• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector NLS solitons interacting with a boundary*

    2021-04-28 02:26:20ChengZhangandDajunZhang
    Communications in Theoretical Physics 2021年4期

    Cheng Zhangand Da-jun Zhang

    Department of Mathematics,Shanghai University,Shanghai,200444,China

    Abstract We construct multi-soliton solutions of the n-component vector nonlinear Schr?dinger equation on the half-line subject to two classes of integrable boundary conditions (BCs): the homogeneous Robin BCs and the mixed Neumann/Dirichlet BCs.The construction is based on the so-called dressing the boundary,which generates soliton solutions by preserving the integrable BCs at each step of the Darboux-dressing process.Under the Robin BCs,examples,including boundary-bound solitons,are explicitly derived; under the mixed Neumann/Dirichlet BCs,the boundary can act as a polarizer that tunes different components of the vector solitons.Connection of our construction to the inverse scattering transform is also provided.

    Keywords: polarizer effect,solitons on the half-line,vector nonlinear Schr?dinger equation,integrable boundary conditions,boundary-bound states

    1.Introduction

    The concept of integrable boundary conditions(BCs),mainly developed by Sklyanin [1],represents one of the most successful approaches to initial-boundary-value problems for two-dimensional integrable nonlinear partial differential equations(PDEs).The idea lies in translating the integrability of soliton equations with boundaries into certain algebraic constraints known as reflection equations,cf [1–3].As consequences,classes of soliton models,restricted on a finite interval,are integrable subject to integrable BCs [1].

    In this paper,we consider the focusing vector nonlinear Schr?dinger (VNLS) equation,also known as the Manakov model [4],restricted to the half-line space domain.The equation reads

    wherer=(r1,… ,r n)T,0 denotes the zero n-vector,and r?denotes the conjugate transpose of r.Each component rjis a complex field,and H is an n×n positive definite Hermitian matrix modeling interactions among the components.There is a natural U(n) -invariance of the model under the transformation r ?T r,whereT∈U(n).Let T diagonalize H,then the VNLS equation (1),up to certain scaling,can be reduced to its standard form

    The VNLS equation is a vector generalization of the(scalar) NLS equation by allowing internal degrees of freedom.Physically,it is a relevant model to describe optical solitons and collective states in low-temperature physics,cf[5,6]; mathematically,the nontrivial interactions of vector solitons are related to the notion of Yang–Baxter maps,cf[7–10].

    Integrable BCs for the VNLS equation,as well as soliton solutions to the VNLS equation on the half-line,were derived in [11] by means of a nonlinear mirror-image technique [12](see also [13]) that extends the half-line space domain to the whole axis.However,there was severe difficulty constructing N-soliton solutions on the half-line as the soliton data can only be computed recursively.In practice,the computations are becoming increasingly complicated for N ≥2 (see for instance [11],conclusions).

    We provide an efficient approach to deriving N-soliton solutions of the VNLS equation on the half-line.The construction is based on the so-called dressing the boundary,introduced recently by one of the authors [14,15].The essential ideas are: given integrable BCs of the VNLS equation (or any integrable PDEs),by generating soliton solutions using the Darboux-dressing transformations (DTs),we look for those DTs that preserve the integrable BCs.This gives rise to exact solutions of the underlying integrable model on the half-line,and admits a natural inverse scattering transform (IST) interpretation.The true powers of our construction consist of:(i)the N-soliton solutions can be obtained in compact forms (this was highly complicated following the mirror-image method[11,12],see the discussion provided in section 6); (ii) it does not require any extension of the space domain.This reveals that dressing the boundary represents a natural approach to solve the VNLS equation (or classes of PDEs) on the half-line equipped with integrable BCs.

    Note that Fokas’ unified transform method [16,17]represents a systematic approach to treating initial-boundaryvalue problems for integrable PDEs.This method can be regarded as a generalization of the IST,cf [18–21],and was already applied to the NLS [22] and VNLS [23] equations.However,it is a difficult task to obtain exact solutions within the Fokas’ method,although asymptotic solutions at large times could be derived.

