• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector NLS solitons interacting with a boundary*

    2021-04-28 02:26:20ChengZhangandDajunZhang
    Communications in Theoretical Physics 2021年4期

    Cheng Zhangand Da-jun Zhang

    Department of Mathematics,Shanghai University,Shanghai,200444,China

    Abstract We construct multi-soliton solutions of the n-component vector nonlinear Schr?dinger equation on the half-line subject to two classes of integrable boundary conditions (BCs): the homogeneous Robin BCs and the mixed Neumann/Dirichlet BCs.The construction is based on the so-called dressing the boundary,which generates soliton solutions by preserving the integrable BCs at each step of the Darboux-dressing process.Under the Robin BCs,examples,including boundary-bound solitons,are explicitly derived; under the mixed Neumann/Dirichlet BCs,the boundary can act as a polarizer that tunes different components of the vector solitons.Connection of our construction to the inverse scattering transform is also provided.

    Keywords: polarizer effect,solitons on the half-line,vector nonlinear Schr?dinger equation,integrable boundary conditions,boundary-bound states

    1.Introduction

    The concept of integrable boundary conditions(BCs),mainly developed by Sklyanin [1],represents one of the most successful approaches to initial-boundary-value problems for two-dimensional integrable nonlinear partial differential equations(PDEs).The idea lies in translating the integrability of soliton equations with boundaries into certain algebraic constraints known as reflection equations,cf [1–3].As consequences,classes of soliton models,restricted on a finite interval,are integrable subject to integrable BCs [1].

    In this paper,we consider the focusing vector nonlinear Schr?dinger (VNLS) equation,also known as the Manakov model [4],restricted to the half-line space domain.The equation reads

    wherer=(r1,… ,r n)T,0 denotes the zero n-vector,and r?denotes the conjugate transpose of r.Each component rjis a complex field,and H is an n×n positive definite Hermitian matrix modeling interactions among the components.There is a natural U(n) -invariance of the model under the transformation r ?T r,whereT∈U(n).Let T diagonalize H,then the VNLS equation (1),up to certain scaling,can be reduced to its standard form

    The VNLS equation is a vector generalization of the(scalar) NLS equation by allowing internal degrees of freedom.Physically,it is a relevant model to describe optical solitons and collective states in low-temperature physics,cf[5,6]; mathematically,the nontrivial interactions of vector solitons are related to the notion of Yang–Baxter maps,cf[7–10].

    Integrable BCs for the VNLS equation,as well as soliton solutions to the VNLS equation on the half-line,were derived in [11] by means of a nonlinear mirror-image technique [12](see also [13]) that extends the half-line space domain to the whole axis.However,there was severe difficulty constructing N-soliton solutions on the half-line as the soliton data can only be computed recursively.In practice,the computations are becoming increasingly complicated for N ≥2 (see for instance [11],conclusions).

    We provide an efficient approach to deriving N-soliton solutions of the VNLS equation on the half-line.The construction is based on the so-called dressing the boundary,introduced recently by one of the authors [14,15].The essential ideas are: given integrable BCs of the VNLS equation (or any integrable PDEs),by generating soliton solutions using the Darboux-dressing transformations (DTs),we look for those DTs that preserve the integrable BCs.This gives rise to exact solutions of the underlying integrable model on the half-line,and admits a natural inverse scattering transform (IST) interpretation.The true powers of our construction consist of:(i)the N-soliton solutions can be obtained in compact forms (this was highly complicated following the mirror-image method[11,12],see the discussion provided in section 6); (ii) it does not require any extension of the space domain.This reveals that dressing the boundary represents a natural approach to solve the VNLS equation (or classes of PDEs) on the half-line equipped with integrable BCs.

    Note that Fokas’ unified transform method [16,17]represents a systematic approach to treating initial-boundaryvalue problems for integrable PDEs.This method can be regarded as a generalization of the IST,cf [18–21],and was already applied to the NLS [22] and VNLS [23] equations.However,it is a difficult task to obtain exact solutions within the Fokas’ method,although asymptotic solutions at large times could be derived.

