.

    国产黄片视频在线免费观看| 一本一本综合久久| 亚洲欧美一区二区三区国产| 精品一区二区三卡| 在线天堂最新版资源| av国产免费在线观看| 国产男女内射视频| 乱系列少妇在线播放| 久久精品国产a三级三级三级| 高清视频免费观看一区二区| 国产精品国产三级专区第一集| 亚洲内射少妇av| 亚洲欧美清纯卡通| 亚洲在线观看片| 三级经典国产精品| 亚洲欧美精品专区久久| 夫妻午夜视频| av女优亚洲男人天堂| 高清在线视频一区二区三区| 久久女婷五月综合色啪小说 | 欧美另类一区| 亚洲国产色片| 可以在线观看毛片的网站| 成年女人看的毛片在线观看| 亚洲av免费在线观看| 好男人视频免费观看在线| 极品教师在线视频| 欧美激情国产日韩精品一区| 日韩中字成人| videossex国产| 免费黄网站久久成人精品| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91 | av在线播放精品| 建设人人有责人人尽责人人享有的 | 在线观看美女被高潮喷水网站| 少妇 在线观看| 99久久精品一区二区三区| 三级国产精品欧美在线观看| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 国产毛片a区久久久久| 亚洲成人中文字幕在线播放| 91在线精品国自产拍蜜月| 亚洲成人一二三区av| 中文资源天堂在线| 欧美日韩精品成人综合77777| av在线天堂中文字幕| 国产成人aa在线观看| 欧美潮喷喷水| 亚洲精品自拍成人| 嫩草影院新地址| 一级av片app| 亚洲最大成人中文| 亚洲综合色惰| 简卡轻食公司| 国产成人一区二区在线| 亚洲自拍偷在线| 欧美性猛交╳xxx乱大交人| 自拍欧美九色日韩亚洲蝌蚪91 | 国产伦在线观看视频一区| 欧美一区二区亚洲| 亚洲国产精品成人综合色| 亚洲成人久久爱视频| 国产亚洲av片在线观看秒播厂| 波多野结衣巨乳人妻| 网址你懂的国产日韩在线| 国产高潮美女av| 国产真实伦视频高清在线观看| 久久精品久久久久久噜噜老黄| 一级片'在线观看视频| 日韩三级伦理在线观看| 各种免费的搞黄视频| 国产成年人精品一区二区| 少妇被粗大猛烈的视频| 黄片wwwwww| 国产精品一及| 爱豆传媒免费全集在线观看| 爱豆传媒免费全集在线观看| 一边亲一边摸免费视频| 69av精品久久久久久| 91精品国产九色| 国产探花极品一区二区| 少妇人妻一区二区三区视频| 天天躁日日操中文字幕| 一级爰片在线观看| 亚洲精品自拍成人| 国产精品女同一区二区软件| 成年av动漫网址| 网址你懂的国产日韩在线| 亚洲av男天堂| 国产 精品1| 看黄色毛片网站| 欧美亚洲 丝袜 人妻 在线| 在线观看美女被高潮喷水网站| 久热久热在线精品观看| 99视频精品全部免费 在线| 亚洲自偷自拍三级| 韩国av在线不卡| 特级一级黄色大片| 99热网站在线观看| 少妇 在线观看| 欧美人与善性xxx| 美女主播在线视频| 春色校园在线视频观看| 亚洲人成网站在线观看播放| 少妇丰满av| 亚洲婷婷狠狠爱综合网| 男女无遮挡免费网站观看| 日韩人妻高清精品专区| 久久精品久久精品一区二区三区| 久久久久久久亚洲中文字幕| 日韩人妻高清精品专区| 午夜福利视频精品| 男女无遮挡免费网站观看| 亚洲激情五月婷婷啪啪| 亚洲精品久久午夜乱码| 又黄又爽又刺激的免费视频.| 国产女主播在线喷水免费视频网站| 久久久久久国产a免费观看| 久久人人爽人人片av| 人人妻人人爽人人添夜夜欢视频 | 亚洲三级黄色毛片| 亚洲精品亚洲一区二区| 色播亚洲综合网| 国产亚洲av片在线观看秒播厂| 1000部很黄的大片| 国产综合精华液| 91精品国产九色| 精品国产一区二区三区久久久樱花 | 亚洲欧美精品专区久久| 97热精品久久久久久| 男女那种视频在线观看| av播播在线观看一区| 91久久精品国产一区二区成人| 欧美成人午夜免费资源| 国产乱人视频| 丝袜美腿在线中文| 精品久久久噜噜| 久久久久久九九精品二区国产| 成人漫画全彩无遮挡| 成人亚洲精品av一区二区| av天堂中文字幕网| 日韩强制内射视频| 狠狠精品人妻久久久久久综合| av.