    The outline and main results of the paper are as follows.First,DTs for generating soliton solutions of the VNLS equation are reviewed in section 2.Then,we recall in section 3 results on integrable BCs for the VNLS equation on the half-line[11].There are two classes of integrable BCs:the homogeneous Robin BCs and mixed Neumann/Dirichlet BCs.In section 4,we apply the approach of dressing the boundary to the VNLS equation on the half-line,which gives rise to explicit N-soliton solutions on the half-line.Our results provide a clear answer to the question of obtaining general Nsoliton solutions in the presence of a boundary [11].Moreover,we can construct stationary vector solitons subject to the Robin BCs at the boundary.These correspond to boundarybound solitons.In section 5,we provide explicit examples of vector solitons interacting with the boundary.In particular,by combining the effects of the mixed Neumann/Dirichlet BCs and the U(n) -invariance of the VNLS equation,the boundary can act as a polarizer that tunes components of solitons after interacting with the boundary.We provide connections of our construction to the IST in section 6.Possible connections of the half-line VNLS equation under integrable BCs to the Gross–Pitaevskii (GP) equation are also discussed.

    2.DTs and soliton solutions

    The n-component VNLS equation (2) is equivalent to the compatibility of the linear differential system

    Here,U,V,known as the Lax pair,are (n+1×n+1)matrix-valued functions

    where λ is the spectral parameter,and Σ and Q are block matrices

    with In,Onbeing the identity and zero square matrices of size n,respectively.There is a natural gauge group acting on the Lax pair(3)

    and DTs can be represented by G that preserves the forms of U,V by extracting the singular structures,cf[24–27].A onestep DT for the VNLS equation amounts to the mapwhere D[1] is called a dressing factor of degree 1

    Here,Ψ1is a particular solution of the undressed Lax pair(3)associated with λ1.Having a set of N particular solutions{Ψj,λj},j=1,…,N,one can iterate the DTs and construct the dressing factor D[N] of degree N.For simplicity Ψj's are assumed to be vectors(of rank 1).In the IST formalism,D[N]plays the role of the scattering matrix: one adds a pair of complex zero/poleto the scattering system at each step of the DTs .There are two important properties of DTs:(1) the Bianchi permutativity,meaning that the order of adding Ψjis irrelevant; and (2) the action of D[N](λ) can be expressed in compact forms (usually in terms of determinant structures).

    Since we are focusing on soliton solutions,the zero seed solution r=0 is imposed to the undressed Lax pair.Without loss of generality,let Ψj's be in the forms

    where bj's are constant complex n-vectors called norming vectors.Now,encoding the soliton data into{bj,λj},j=1,…,N,with distinct λj,the N-soliton solutions to the VNLS equation (2) are,cf [21,26]

    where r?is the ?th component of r,with βj;?being its ?th component,and the N×N matrix M has the componentsAs an illustration,the one-soliton data {b1,λ1},withν1>0,lead to the one vector soliton solution

    3.Integrable BCs for VNLS

    Now we restrict the space domain of the VNLS equation to the positive semi-axis.Integrable BCs for the half-line VNLS equation were investigated in [11] (see also [28] in which only the vector Robin BCs were derived).The integrability in the presence of a boundary was translated into a constraint on the t-part of the Lax pair

    Here,the boundary matrix K(λ) is assumed to be nondegenerate.As solutions of the boundary constraint(11),two classes of BCs were obtained [11]: (i) the homogeneous vector Robin BCs:

    having the boundary matrix

    The real parameter α controls the boundary behavior: the Neumann(rx|x=0=0)and Dirichlet BCs(r|x=0=0)appear as special cases of (12) as α=0 and |α|→∞,respectively; (ii)the mixed Neumann/Dirichlet (mND) BCs:

    where r?is the ?th component of r.Accordingly,one has the boundary matrix

    where the+/?sign of δ?corresponds to Neumann/Dirichlet BCs.

    Remark 1.The boundary constraint (11) was derived in [11]by considering the space-reverse symmetry of the VNLS equation as a B?cklund transformation.The same constraint was also introduced in Fokas’ unified transform,known as linearizable BCs.Note that the boundary matrixKis related to a far-reaching context as it represents solutions of the classical and quantum reflection equations [1–3].

    Remark 2.The integrable BCs are compatible with the U(n)-invariance of the VNLS equation.The transformationis trivial to the Robin BCs,because a collective change in the components ofrtakes place at the boundary underT.However,Tinduces a nontrivial effect under the mND BCs: since the components ofrcan interact differently with the boundary in two ways that are Neumann and Dirichlet BCs,the action ofTcan mix the two interactions and make transmissions among the different components appear.These transmission phenomena have the interpretation that the boundary acts as a‘polarizer’tuning the polarizations of the incoming solitons and,after interacting with the boundary,changes in the polarizations among the solitons take place [11].