    The outline and main results of the paper are as follows.First,DTs for generating soliton solutions of the VNLS equation are reviewed in section 2.Then,we recall in section 3 results on integrable BCs for the VNLS equation on the half-line[11].There are two classes of integrable BCs:the homogeneous Robin BCs and mixed Neumann/Dirichlet BCs.In section 4,we apply the approach of dressing the boundary to the VNLS equation on the half-line,which gives rise to explicit N-soliton solutions on the half-line.Our results provide a clear answer to the question of obtaining general Nsoliton solutions in the presence of a boundary [11].Moreover,we can construct stationary vector solitons subject to the Robin BCs at the boundary.These correspond to boundarybound solitons.In section 5,we provide explicit examples of vector solitons interacting with the boundary.In particular,by combining the effects of the mixed Neumann/Dirichlet BCs and the U(n) -invariance of the VNLS equation,the boundary can act as a polarizer that tunes components of solitons after interacting with the boundary.We provide connections of our construction to the IST in section 6.Possible connections of the half-line VNLS equation under integrable BCs to the Gross–Pitaevskii (GP) equation are also discussed.

    2.DTs and soliton solutions

    The n-component VNLS equation (2) is equivalent to the compatibility of the linear differential system

    Here,U,V,known as the Lax pair,are (n+1×n+1)matrix-valued functions

    where λ is the spectral parameter,and Σ and Q are block matrices

    with In,Onbeing the identity and zero square matrices of size n,respectively.There is a natural gauge group acting on the Lax pair(3)

    and DTs can be represented by G that preserves the forms of U,V by extracting the singular structures,cf[24–27].A onestep DT for the VNLS equation amounts to the mapwhere D[1] is called a dressing factor of degree 1

    Here,Ψ1is a particular solution of the undressed Lax pair(3)associated with λ1.Having a set of N particular solutions{Ψj,λj},j=1,…,N,one can iterate the DTs and construct the dressing factor D[N] of degree N.For simplicity Ψj's are assumed to be vectors(of rank 1).In the IST formalism,D[N]plays the role of the scattering matrix: one adds a pair of complex zero/poleto the scattering system at each step of the DTs .There are two important properties of DTs:(1) the Bianchi permutativity,meaning that the order of adding Ψjis irrelevant; and (2) the action of D[N](λ) can be expressed in compact forms (usually in terms of determinant structures).

    Since we are focusing on soliton solutions,the zero seed solution r=0 is imposed to the undressed Lax pair.Without loss of generality,let Ψj's be in the forms

    where bj's are constant complex n-vectors called norming vectors.Now,encoding the soliton data into{bj,λj},j=1,…,N,with distinct λj,the N-soliton solutions to the VNLS equation (2) are,cf [21,26]

    where r?is the ?th component of r,with βj;?being its ?th component,and the N×N matrix M has the componentsAs an illustration,the one-soliton data {b1,λ1},withν1>0,lead to the one vector soliton solution

    3.Integrable BCs for VNLS

    Now we restrict the space domain of the VNLS equation to the positive semi-axis.Integrable BCs for the half-line VNLS equation were investigated in [11] (see also [28] in which only the vector Robin BCs were derived).The integrability in the presence of a boundary was translated into a constraint on the t-part of the Lax pair

    Here,the boundary matrix K(λ) is assumed to be nondegenerate.As solutions of the boundary constraint(11),two classes of BCs were obtained [11]: (i) the homogeneous vector Robin BCs:

    having the boundary matrix

    The real parameter α controls the boundary behavior: the Neumann(rx|x=0=0)and Dirichlet BCs(r|x=0=0)appear as special cases of (12) as α=0 and |α|→∞,respectively; (ii)the mixed Neumann/Dirichlet (mND) BCs:

    where r?is the ?th component of r.Accordingly,one has the boundary matrix

    where the+/?sign of δ?corresponds to Neumann/Dirichlet BCs.

    Remark 1.The boundary constraint (11) was derived in [11]by considering the space-reverse symmetry of the VNLS equation as a B?cklund transformation.The same constraint was also introduced in Fokas’ unified transform,known as linearizable BCs.Note that the boundary matrixKis related to a far-reaching context as it represents solutions of the classical and quantum reflection equations [1–3].

    Remark 2.The integrable BCs are compatible with the U(n)-invariance of the VNLS equation.The transformationis trivial to the Robin BCs,because a collective change in the components ofrtakes place at the boundary underT.However,Tinduces a nontrivial effect under the mND BCs: since the components ofrcan interact differently with the boundary in two ways that are Neumann and Dirichlet BCs,the action ofTcan mix the two interactions and make transmissions among the different components appear.These transmission phenomena have the interpretation that the boundary acts as a‘polarizer’tuning the polarizations of the incoming solitons and,after interacting with the boundary,changes in the polarizations among the solitons take place [11].