在线天堂| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 亚洲色图av天堂| 国产精品国产三级国产av玫瑰| 观看美女的网站| av国产久精品久网站免费入址| 春色校园在线视频观看| 香蕉精品网在线| 久久精品国产亚洲av涩爱| 日韩欧美精品v在线| 搡老乐熟女国产| 国产成人aa在线观看| 久久久久久久亚洲中文字幕| 99久久九九国产精品国产免费| 亚洲av国产av综合av卡| 亚洲国产av新网站| 激情 狠狠 欧美| 成人无遮挡网站| 狂野欧美白嫩少妇大欣赏| 免费看av在线观看网站| 可以在线观看毛片的网站| h日本视频在线播放| 久久久亚洲精品成人影院| 我的女老师完整版在线观看| 嫩草影院精品99| 亚洲最大成人手机在线| 国产欧美日韩一区二区三区在线 | 日韩欧美精品免费久久| 久久亚洲国产成人精品v| eeuss影院久久| 性色avwww在线观看| 看黄色毛片网站| 少妇丰满av| 国产精品熟女久久久久浪| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 国产精品99久久99久久久不卡 | 日韩欧美一区视频在线观看 | 成人毛片a级毛片在线播放| 听说在线观看完整版免费高清| 国产爽快片一区二区三区| 麻豆久久精品国产亚洲av| 亚洲精品国产成人久久av| 51国产日韩欧美| 日韩国内少妇激情av| av免费在线看不卡| 亚洲精品456在线播放app| 欧美区成人在线视频| 日韩强制内射视频| 亚洲在线观看片| 国产 一区精品| 高清欧美精品videossex| 国产精品人妻久久久久久| 精品一区二区免费观看| 女人被狂操c到高潮| 久久女婷五月综合色啪小说 | 国产精品麻豆人妻色哟哟久久| 午夜日本视频在线| 久久国内精品自在自线图片| 黄色配什么色好看| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av天美| 国产爱豆传媒在线观看| 美女内射精品一级片tv| 在线精品无人区一区二区三 | 国产亚洲av嫩草精品影院| 久热这里只有精品99| 又大又黄又爽视频免费| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻熟女av久视频| 欧美日韩综合久久久久久| 一级a做视频免费观看| 特大巨黑吊av在线直播| 一区二区三区精品91| 少妇猛男粗大的猛烈进出视频 | 啦啦啦中文免费视频观看日本| 国产 一区 欧美 日韩| 国产极品天堂在线| 婷婷色综合www| 欧美+日韩+精品| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 久久精品人妻少妇| 国模一区二区三区四区视频| 天天一区二区日本电影三级| 有码 亚洲区| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| 亚洲内射少妇av| av线在线观看网站| 婷婷色综合大香蕉| a级毛色黄片| 天堂中文最新版在线下载 | 80岁老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 久久精品国产鲁丝片午夜精品| 2022亚洲国产成人精品| 午夜老司机福利剧场| 色5月婷婷丁香| 日韩三级伦理在线观看| 涩涩av久久男人的天堂| 只有这里有精品99| 久久精品夜色国产| 边亲边吃奶的免费视频| 日本一二三区视频观看| 亚洲成色77777| 美女xxoo啪啪120秒动态图| 国产日韩欧美在线精品| 亚洲av.av天堂| 男人狂女人下面高潮的视频| 国产精品国产三级专区第一集| 毛片女人毛片| 人体艺术视频欧美日本| 午夜福利视频精品| 黄色配什么色好看| 国产黄片视频在线免费观看| 麻豆成人av视频| 欧美精品国产亚洲| av在线老鸭窝| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 熟女电影av网| 午夜福利视频精品| 精品酒店卫生间| 欧美性猛交╳xxx乱大交人| 成人综合一区亚洲| 国产精品人妻久久久影院| 欧美高清性xxxxhd video| 欧美亚洲 丝袜 人妻 在线| 五月天丁香电影| 免费av不卡在线播放| 久久人人爽av亚洲精品天堂 | av网站免费在线观看视频| 亚洲精品影视一区二区三区av| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 天堂网av新在线| 久久99热这里只有精品18| 免费看av在线观看网站| av播播在线观看一区| 狂野欧美白嫩少妇大欣赏| 永久网站在线| 高清欧美精品videossex| 国产黄片美女视频| av卡一久久| 内射极品少妇av片p| 国产精品三级大全| 可以在线观看毛片的网站| 97超视频在线观看视频| 老女人水多毛片| 3wmmmm亚洲av在线观看| 亚洲国产成人一精品久久久| 精华霜和精华液先用哪个| 免费在线观看成人毛片| 婷婷色麻豆天堂久久| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 欧美激情在线99| 亚洲国产精品999| 国产精品三级大全| 日韩欧美一区视频在线观看 | www.