    4.Dressing the boundary

    The integrable BCs for the VNLS equation on the half-line are completely determined by the t-part of the Lax pair through the boundary constraint (11).By dressing the boundary[14],we mean that in the process of DTs to generate exact solutions,the boundary constraint is preserved at each step of the DTs.By construction,this leads to exact solutions of the VNLS equation subject to the integrable BCs.In practice this requires one to find appropriate particular solutions in DTs.

    Lemma 1.[Dressing the boundary] LetU,Vbe the undressed Lax pair.Assume thatVsatisfies the boundary constraint (11),and that the Lax pair admits a pair of particular solutionsassociated withrespectively (assumeλjis not pure imaginary),such that

    whereK(λ)is the boundary matrix; then the boundary constraint (11) is preserved after dressingVusing Ψj,

    The proof is closely related to the structure of dressing factors.Similar statements can be found in[14]for the scalar case.To obtain exact solutions on the half-line,it remains to find the paired particular solutions Ψj,satisfying (16).

    Proposition 1.[N-soliton solutions on the half-line] Let{bj,λj} andj=1,…,N,be two sets of N-soliton data.Assume thatis not pure imaginary) andwithB(λ)=fα(λ)In(fα(λ)defined in (13)),then the so-constructed solutions restricted tox≥ 0 correspond to N-soliton solutions on the half-line subject to the Robin BCs(12);ifB= ?diag (δ1,...,δn),δ?= 1,δj= ?1,forj≠?,then the solutions restricted tox≥ 0 satisfy the mND BCs (14).

    The proof is a direct consequence of lemma 1 by taking into account the forms of the particular solutions(8).Dressing the Lax pair using the N-paired soliton data {bj,λj} andgives rise to 2N-soliton solutions on the whole-line,and the requirements thatcreate solitons with opposite velocities.By restricting the space domain to the positive semi-axis,the BCs appear as interactions of solitons with opposite velocities at x=0,then one obtains N-soliton solutions on the half-line.Although this whole-line picture helps to interpret interactions of solitons as BCs,the derivation of soliton solutions on the half-line can be restricted to x ≥0.This is in contrast to the nonlinear mirror-image technique[11,12],where an extended potential to the wholeline is required.

    Note that in the above construction,pure imaginary λj's,corresponding to stationary solitons are excluded.By dressing the boundary,we can also construct stationary solitons satisfying the Robin BCs.These are boundary-bound solitons on the half-line.

    Proposition 2.[Boundary-bound solitons] Letβbe any realn-vector such that∣β∣= 1,and,j= 1,… ,Nbe a set ofN-soliton data.Assume thatλj’s are pure imaginary numbers and distinct,and for given α,satisfyfα(λj)<0(fα(λ)defined in (13)).Moreover,assume the following forms of the norming constantsthen the so-constructed solutions restricted tox≥ 0 correspond toN-stationary solitons on the half-line subject to the Robin BCs (12).

    The requirement that β is a real vector with |β|=1 can be easily obtained by taking any real vectordivided by its normalAgain,the restriction on the soliton data follows the idea of dressing the boundary: the boundary constraint (11) is preserved at each step of the DTs.In computing the boundary-bound solitons,the expressions for the norming constants are different for the odd and even soliton numbers.One also excludes the situation where the stationary solitons are subject to the Dirichlet BCs by assuming fα(λj)<0.Note that for the scalar NLS case,the boundary-bound states were investigated in[14,29].One can put the stationary and moving solitons together by combining the associated soliton data.Due to the Bianchi permutativity of DTs,the order of adding the soliton data is irrelevant.

    5.Examples of VNLS soliton interacting with a boundary

    It is straightforward to apply Prop.1 and 2 to obtain soliton solutions of the VNLS equation on the half-line.Fix n=2;three examples under the Robin BCs are shown in figures 1–3.The left and right figures represent,respectively,the norms of the 1st and 2nd components of the solutions.

    As for the mND BCs,fix n=2,and let the transformation matrixT∈SU(2) (following remark 2) parameterized by three parameters ω,θ,ξ be in the form

    Clearly,r?Trinduces a mixture of components of r at the boundary.In the computations of the half-line soliton solution,this amounts to B ?TBT?1for B defined in Prop.1.Examples of two solitons interacting with an mND boundary are shown below.Having B=diag(1,?1) gives rise to solitons with the 1st component subject to Neumann BCs and 2nd to Dirichlet BCs(see figure 4);under the action of T,for certain choices of the parameters,one can make one component of the outgoing solitons vanishingly small1The complete analysis,requiring some asymptotic estimations of the solutions as t →±∞,is omitted here.Detailed analysis can be found,for instance,in [10].(see figure 5).In other words,the boundary polarizer switches off the 1st component after solitons interact with the boundary.