    4.Dressing the boundary

    The integrable BCs for the VNLS equation on the half-line are completely determined by the t-part of the Lax pair through the boundary constraint (11).By dressing the boundary[14],we mean that in the process of DTs to generate exact solutions,the boundary constraint is preserved at each step of the DTs.By construction,this leads to exact solutions of the VNLS equation subject to the integrable BCs.In practice this requires one to find appropriate particular solutions in DTs.

    Lemma 1.[Dressing the boundary] LetU,Vbe the undressed Lax pair.Assume thatVsatisfies the boundary constraint (11),and that the Lax pair admits a pair of particular solutionsassociated withrespectively (assumeλjis not pure imaginary),such that

    whereK(λ)is the boundary matrix; then the boundary constraint (11) is preserved after dressingVusing Ψj,

    The proof is closely related to the structure of dressing factors.Similar statements can be found in[14]for the scalar case.To obtain exact solutions on the half-line,it remains to find the paired particular solutions Ψj,satisfying (16).

    Proposition 1.[N-soliton solutions on the half-line] Let{bj,λj} andj=1,…,N,be two sets of N-soliton data.Assume thatis not pure imaginary) andwithB(λ)=fα(λ)In(fα(λ)defined in (13)),then the so-constructed solutions restricted tox≥ 0 correspond to N-soliton solutions on the half-line subject to the Robin BCs(12);ifB= ?diag (δ1,...,δn),δ?= 1,δj= ?1,forj≠?,then the solutions restricted tox≥ 0 satisfy the mND BCs (14).

    The proof is a direct consequence of lemma 1 by taking into account the forms of the particular solutions(8).Dressing the Lax pair using the N-paired soliton data {bj,λj} andgives rise to 2N-soliton solutions on the whole-line,and the requirements thatcreate solitons with opposite velocities.By restricting the space domain to the positive semi-axis,the BCs appear as interactions of solitons with opposite velocities at x=0,then one obtains N-soliton solutions on the half-line.Although this whole-line picture helps to interpret interactions of solitons as BCs,the derivation of soliton solutions on the half-line can be restricted to x ≥0.This is in contrast to the nonlinear mirror-image technique[11,12],where an extended potential to the wholeline is required.

    Note that in the above construction,pure imaginary λj's,corresponding to stationary solitons are excluded.By dressing the boundary,we can also construct stationary solitons satisfying the Robin BCs.These are boundary-bound solitons on the half-line.

    Proposition 2.[Boundary-bound solitons] Letβbe any realn-vector such that∣β∣= 1,and,j= 1,… ,Nbe a set ofN-soliton data.Assume thatλj’s are pure imaginary numbers and distinct,and for given α,satisfyfα(λj)<0(fα(λ)defined in (13)).Moreover,assume the following forms of the norming constantsthen the so-constructed solutions restricted tox≥ 0 correspond toN-stationary solitons on the half-line subject to the Robin BCs (12).

    The requirement that β is a real vector with |β|=1 can be easily obtained by taking any real vectordivided by its normalAgain,the restriction on the soliton data follows the idea of dressing the boundary: the boundary constraint (11) is preserved at each step of the DTs.In computing the boundary-bound solitons,the expressions for the norming constants are different for the odd and even soliton numbers.One also excludes the situation where the stationary solitons are subject to the Dirichlet BCs by assuming fα(λj)<0.Note that for the scalar NLS case,the boundary-bound states were investigated in[14,29].One can put the stationary and moving solitons together by combining the associated soliton data.Due to the Bianchi permutativity of DTs,the order of adding the soliton data is irrelevant.

    5.Examples of VNLS soliton interacting with a boundary

    It is straightforward to apply Prop.1 and 2 to obtain soliton solutions of the VNLS equation on the half-line.Fix n=2;three examples under the Robin BCs are shown in figures 1–3.The left and right figures represent,respectively,the norms of the 1st and 2nd components of the solutions.

    As for the mND BCs,fix n=2,and let the transformation matrixT∈SU(2) (following remark 2) parameterized by three parameters ω,θ,ξ be in the form

    Clearly,r?Trinduces a mixture of components of r at the boundary.In the computations of the half-line soliton solution,this amounts to B ?TBT?1for B defined in Prop.1.Examples of two solitons interacting with an mND boundary are shown below.Having B=diag(1,?1) gives rise to solitons with the 1st component subject to Neumann BCs and 2nd to Dirichlet BCs(see figure 4);under the action of T,for certain choices of the parameters,one can make one component of the outgoing solitons vanishingly small1The complete analysis,requiring some asymptotic estimations of the solutions as t →±∞,is omitted here.Detailed analysis can be found,for instance,in [10].(see figure 5).In other words,the boundary polarizer switches off the 1st component after solitons interact with the boundary.