色视频.com| 男人狂女人下面高潮的视频| 少妇人妻一区二区三区视频| 免费看日本二区| 2021天堂中文幕一二区在线观| 简卡轻食公司| 在线观看av片永久免费下载| 在现免费观看毛片| 日本黄大片高清| 美女cb高潮喷水在线观看| 亚洲成人av在线免费| 69人妻影院| 尾随美女入室| 久久影院123| 午夜免费观看性视频| 国产精品一及| 日本一本二区三区精品| 国产男人的电影天堂91| 日韩电影二区| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 国产成人福利小说| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 搡老乐熟女国产| 少妇的逼水好多| 国产精品三级大全| 国产精品国产av在线观看| 国产av不卡久久| 在线观看一区二区三区激情| 中文精品一卡2卡3卡4更新| 观看免费一级毛片| 大码成人一级视频| 成人综合一区亚洲| 国产精品成人在线| 国产黄色视频一区二区在线观看| 国产成人精品久久久久久| 婷婷色综合www| 熟女电影av网| 一本久久精品| 午夜福利在线观看免费完整高清在| 插阴视频在线观看视频| 全区人妻精品视频| 日本欧美国产在线视频| 欧美xxⅹ黑人| 黄色视频在线播放观看不卡| 22中文网久久字幕| 午夜爱爱视频在线播放| 亚洲av国产av综合av卡| 热re99久久精品国产66热6| 久久热精品热| 国产乱来视频区| 婷婷色麻豆天堂久久| 少妇熟女欧美另类| 深夜a级毛片| 久热久热在线精品观看| 亚洲欧美成人综合另类久久久| 欧美日韩亚洲高清精品| 成人国产麻豆网| 狠狠精品人妻久久久久久综合| 欧美bdsm另类| 午夜精品国产一区二区电影 | 国产视频内射| 黄片无遮挡物在线观看| 亚洲精品成人av观看孕妇| 午夜日本视频在线| 成人二区视频| 一区二区av电影网| 国产高清三级在线| 一级a做视频免费观看| 久久这里有精品视频免费| 九色成人免费人妻av| 一级毛片aaaaaa免费看小| 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 国国产精品蜜臀av免费| 97超碰精品成人国产| 欧美性感艳星| 99久久九九国产精品国产免费| 一个人观看的视频www高清免费观看| 亚洲经典国产精华液单| 午夜福利视频1000在线观看| 大话2 男鬼变身卡| 少妇 在线观看| 免费看a级黄色片| 韩国高清视频一区二区三区| 婷婷色综合大香蕉| 极品少妇高潮喷水抽搐| 一级片'在线观看视频| 久热这里只有精品99| 狂野欧美激情性xxxx在线观看| 国产成人午夜福利电影在线观看| 天美传媒精品一区二区| 白带黄色成豆腐渣| 午夜福利视频1000在线观看| 22中文网久久字幕| 啦啦啦啦在线视频资源| 亚洲欧美成人综合另类久久久| 97在线人人人人妻| 啦啦啦在线观看免费高清www| 精品视频人人做人人爽| 舔av片在线| 国产成人一区二区在线| 国产精品久久久久久av不卡| 午夜福利在线观看免费完整高清在| 人妻一区二区av| 亚洲伊人久久精品综合| 国产国拍精品亚洲av在线观看| 99久久人妻综合| 婷婷色综合大香蕉| 久久97久久精品| 国产毛片在线视频| 大码成人一级视频| 国产大屁股一区二区在线视频| 在线观看一区二区三区| 99热这里只有是精品在线观看| 亚洲电影在线观看av| 一级二级三级毛片免费看| 精品久久久噜噜| 欧美bdsm另类| 亚洲精品国产av成人精品| 免费大片黄手机在线观看| 99九九线精品视频在线观看视频| 成人欧美大片| 99久久精品热视频| 欧美 日韩 精品 国产| 亚洲精品乱码久久久久久按摩| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 午夜亚洲福利在线播放| a级一级毛片免费在线观看| 黑人高潮一二区| 国产综合懂色| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 精品熟女少妇av免费看| 精品久久久久久久末码| 日本熟妇午夜| 欧美日韩视频高清一区二区三区二| 日韩欧美一区视频在线观看 | 免费人成在线观看视频色| 国产成人免费观看mmmm| 中文字幕亚洲精品专区| 国产亚洲5aaaaa淫片| 简卡轻食公司| 日本黄大片高清| 午夜老司机福利剧场| 大香蕉久久网| 69人妻影院| 亚洲,欧美,日韩| 一级二级三级毛片免费看| 久热这里只有精品99| 国产成人精品婷婷| 99热这里只有是精品50| 国产成人91sexporn| 91精品国产九色| 男人舔奶头视频| 