    6.Discussion

    The approach of dressing the boundary is successfully applied to the VNLS equation on the half-line.Although our construction is rather algebraic,it admits a perfect IST interpretation.Since the integrable BCs are only governed by the t-part of the Lax pair through the boundary constraint (11),the soliton data on the half-line can be derived by performing the IST using the t-part of the Lax pair on the boundary.Precisely,this amounts to the direct scattering analysis of

    where QTis defined in (4).Let Φ±be the fundamental solutions (3) at x=0

    Figure 2.One soliton interacts with a boundary-bound soliton subject to the Robin BCs (α=2).The moving soliton data are: b1} andwith μ1=1.4,ν1=4,=(3 ,2) ;the static soliton data are:

    Figure 3.Three stationary solitons interfere with themselves at the boundary subject to the Robin BCs (α=2).Here,

    Figure 4.Two solitons interact with the mixed Neumann(1st component)and Dirichlet(2nd component)BCs with B=?diag(1,?1).The soliton data areand j=1,2 with μ1=1,ν1=2,=(4 ,4),μ2=2,ν2=1.5

    they are connected by the scattering system Φ+(λ)=S(λ)Φ?(λ),where S(k) is the scattering matrix.The domain of analyticity of the components of S(k) can be split into the four quadrants of the complex plane.The boundary constraint (11) yields

    which governs the soliton data at the boundary x=0.It is easy to see that paired singularities {λj,?λj} appear (see figure 6),and the relations between the paired norming constants can also be accordingly extracted.These are the requirements listed in Prop.1.Then,making the soliton data evolve in x for x >0 gives rise to N-soliton solutions on the half-line.

    Figure 5.Polarizer effect:the boundary tunes the polarizations,and the 1st component becomes vanishingly small after interacting with the boundary.Here,the parameters in T (17) are fixed as ω=0,θ=0,ξ=50.66.

    Figure 6.Pairing of soliton data in the spectral plane

    Note that the relation (20) is in sharp contrast to the formulae (3.43) and (3.46) in [11],which are the governing relations of the soliton data following the nonlinear mirrorimage approach.In [11],the singularities are paired asand the paired norming constants,that are nonlinearly coupled,can be only be computed recursively.This makes the computation of N-soliton solutions on the half-line highly complicated.However,the relation (20) only involves linear relations between the paired norming constantsin Prop.1).Therefore,the half-line N-soliton solutions can be easily derived.

    As pointed out by Fokas,the scalar NLS equation on the half-line under the Robin BCs can even model solutions to the GP equation on the whole-line with a Dirac-function potential at the origin,cf [30],introduction.Similarly,the VNLS equation on the half-line under the integrable BCs can also describe certain special cases of the vector GP equation.Fix the number of components n=2,and one has the vector GP equation

    where u(x),v(x) are the potentials. Let u(x)=v(x)=?4αδ0(x),and let r1,r2be even in x.Then,after integration,the Dirac function δ0(x) introduces a jump in the derivatives

    which corresponds to the half-line VNLS equation under the vector Robin BCs (12).Again,let u(x)=0,v(x)=δ0(x),and let r1be even and r2be odd in x.This corresponds to the halfline VNLS equation under the mND BCs(14),with r1and r2satisfying,respectively,the Neumann and Dirichlet BCs.