    6.Discussion

    The approach of dressing the boundary is successfully applied to the VNLS equation on the half-line.Although our construction is rather algebraic,it admits a perfect IST interpretation.Since the integrable BCs are only governed by the t-part of the Lax pair through the boundary constraint (11),the soliton data on the half-line can be derived by performing the IST using the t-part of the Lax pair on the boundary.Precisely,this amounts to the direct scattering analysis of

    where QTis defined in (4).Let Φ±be the fundamental solutions (3) at x=0

    Figure 2.One soliton interacts with a boundary-bound soliton subject to the Robin BCs (α=2).The moving soliton data are: b1} andwith μ1=1.4,ν1=4,=(3 ,2) ;the static soliton data are:

    Figure 3.Three stationary solitons interfere with themselves at the boundary subject to the Robin BCs (α=2).Here,

    Figure 4.Two solitons interact with the mixed Neumann(1st component)and Dirichlet(2nd component)BCs with B=?diag(1,?1).The soliton data areand j=1,2 with μ1=1,ν1=2,=(4 ,4),μ2=2,ν2=1.5

    they are connected by the scattering system Φ+(λ)=S(λ)Φ?(λ),where S(k) is the scattering matrix.The domain of analyticity of the components of S(k) can be split into the four quadrants of the complex plane.The boundary constraint (11) yields

    which governs the soliton data at the boundary x=0.It is easy to see that paired singularities {λj,?λj} appear (see figure 6),and the relations between the paired norming constants can also be accordingly extracted.These are the requirements listed in Prop.1.Then,making the soliton data evolve in x for x >0 gives rise to N-soliton solutions on the half-line.

    Figure 5.Polarizer effect:the boundary tunes the polarizations,and the 1st component becomes vanishingly small after interacting with the boundary.Here,the parameters in T (17) are fixed as ω=0,θ=0,ξ=50.66.

    Figure 6.Pairing of soliton data in the spectral plane

    Note that the relation (20) is in sharp contrast to the formulae (3.43) and (3.46) in [11],which are the governing relations of the soliton data following the nonlinear mirrorimage approach.In [11],the singularities are paired asand the paired norming constants,that are nonlinearly coupled,can be only be computed recursively.This makes the computation of N-soliton solutions on the half-line highly complicated.However,the relation (20) only involves linear relations between the paired norming constantsin Prop.1).Therefore,the half-line N-soliton solutions can be easily derived.

    As pointed out by Fokas,the scalar NLS equation on the half-line under the Robin BCs can even model solutions to the GP equation on the whole-line with a Dirac-function potential at the origin,cf [30],introduction.Similarly,the VNLS equation on the half-line under the integrable BCs can also describe certain special cases of the vector GP equation.Fix the number of components n=2,and one has the vector GP equation

    where u(x),v(x) are the potentials. Let u(x)=v(x)=?4αδ0(x),and let r1,r2be even in x.Then,after integration,the Dirac function δ0(x) introduces a jump in the derivatives

    which corresponds to the half-line VNLS equation under the vector Robin BCs (12).Again,let u(x)=0,v(x)=δ0(x),and let r1be even and r2be odd in x.This corresponds to the halfline VNLS equation under the mND BCs(14),with r1and r2satisfying,respectively,the Neumann and Dirichlet BCs.