国产老妇伦熟女老妇高清| 国产av码专区亚洲av| 欧美xxxx黑人xx丫x性爽| 九草在线视频观看| 久久久久久久精品精品| 高清视频免费观看一区二区| 久久久精品欧美日韩精品| 欧美潮喷喷水| 九色成人免费人妻av| 国产探花在线观看一区二区| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 日日啪夜夜爽| 91aial.com中文字幕在线观看| 国产亚洲一区二区精品| av在线观看视频网站免费| 少妇人妻精品综合一区二区| 边亲边吃奶的免费视频| 男人和女人高潮做爰伦理| 寂寞人妻少妇视频99o| 国产精品熟女久久久久浪| 亚洲欧美精品自产自拍| 一本久久精品| 国产有黄有色有爽视频| 一区二区三区乱码不卡18| 老司机影院毛片| 男男h啪啪无遮挡| 国产精品一区二区在线观看99| 亚洲欧美日韩卡通动漫| 伊人久久精品亚洲午夜| 观看美女的网站| 伊人久久精品亚洲午夜| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频 | 久久久a久久爽久久v久久| 亚洲av免费在线观看| 国产成人精品一,二区| 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 国产精品国产三级国产av玫瑰| 国产色爽女视频免费观看| 高清日韩中文字幕在线| 国产大屁股一区二区在线视频| 99久久精品热视频| 高清在线视频一区二区三区| 久久久久久伊人网av| 真实男女啪啪啪动态图| 色吧在线观看| 久久久a久久爽久久v久久| 日韩三级伦理在线观看| 乱码一卡2卡4卡精品| 少妇人妻 视频| 伊人久久国产一区二区| 99久久中文字幕三级久久日本| av在线app专区| 我的女老师完整版在线观看| 国产高清三级在线| 又粗又硬又长又爽又黄的视频| 精品视频人人做人人爽| 少妇的逼好多水| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 午夜激情久久久久久久| 久热这里只有精品99| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 成人特级av手机在线观看| 日韩成人伦理影院| 日韩成人av中文字幕在线观看| 亚洲最大成人中文| 性插视频无遮挡在线免费观看| 国产高清不卡午夜福利| av国产久精品久网站免费入址| 成年女人看的毛片在线观看| 麻豆成人午夜福利视频| 亚洲精品日韩在线中文字幕| 国产精品一二三区在线看| av免费观看日本| 亚洲精品一区蜜桃| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 国国产精品蜜臀av免费| 国产成人一区二区在线| 校园人妻丝袜中文字幕| 黄色配什么色好看| av国产久精品久网站免费入址| av.在线天堂| 国产美女午夜福利| 汤姆久久久久久久影院中文字幕| 亚洲成人一二三区av| 亚洲天堂av无毛| 久久精品国产亚洲av天美| 亚洲精品色激情综合| 午夜视频国产福利| 欧美一区二区亚洲| 五月开心婷婷网| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版| 99热6这里只有精品| 国产精品无大码| 欧美高清性xxxxhd video| 丰满人妻一区二区三区视频av| 亚洲三级黄色毛片| 噜噜噜噜噜久久久久久91| 特级一级黄色大片| 亚洲精品影视一区二区三区av| 制服丝袜香蕉在线| 99热全是精品| 日韩伦理黄色片| 国产一区有黄有色的免费视频| 一级a做视频免费观看| 高清视频免费观看一区二区| 男男h啪啪无遮挡| 国产午夜福利久久久久久| 最近的中文字幕免费完整| 91aial.com中文字幕在线观看| 欧美高清性xxxxhd video| 亚洲av.av天堂| 成人一区二区视频在线观看| 综合色av麻豆| 黄色一级大片看看| 午夜福利视频1000在线观看| 在线观看av片永久免费下载| 一级av片app| 色吧在线观看| 久久久欧美国产精品| 日日摸夜夜添夜夜爱| 欧美三级亚洲精品| 色视频www国产| 26uuu在线亚洲综合色| 99热这里只有是精品在线观看| 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 欧美日韩视频精品一区| 免费看日本二区| 少妇人妻 视频| 亚洲人成网站高清观看| 国产欧美另类精品又又久久亚洲欧美| 男女那种视频在线观看| 黑人高潮一二区| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲日产国产| 特级一级黄色大片|