    ORCID iDs

    麻豆一二三区av精品| 亚洲欧美日韩卡通动漫| 日韩 亚洲 欧美在线| 亚洲天堂国产精品一区在线| 国语自产精品视频在线第100页| 亚洲自拍偷在线| 九九热线精品视视频播放| 国内精品宾馆在线| 黄色欧美视频在线观看| 国产熟女欧美一区二区| 国产成人91sexporn| 国产高清有码在线观看视频| 如何舔出高潮| 99久久九九国产精品国产免费| 91aial.com中文字幕在线观看| 国产视频首页在线观看| 青春草国产在线视频| 免费一级毛片在线播放高清视频| 亚洲中文字幕一区二区三区有码在线看| 最新中文字幕久久久久| 六月丁香七月| 乱码一卡2卡4卡精品| 网址你懂的国产日韩在线| 91av网一区二区| av在线天堂中文字幕| 久久精品夜色国产| 亚洲国产日韩欧美精品在线观看| 日韩一本色道免费dvd| 亚洲av成人av| 能在线免费观看的黄片| kizo精华| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 啦啦啦啦在线视频资源| 少妇熟女aⅴ在线视频| 日产精品乱码卡一卡2卡三| 久久精品综合一区二区三区| 久久久国产成人免费| 99热这里只有是精品在线观看| 尤物成人国产欧美一区二区三区| kizo精华| 只有这里有精品99| 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 久久鲁丝午夜福利片| 亚洲乱码一区二区免费版| 日韩强制内射视频| 久久99热6这里只有精品| 在线播放无遮挡| 欧美又色又爽又黄视频| 视频中文字幕在线观看| 亚洲不卡免费看| 欧美不卡视频在线免费观看| 99久久精品热视频| 亚洲四区av| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 国产私拍福利视频在线观看| 亚洲最大成人av| 一区二区三区免费毛片| 午夜激情欧美在线| 国产在视频线在精品| 亚洲国产日韩欧美精品在线观看| 国产熟女欧美一区二区| 午夜日本视频在线| 日韩中字成人| 国产成人精品婷婷| 深爱激情五月婷婷| 成人无遮挡网站| 国产美女午夜福利| 欧美高清性xxxxhd video| 美女被艹到高潮喷水动态| 黄色配什么色好看| 大话2 男鬼变身卡| 亚洲国产精品sss在线观看| 丰满人妻一区二区三区视频av| 噜噜噜噜噜久久久久久91| 欧美激情在线99| 欧美极品一区二区三区四区| 欧美日韩综合久久久久久| av免费观看日本| 我要看日韩黄色一级片| 国产精品久久久久久av不卡| 亚洲av免费高清在线观看| 一级av片app| 99久久精品一区二区三区| 女人久久www免费人成看片 | www日本黄色视频网| 久久精品国产自在天天线| 国产精品三级大全| av卡一久久| 国产美女午夜福利| 别揉我奶头 嗯啊视频| 免费av观看视频| videossex国产| 男人和女人高潮做爰伦理| 一级av片app| 国产精品人妻久久久久久| 夫妻性生交免费视频一级片| 国产亚洲5aaaaa淫片| 亚洲一级一片aⅴ在线观看| 狠狠狠狠99中文字幕| 免费在线观看成人毛片| 国产又黄又爽又无遮挡在线| www.av在线官网国产| 永久网站在线| 久久99蜜桃精品久久| 国产亚洲91精品色在线| 超碰av人人做人人爽久久| 99久久精品国产国产毛片| 蜜桃亚洲精品一区二区三区| 99热这里只有是精品50| 国产精品乱码一区二三区的特点| 边亲边吃奶的免费视频| 亚洲av成人精品一二三区| 日韩强制内射视频| 欧美色视频一区免费| av专区在线播放| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 高清毛片免费看| 欧美区成人在线视频| 国产精品,欧美在线| 长腿黑丝高跟| 在线免费观看不下载黄p国产| 国产 一区 欧美 日韩| 久久精品国产亚洲av涩爱| 26uuu在线亚洲综合色| 午夜福利在线观看吧| 国产一区有黄有色的免费视频 | 久久精品人妻少妇| 69av精品久久久久久| 国产在视频线在精品| 国产精品一区二区在线观看99 | 国产亚洲午夜精品一区二区久久 | 亚洲欧美中文字幕日韩二区| 久久久久免费精品人妻一区二区| 亚洲综合色惰| 国产精品国产三级国产专区5o | 午夜精品在线福利| 国产成人午夜福利电影在线观看| 26uuu在线亚洲综合色| 天天躁日日操中文字幕| 日韩一区二区视频免费看| 黄片无遮挡物在线观看| 一区二区三区乱码不卡18| 大又大粗又爽又黄少妇毛片口| 午夜日本视频在线| 能在线免费看毛片的网站| 成人一区二区视频在线观看| 看非洲黑人一级黄片| 午夜老司机福利剧场| 成人一区二区视频在线观看| 