    ORCID iDs

    又黄又粗又硬又大视频| 日本爱情动作片www.在线观看| 这个男人来自地球电影免费观看 | 人成视频在线观看免费观看| 人成视频在线观看免费观看| 国产精品无大码| 深夜精品福利| 亚洲国产看品久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 寂寞人妻少妇视频99o| 这个男人来自地球电影免费观看 | 国产亚洲欧美精品永久| 伦理电影免费视频| 色播在线永久视频| 中文字幕精品免费在线观看视频| 9191精品国产免费久久| 国产综合精华液| 在线观看免费高清a一片| 最近手机中文字幕大全| 精品少妇一区二区三区视频日本电影 | 一区二区av电影网| 亚洲精品国产一区二区精华液| 国产精品女同一区二区软件| 99九九在线精品视频| 五月天丁香电影| 激情视频va一区二区三区| 久久精品国产a三级三级三级| 精品一品国产午夜福利视频| 亚洲精品美女久久av网站| 肉色欧美久久久久久久蜜桃| 大陆偷拍与自拍| 交换朋友夫妻互换小说| 久久99精品国语久久久| 美女国产视频在线观看| 免费av中文字幕在线| 国产1区2区3区精品| 亚洲国产色片| 欧美日韩亚洲高清精品| 美女午夜性视频免费| 亚洲精品美女久久久久99蜜臀 | 免费黄网站久久成人精品| 男女无遮挡免费网站观看| 不卡视频在线观看欧美| 黄频高清免费视频| 大香蕉久久成人网| 男女免费视频国产| 日韩,欧美,国产一区二区三区| 波野结衣二区三区在线| 美女大奶头黄色视频| 日韩中字成人| 欧美日韩亚洲国产一区二区在线观看 | 一二三四中文在线观看免费高清| a级毛片黄视频| 亚洲精品国产av蜜桃| 日韩精品免费视频一区二区三区| 不卡视频在线观看欧美| 国产av码专区亚洲av| 熟女电影av网| 久久免费观看电影| 久久精品国产自在天天线| 欧美日韩亚洲国产一区二区在线观看 | 春色校园在线视频观看| 性色av一级| 丝袜喷水一区| 捣出白浆h1v1| 欧美精品一区二区大全| 少妇人妻 视频| 久久ye,这里只有精品| 欧美日韩国产mv在线观看视频| 欧美精品亚洲一区二区| 婷婷成人精品国产| 亚洲国产毛片av蜜桃av| 久久鲁丝午夜福利片| 中文天堂在线官网| 最新中文字幕久久久久| 多毛熟女@视频| 国产免费一区二区三区四区乱码| 一边摸一边做爽爽视频免费| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 久久99一区二区三区| 男人操女人黄网站| 2018国产大陆天天弄谢| 91精品伊人久久大香线蕉| 一级a爱视频在线免费观看| 韩国精品一区二区三区| kizo精华| 寂寞人妻少妇视频99o| 国产国语露脸激情在线看| 久久午夜综合久久蜜桃| 免费日韩欧美在线观看| 免费黄网站久久成人精品| a级片在线免费高清观看视频| 国产有黄有色有爽视频| 国产 一区精品| 多毛熟女@视频| 最近手机中文字幕大全| 国产日韩欧美视频二区| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频| 制服丝袜香蕉在线| 搡女人真爽免费视频火全软件| 久久影院123| 男人爽女人下面视频在线观看| 久久精品国产亚洲av天美| 亚洲欧美成人精品一区二区| 大片免费播放器 马上看| 色播在线永久视频| 国产一级毛片在线| 少妇被粗大的猛进出69影院| 日本免费在线观看一区| 国产欧美日韩综合在线一区二区| 国产片内射在线| 又黄又粗又硬又大视频| 熟妇人妻不卡中文字幕| 欧美老熟妇乱子伦牲交| 久久99一区二区三区| 色婷婷av一区二区三区视频| 黄色怎么调成土黄色| 午夜激情av网站| 少妇精品久久久久久久| 国产在线免费精品| 国产精品成人在线| 国产成人91sexporn| 国产一区二区 视频在线| 女性被躁到高潮视频| 日韩制服丝袜自拍偷拍| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成年女人毛片免费观看观看9 | tube8黄色片| 亚洲欧美成人精品一区二区| 欧美精品一区二区大全| 免费不卡的大黄色大毛片视频在线观看| 国产av国产精品国产| 国产精品一二三区在线看| 精品国产一区二区三区四区第35| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av免费在线看不卡| 日日爽夜夜爽网站| 久久精品久久久久久久性| 精品人妻在线不人妻| 亚洲欧美精品自产自拍| 色婷婷av一区二区三区视频| 卡戴珊不雅视频在线播放| 妹子高潮喷水视频| 国产不卡av网站在线观看| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 卡戴珊不雅视频在线播放| 美女视频免费永久观看网站| 日韩在线高清观看一区二区三区| 国产福利在线免费观看视频| 欧美xxⅹ黑人| 