久久国产乱子免费精品| 亚洲国产最新在线播放| 观看免费一级毛片| 国产精品福利在线免费观看| 成人无遮挡网站| 99久久精品一区二区三区| 成人三级黄色视频| 1024手机看黄色片| 大香蕉久久网| 国产精品日韩av在线免费观看| 久久久国产成人精品二区| 网址你懂的国产日韩在线| 欧美精品国产亚洲| 18禁动态无遮挡网站| 色网站视频免费| 在线免费观看的www视频| 51国产日韩欧美| 国产伦理片在线播放av一区| 亚洲精品色激情综合| 99热全是精品| 高清午夜精品一区二区三区| 久久精品久久精品一区二区三区| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看 | 熟女人妻精品中文字幕| 免费av不卡在线播放| 少妇的逼好多水| 成人鲁丝片一二三区免费| 久久久久久久久久久免费av| 嫩草影院精品99| 亚洲国产精品久久男人天堂| 国产乱人视频| 最近手机中文字幕大全| 免费看光身美女| 高清日韩中文字幕在线| 麻豆av噜噜一区二区三区| 三级男女做爰猛烈吃奶摸视频| 久久久精品94久久精品| 久久久a久久爽久久v久久| 蜜臀久久99精品久久宅男| 天天躁日日操中文字幕| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 免费在线观看成人毛片| 最近中文字幕2019免费版| 成人特级av手机在线观看| 99热这里只有精品一区| 久久热精品热| 99久久精品国产国产毛片| 久久久久久久久中文| 菩萨蛮人人尽说江南好唐韦庄 | 老司机影院毛片| 成人特级av手机在线观看| 别揉我奶头 嗯啊视频| 久久精品人妻少妇| 美女cb高潮喷水在线观看| 中国美白少妇内射xxxbb| av免费在线看不卡| 成人亚洲精品av一区二区| 两个人的视频大全免费| 欧美zozozo另类| 精品国内亚洲2022精品成人| 日日撸夜夜添| 亚洲欧美精品综合久久99| 国产精品一区二区性色av| 搡老妇女老女人老熟妇| 久久精品熟女亚洲av麻豆精品 | 国产伦精品一区二区三区视频9| 成人av在线播放网站| 两性午夜刺激爽爽歪歪视频在线观看| 丰满乱子伦码专区| 天堂影院成人在线观看| av在线观看视频网站免费| 国产在视频线精品| 亚洲色图av天堂| 国产高清视频在线观看网站| 国产亚洲av片在线观看秒播厂 | 97人妻精品一区二区三区麻豆| 国产成人a∨麻豆精品| 国产精品野战在线观看| 丰满人妻一区二区三区视频av| 超碰97精品在线观看| 人妻夜夜爽99麻豆av| 国产免费视频播放在线视频 | 午夜福利在线在线| 1024手机看黄色片| 全区人妻精品视频| av卡一久久| 91精品一卡2卡3卡4卡| 日韩大片免费观看网站 | 日韩av不卡免费在线播放| 美女内射精品一级片tv| av在线亚洲专区| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| kizo精华| 久久久亚洲精品成人影院| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 免费av毛片视频| 老司机影院成人| 乱码一卡2卡4卡精品| 人妻夜夜爽99麻豆av| 九九热线精品视视频播放| 欧美3d第一页| 久久鲁丝午夜福利片| 九九久久精品国产亚洲av麻豆| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 婷婷色麻豆天堂久久 | 久久精品国产亚洲av涩爱| 精品国产三级普通话版| 99久国产av精品国产电影| 国产午夜精品一二区理论片| 高清av免费在线| 亚洲精品乱码久久久v下载方式| 亚洲精品久久久久久婷婷小说 | 岛国毛片在线播放| 综合色丁香网| 中国美白少妇内射xxxbb| 长腿黑丝高跟| 亚洲av成人精品一区久久| 看非洲黑人一级黄片| 99热6这里只有精品| 最近中文字幕2019免费版| 69人妻影院| 亚洲人成网站在线观看播放| 国产精品一区二区三区四区久久| 国产又黄又爽又无遮挡在线| 99热网站在线观看| 亚洲精品一区蜜桃| 搡女人真爽免费视频火全软件| 亚洲一区高清亚洲精品| 国产亚洲5aaaaa淫片| 国产淫片久久久久久久久| 欧美最新免费一区二区三区| 亚洲aⅴ乱码一区二区在线播放| av在线亚洲专区| 97在线视频观看| 成人美女网站在线观看视频| 日日撸夜夜添| 国产在视频线在精品| www日本黄色视频网| 青春草国产在线视频| 午夜福利高清视频| 久久久国产成人免费| 高清午夜精品一区二区三区| 一本久久精品| 你懂的网址亚洲精品在线观看 | 国产高潮美女av| 午夜老司机福利剧场| 99久久九九国产精品国产免费| 免费看美女性在线毛片视频| 