婷婷色麻豆天堂久久| 国产亚洲欧美精品永久| 不卡av一区二区三区| 亚洲国产精品国产精品| 大香蕉久久网| 如日韩欧美国产精品一区二区三区| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 午夜福利视频在线观看免费| 亚洲成色77777| 又大又黄又爽视频免费| 校园人妻丝袜中文字幕| 麻豆乱淫一区二区| 午夜免费男女啪啪视频观看| 天天操日日干夜夜撸| 日韩中字成人| 成人18禁高潮啪啪吃奶动态图| a 毛片基地| 亚洲国产看品久久| 寂寞人妻少妇视频99o| 亚洲成国产人片在线观看| videossex国产| 成年av动漫网址| 欧美日本中文国产一区发布| 波多野结衣一区麻豆| 久久综合国产亚洲精品| 国产日韩欧美视频二区| 1024香蕉在线观看| 这个男人来自地球电影免费观看 | av在线播放精品| 国产精品一二三区在线看| 另类亚洲欧美激情| 国产高清不卡午夜福利| 日韩中字成人| 日日摸夜夜添夜夜爱| 久久久久久久大尺度免费视频| 日本黄色日本黄色录像| 制服诱惑二区| 最近中文字幕高清免费大全6| 成人二区视频| 精品人妻熟女毛片av久久网站| 国产黄频视频在线观看| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 宅男免费午夜| 只有这里有精品99| 亚洲国产精品一区三区| 亚洲欧美中文字幕日韩二区| 少妇熟女欧美另类| 日韩欧美一区视频在线观看| 捣出白浆h1v1| 美女大奶头黄色视频| 国产精品 欧美亚洲| 午夜激情av网站| 欧美变态另类bdsm刘玥| 麻豆av在线久日| 国产高清国产精品国产三级| 日韩中文字幕欧美一区二区 | 曰老女人黄片| 成年动漫av网址| 伊人亚洲综合成人网| 亚洲欧洲日产国产| 在线免费观看不下载黄p国产| 另类亚洲欧美激情| 国产精品偷伦视频观看了| 日本av手机在线免费观看| 亚洲国产欧美日韩在线播放| 大香蕉久久网| 国产一区二区三区av在线| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 在线天堂中文资源库| 久久精品熟女亚洲av麻豆精品| 交换朋友夫妻互换小说| 男女国产视频网站| 黄网站色视频无遮挡免费观看| 欧美黄色片欧美黄色片| 婷婷色综合大香蕉| 国产免费视频播放在线视频| 99久久人妻综合| av.在线天堂| 免费久久久久久久精品成人欧美视频| 欧美日韩精品网址| 欧美老熟妇乱子伦牲交| 日本午夜av视频| 啦啦啦视频在线资源免费观看| 国产深夜福利视频在线观看| 久久久久久久久久人人人人人人| 亚洲一级一片aⅴ在线观看| 一本大道久久a久久精品| 男人添女人高潮全过程视频| 91午夜精品亚洲一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲成人一二三区av| 五月开心婷婷网| 日韩一卡2卡3卡4卡2021年| av不卡在线播放| 国产精品香港三级国产av潘金莲 | 妹子高潮喷水视频| 大香蕉久久网| 日韩大片免费观看网站| 日本欧美国产在线视频| 少妇被粗大的猛进出69影院| 如日韩欧美国产精品一区二区三区| 久久国产亚洲av麻豆专区| 极品少妇高潮喷水抽搐| 亚洲av日韩在线播放| 国产人伦9x9x在线观看 | 国产熟女午夜一区二区三区| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 纵有疾风起免费观看全集完整版| 91久久精品国产一区二区三区| 丰满饥渴人妻一区二区三| 九草在线视频观看| 在线看a的网站| 国产精品免费大片| 麻豆精品久久久久久蜜桃| 精品人妻熟女毛片av久久网站| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 一区在线观看完整版| 王馨瑶露胸无遮挡在线观看| 国产免费又黄又爽又色| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| 免费女性裸体啪啪无遮挡网站| 欧美少妇被猛烈插入视频| 美女视频免费永久观看网站| 国产av精品麻豆| 亚洲内射少妇av| 激情视频va一区二区三区| 色94色欧美一区二区| 日本wwww免费看| 在线观看免费高清a一片| 天天影视国产精品| freevideosex欧美| 高清不卡的av网站| 天天影视国产精品| 青草久久国产| 在线观看免费高清a一片| 国产免费又黄又爽又色| 久久99蜜桃精品久久| 99久久综合免费| 日韩视频在线欧美| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 久久精品熟女亚洲av麻豆精品| av在线观看视频网站免费| 男男h啪啪无遮挡| 久久婷婷青草| 日韩中字成人| 老司机亚洲免费影院| 亚洲国产精品999| 午夜av观看不卡| 嫩草影院入口| 