中国美白少妇内射xxxbb| 国产精品日韩av在线免费观看| 国产日韩欧美在线精品| 99热网站在线观看| 亚洲天堂国产精品一区在线| 色吧在线观看| 国产亚洲av片在线观看秒播厂 | 国产一区二区亚洲精品在线观看| 欧美潮喷喷水| 精品久久久久久久久av| 国产精品电影一区二区三区| 日本猛色少妇xxxxx猛交久久| 观看免费一级毛片| 亚洲av免费在线观看| 亚洲精品一区蜜桃| 久久久久久伊人网av| 亚洲人成网站在线播| 亚洲国产精品sss在线观看| 国产精品国产三级国产专区5o | 精品99又大又爽又粗少妇毛片| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 国产精华一区二区三区| 熟女电影av网| 天天躁日日操中文字幕| 老司机影院毛片| 嫩草影院入口| 欧美区成人在线视频| 亚洲婷婷狠狠爱综合网| 小说图片视频综合网站| av国产久精品久网站免费入址| 白带黄色成豆腐渣| 久久午夜福利片| 亚洲色图av天堂| 欧美zozozo另类| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜添av毛片| 深爱激情五月婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 免费观看性生交大片5| 久久久久久久久久成人| 嫩草影院新地址| 亚洲,欧美,日韩| 国产精品女同一区二区软件| 免费看光身美女| 一夜夜www| 不卡视频在线观看欧美| 女人十人毛片免费观看3o分钟| 成人高潮视频无遮挡免费网站| 我要搜黄色片| 成人高潮视频无遮挡免费网站| 嫩草影院新地址| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 日韩国内少妇激情av| 一个人免费在线观看电影| 国产成人一区二区在线| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜 | 成人av在线播放网站| 纵有疾风起免费观看全集完整版 | 成人二区视频| 男女下面进入的视频免费午夜| 国产91av在线免费观看| 久久久久久久久大av| 乱码一卡2卡4卡精品| 免费电影在线观看免费观看| 夜夜爽夜夜爽视频| 国产成人福利小说| 97超碰精品成人国产| 成人漫画全彩无遮挡| 欧美日韩国产亚洲二区| 久久精品久久精品一区二区三区| 一个人看的www免费观看视频| av卡一久久| 亚洲经典国产精华液单| 能在线免费看毛片的网站| 在线天堂最新版资源| 久久久久九九精品影院| 精品一区二区三区人妻视频| 最近的中文字幕免费完整| 亚洲精品日韩在线中文字幕| 男人狂女人下面高潮的视频| 国内揄拍国产精品人妻在线| 老师上课跳d突然被开到最大视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女视频在线观看网站免费| 在线a可以看的网站| 欧美性猛交╳xxx乱大交人| 国产精品不卡视频一区二区| 嫩草影院新地址| 大香蕉久久网| 国产在视频线精品| 午夜福利高清视频| 美女高潮的动态| 日本午夜av视频| 九九爱精品视频在线观看| 久久久成人免费电影| 久久人妻av系列| 国产成人精品婷婷| 欧美日本视频| 日日摸夜夜添夜夜爱| h日本视频在线播放| av国产久精品久网站免费入址| 在线天堂最新版资源| 亚洲欧美日韩高清专用| 汤姆久久久久久久影院中文字幕 | 中文字幕亚洲精品专区| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 久久久精品94久久精品| 日韩国内少妇激情av| 久久韩国三级中文字幕| 日本-黄色视频高清免费观看| 国产淫片久久久久久久久| 亚洲第一区二区三区不卡| 国产成人a∨麻豆精品| 黄色一级大片看看| 观看美女的网站| 国产美女午夜福利| 免费一级毛片在线播放高清视频| 97超视频在线观看视频| 国产av一区在线观看免费| 欧美日本亚洲视频在线播放| 亚洲欧美中文字幕日韩二区| 美女脱内裤让男人舔精品视频| 岛国在线免费视频观看| 亚洲va在线va天堂va国产| 日本三级黄在线观看| 亚洲精品aⅴ在线观看| 69人妻影院| 欧美+日韩+精品| 一级二级三级毛片免费看| 精品久久久久久久人妻蜜臀av| 日韩中字成人| 亚洲一区高清亚洲精品| 亚洲av中文av极速乱| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 69人妻影院| 欧美人与善性xxx| 舔av片在线| 看黄色毛片网站| 国产亚洲91精品色在线| av在线老鸭窝| 三级毛片av免费| 免费无遮挡裸体视频| 久久99热这里只频精品6学生 | 中文亚洲av片在线观看爽| 久久韩国三级中文字幕| 日韩国内少妇激情av| 日本免费a在线| 亚洲欧美成人精品一区二区| 成人特级av手机在线观看| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 亚洲人成网站高清观看| 激情 狠狠 欧美| 国内精品一区二区在线观看| videossex国产| 1000部很黄的大片| 干丝袜人妻中文字幕| 亚洲伊人久久精品综合 | 成人亚洲欧美一区二区av| 一二三四中文在线观看免费高清| 色5月婷婷丁香| 国产一区二区在线av高清观看| 国产成人a区在线观看| 亚洲怡红院男人天堂| 国产精品蜜桃在线观看| 波多野结衣高清无吗| 国产精品美女特级片免费视频播放器| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| www.av在线官网国产| 岛国在线免费视频观看| 搞女人的毛片| 中文字幕熟女人妻在线| 国产探花在线观看一区二区| 爱豆传媒免费全集在线观看| 亚洲人成网站高清观看| 美女黄网站色视频| 精品人妻一区二区三区麻豆| 国产 一区精品| 啦啦啦啦在线视频资源| 国产精品国产三级专区第一集| 精品无人区乱码1区二区| 国产高潮美女av| 好男人在线观看高清免费视频| 熟女电影av网| 性色avwww在线观看| av天堂中文字幕网| 六月丁香七月| 九九在线视频观看精品| 99久国产av精品国产电影| 亚洲精品,欧美精品| 国产av一区在线观看免费| 久久久久久国产a免费观看| 黄色配什么色好看| 亚洲国产色片| 色噜噜av男人的天堂激情| 天堂网av新在线| 超碰av人人做人人爽久久| 插逼视频在线观看| 99热6这里只有精品| 草草在线视频免费看| 国产淫语在线视频| 欧美zozozo另类| 永久免费av网站大全| 亚洲精品456在线播放app| 国产成年人精品一区二区| 国产伦在线观看视频一区| 亚洲精品国产av成人精品| 久久99精品国语久久久| 国产 一区 欧美 日韩| 听说在线观看完整版免费高清| 亚洲成人av在线免费| 日韩 亚洲 欧美在线| 国内揄拍国产精品人妻在线| 国产亚洲av片在线观看秒播厂 | 成人毛片60女人毛片免费| 在现免费观看毛片| 国产极品精品免费视频能看的| 久久国内精品自在自线图片| 免费观看在线日韩| 国产精华一区二区三区| 国产成人精品久久久久久| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线| 91精品伊人久久大香线蕉| 小说图片视频综合网站| 男人的好看免费观看在线视频| 亚洲国产高清在线一区二区三| 久久韩国三级中文字幕| 精品不卡国产一区二区三区| 国产在视频线精品| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看| 午夜福利在线观看免费完整高清在| 日本欧美国产在线视频| 三级国产精品欧美在线观看| 亚洲国产精品成人久久小说| 日韩欧美 国产精品| 欧美xxxx性猛交bbbb| 汤姆久久久久久久影院中文字幕 | 国产精品一二三区在线看| 日日撸夜夜添| 欧美人与善性xxx| 男人和女人高潮做爰伦理| www日本黄色视频网| av专区在线播放| 亚洲高清免费不卡视频| 只有这里有精品99| 亚洲在线自拍视频| 欧美zozozo另类| 男女啪啪激烈高潮av片| 高清在线视频一区二区三区 | 免费人成在线观看视频色| 一个人观看的视频www高清免费观看| 国内少妇人妻偷人精品xxx网站| 国产91av在线免费观看| 日韩中字成人| 国产欧美日韩精品一区二区| 亚洲婷婷狠狠爱综合网| 日本与韩国留学比较| 亚洲在线自拍视频| 日日摸夜夜添夜夜爱| 亚洲精品自拍成人| 丝袜喷水一区| av视频在线观看入口| 91午夜精品亚洲一区二区三区| 天堂影院成人在线观看| 午夜亚洲福利在线播放| 久久久久久九九精品二区国产| 直男gayav资源| 一级毛片久久久久久久久女| 永久免费av网站大全| 日本三级黄在线观看| 18禁在线播放成人免费| 我的老师免费观看完整版| 亚洲精品乱码久久久v下载方式| 中国国产av一级| 日本黄大片高清| 成年av动漫网址| 成人漫画全彩无遮挡| 1000部很黄的大片| 久久久久久久久久久丰满| 综合色丁香网| 22中文网久久字幕| 国产综合懂色| 欧美激情在线99| 国产极品天堂在线| 国产日韩欧美在线精品| 国产成人a∨麻豆精品| 日本与韩国留学比较| 成人一区二区视频在线观看| 欧美成人一区二区免费高清观看| 亚洲欧美日韩无卡精品| 可以在线观看毛片的网站| 插阴视频在线观看视频| 国产一区二区在线观看日韩| 日韩在线高清观看一区二区三区|