两个人免费观看高清视频| 看非洲黑人一级黄片| 在现免费观看毛片| 99re6热这里在线精品视频| 美女国产视频在线观看| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 午夜激情久久久久久久| 国产亚洲一区二区精品| 丝袜美腿诱惑在线| 制服人妻中文乱码| 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品| 国产成人a∨麻豆精品| 一区福利在线观看| 五月伊人婷婷丁香| 2021少妇久久久久久久久久久| 久久av网站| 色吧在线观看| 丰满饥渴人妻一区二区三| 大香蕉久久网| 少妇的丰满在线观看| 麻豆精品久久久久久蜜桃| 99精国产麻豆久久婷婷| 久久影院123| 老女人水多毛片| 成人手机av| 最近手机中文字幕大全| 伦精品一区二区三区| 爱豆传媒免费全集在线观看| 妹子高潮喷水视频| 永久网站在线| 最近中文字幕高清免费大全6| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到 | 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 有码 亚洲区| www.自偷自拍.com| 日韩一本色道免费dvd| 日日摸夜夜添夜夜爱| 免费黄网站久久成人精品| 日本-黄色视频高清免费观看| 丰满乱子伦码专区| 久久精品国产鲁丝片午夜精品| freevideosex欧美| 婷婷色综合www| 99re6热这里在线精品视频| 在线观看三级黄色| 在线亚洲精品国产二区图片欧美| 纵有疾风起免费观看全集完整版| 国产成人免费无遮挡视频| 80岁老熟妇乱子伦牲交| 性少妇av在线| 韩国高清视频一区二区三区| 永久网站在线| 少妇猛男粗大的猛烈进出视频| 精品一区二区三卡| 满18在线观看网站| 日本猛色少妇xxxxx猛交久久| 亚洲伊人久久精品综合| 亚洲综合精品二区| 亚洲三级黄色毛片| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 国产野战对白在线观看| 国产精品无大码| av女优亚洲男人天堂| 国产精品一区二区在线观看99| 国产人伦9x9x在线观看 | 一级毛片 在线播放| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91 | 中国国产av一级| 亚洲第一av免费看| 视频区图区小说| 天堂俺去俺来也www色官网| 满18在线观看网站| 热re99久久国产66热| 人妻一区二区av| 国产成人精品婷婷| 亚洲精品一区蜜桃| 成人黄色视频免费在线看| 777久久人妻少妇嫩草av网站| 美女高潮到喷水免费观看| 人人妻人人澡人人看| 日韩 亚洲 欧美在线| 五月开心婷婷网| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 亚洲国产av影院在线观看| 日韩中文字幕欧美一区二区 | 老女人水多毛片| 欧美bdsm另类| 国产乱来视频区| 高清黄色对白视频在线免费看| 亚洲婷婷狠狠爱综合网| 中文字幕人妻丝袜一区二区 | 啦啦啦在线免费观看视频4| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 男人舔女人的私密视频| 青草久久国产| 久久精品夜色国产| 免费观看av网站的网址| 制服人妻中文乱码| 国产乱人偷精品视频| 如日韩欧美国产精品一区二区三区| 美女国产高潮福利片在线看| 午夜福利在线免费观看网站| 天堂8中文在线网| 日韩欧美一区视频在线观看| 日韩中文字幕视频在线看片| www.自偷自拍.com| 亚洲熟女精品中文字幕| 最近2019中文字幕mv第一页| 国产免费福利视频在线观看| 亚洲婷婷狠狠爱综合网| 国产欧美亚洲国产| 青青草视频在线视频观看| 欧美在线黄色| 国产97色在线日韩免费| 亚洲美女搞黄在线观看| 波多野结衣一区麻豆| 亚洲三区欧美一区| 一级,二级,三级黄色视频| 五月天丁香电影| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线免费观看视频4| 国产精品不卡视频一区二区| 十分钟在线观看高清视频www| 国产一级毛片在线| av在线观看视频网站免费| 水蜜桃什么品种好| 天堂中文最新版在线下载| 亚洲国产最新在线播放| 国产成人精品福利久久| 黄色怎么调成土黄色| 黄片小视频在线播放| 一级毛片电影观看| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美在线一区| 91成人精品电影| 亚洲av成人精品一二三区| 妹子高潮喷水视频| 婷婷色综合www| 国产在线免费精品| 久久99热这里只频精品6学生| 亚洲国产精品999| 成人影院久久| 80岁老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡| 日韩不卡一区二区三区视频在线| 在线亚洲精品国产二区图片欧美| 亚洲天堂av无毛| 久久久精品区二区三区| 亚洲精品久久久久久婷婷小说| 国产精品免费视频内射| 亚洲欧美一区二区三区黑人 | 99精国产麻豆久久婷婷| 精品少妇内射三级| 成人免费观看视频高清| 日日爽夜夜爽网站| 久久久久国产网址| 综合色丁香网| 91精品三级在线观看| 国产精品女同一区二区软件| 久久av网站| 人人澡人人妻人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美日韩另类电影网站| 久久免费观看电影| 最近的中文字幕免费完整| 日韩av不卡免费在线播放| 亚洲欧美一区二区三区国产| a级毛片在线看网站| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 国产精品久久久久久精品电影小说| 久久99一区二区三区| 男人爽女人下面视频在线观看| 成人毛片60女人毛片免费| 中文乱码字字幕精品一区二区三区| 久久国产精品大桥未久av| 亚洲色图综合在线观看| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 女人久久www免费人成看片| 一二三四中文在线观看免费高清| 精品酒店卫生间| 美女福利国产在线| 看十八女毛片水多多多| 亚洲国产欧美网| 欧美日韩综合久久久久久| 日韩欧美精品免费久久| 熟女电影av网| 日本欧美国产在线视频| 国产成人精品久久二区二区91 | 精品国产国语对白av| 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 亚洲人成77777在线视频| videossex国产| 中文字幕另类日韩欧美亚洲嫩草| 99久久精品国产国产毛片| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 熟女电影av网| 99久国产av精品国产电影| 人体艺术视频欧美日本| 热re99久久国产66热| 国产精品av久久久久免费| 欧美 亚洲 国产 日韩一| 久久99一区二区三区| 777久久人妻少妇嫩草av网站| 1024视频免费在线观看| 久久久精品区二区三区| 免费观看a级毛片全部| 亚洲精品国产av蜜桃| 精品久久久久久电影网| 久久久a久久爽久久v久久| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 国产福利在线免费观看视频| 九色亚洲精品在线播放| 汤姆久久久久久久影院中文字幕| 另类精品久久| 最新中文字幕久久久久| 国产日韩欧美亚洲二区| 777米奇影视久久| 午夜免费观看性视频| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀 | 哪个播放器可以免费观看大片| 免费黄网站久久成人精品| 女人精品久久久久毛片| 美女中出高潮动态图| 亚洲欧洲精品一区二区精品久久久 | 女性被躁到高潮视频| 亚洲激情五月婷婷啪啪| 亚洲精品在线美女| 久久精品国产自在天天线| 极品少妇高潮喷水抽搐| 啦啦啦在线观看免费高清www| 日韩一区二区视频免费看| av一本久久久久| 一区二区日韩欧美中文字幕| 男女国产视频网站| 99re6热这里在线精品视频| 国产精品久久久久久av不卡| 丝袜美腿诱惑在线| 丝袜脚勾引网站| 久久99精品国语久久久| 亚洲国产成人一精品久久久| 亚洲av男天堂| 国产精品香港三级国产av潘金莲 | 男女边摸边吃奶| 热re99久久精品国产66热6| 久久精品久久久久久噜噜老黄| 丁香六月天网| 多毛熟女@视频| 精品少妇黑人巨大在线播放| 嫩草影院入口| 国产成人精品久久二区二区91 | 99久国产av精品国产电影| 亚洲激情五月婷婷啪啪| 黄色 视频免费看| 亚洲av男天堂| 精品人妻在线不人妻| 午夜免费鲁丝| 国产成人精品在线电影| 超碰成人久久| 伊人亚洲综合成人网| 黄网站色视频无遮挡免费观看| 26uuu在线亚洲综合色| 一个人免费看片子| www.熟女人妻精品国产| 黄色配什么色好看| 性色avwww在线观看| 男女啪啪激烈高潮av片| 飞空精品影院首页| 七月丁香在线播放| 考比视频在线观看| 日日爽夜夜爽网站| 寂寞人妻少妇视频99o| 建设人人有责人人尽责人人享有的| 国产国语露脸激情在线看| 国产免费又黄又爽又色| 精品第一国产精品| 国产男女超爽视频在线观看| 黄色视频在线播放观看不卡| 免费观看a级毛片全部| 精品亚洲成国产av| 国产片内射在线| 看十八女毛片水多多多| 女性被躁到高潮视频| 91aial.com中文字幕在线观看| 高清在线视频一区二区三区| √禁漫天堂资源中文www| 免费大片黄手机在线观看| 中文字幕精品免费在线观看视频|