• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector NLS solitons interacting with a boundary*

    2021-04-28 02:26:20ChengZhangandDajunZhang
    Communications in Theoretical Physics 2021年4期

    Cheng Zhangand Da-jun Zhang

    Department of Mathematics,Shanghai University,Shanghai,200444,China

    Abstract We construct multi-soliton solutions of the n-component vector nonlinear Schr?dinger equation on the half-line subject to two classes of integrable boundary conditions (BCs): the homogeneous Robin BCs and the mixed Neumann/Dirichlet BCs.The construction is based on the so-called dressing the boundary,which generates soliton solutions by preserving the integrable BCs at each step of the Darboux-dressing process.Under the Robin BCs,examples,including boundary-bound solitons,are explicitly derived; under the mixed Neumann/Dirichlet BCs,the boundary can act as a polarizer that tunes different components of the vector solitons.Connection of our construction to the inverse scattering transform is also provided.

    Keywords: polarizer effect,solitons on the half-line,vector nonlinear Schr?dinger equation,integrable boundary conditions,boundary-bound states

    1.Introduction

    The concept of integrable boundary conditions(BCs),mainly developed by Sklyanin [1],represents one of the most successful approaches to initial-boundary-value problems for two-dimensional integrable nonlinear partial differential equations(PDEs).The idea lies in translating the integrability of soliton equations with boundaries into certain algebraic constraints known as reflection equations,cf [1–3].As consequences,classes of soliton models,restricted on a finite interval,are integrable subject to integrable BCs [1].

    In this paper,we consider the focusing vector nonlinear Schr?dinger (VNLS) equation,also known as the Manakov model [4],restricted to the half-line space domain.The equation reads

    wherer=(r1,… ,r n)T,0 denotes the zero n-vector,and r?denotes the conjugate transpose of r.Each component rjis a complex field,and H is an n×n positive definite Hermitian matrix modeling interactions among the components.There is a natural U(n) -invariance of the model under the transformation r ?T r,whereT∈U(n).Let T diagonalize H,then the VNLS equation (1),up to certain scaling,can be reduced to its standard form

    The VNLS equation is a vector generalization of the(scalar) NLS equation by allowing internal degrees of freedom.Physically,it is a relevant model to describe optical solitons and collective states in low-temperature physics,cf[5,6]; mathematically,the nontrivial interactions of vector solitons are related to the notion of Yang–Baxter maps,cf[7–10].

    Integrable BCs for the VNLS equation,as well as soliton solutions to the VNLS equation on the half-line,were derived in [11] by means of a nonlinear mirror-image technique [12](see also [13]) that extends the half-line space domain to the whole axis.However,there was severe difficulty constructing N-soliton solutions on the half-line as the soliton data can only be computed recursively.In practice,the computations are becoming increasingly complicated for N ≥2 (see for instance [11],conclusions).

    We provide an efficient approach to deriving N-soliton solutions of the VNLS equation on the half-line.The construction is based on the so-called dressing the boundary,introduced recently by one of the authors [14,15].The essential ideas are: given integrable BCs of the VNLS equation (or any integrable PDEs),by generating soliton solutions using the Darboux-dressing transformations (DTs),we look for those DTs that preserve the integrable BCs.This gives rise to exact solutions of the underlying integrable model on the half-line,and admits a natural inverse scattering transform (IST) interpretation.The true powers of our construction consist of:(i)the N-soliton solutions can be obtained in compact forms (this was highly complicated following the mirror-image method[11,12],see the discussion provided in section 6); (ii) it does not require any extension of the space domain.This reveals that dressing the boundary represents a natural approach to solve the VNLS equation (or classes of PDEs) on the half-line equipped with integrable BCs.

    Note that Fokas’ unified transform method [16,17]represents a systematic approach to treating initial-boundaryvalue problems for integrable PDEs.This method can be regarded as a generalization of the IST,cf [18–21],and was already applied to the NLS [22] and VNLS [23] equations.However,it is a difficult task to obtain exact solutions within the Fokas’ method,although asymptotic solutions at large times could be derived.

    The outline and main results of the paper are as follows.First,DTs for generating soliton solutions of the VNLS equation are reviewed in section 2.Then,we recall in section 3 results on integrable BCs for the VNLS equation on the half-line[11].There are two classes of integrable BCs:the homogeneous Robin BCs and mixed Neumann/Dirichlet BCs.In section 4,we apply the approach of dressing the boundary to the VNLS equation on the half-line,which gives rise to explicit N-soliton solutions on the half-line.Our results provide a clear answer to the question of obtaining general Nsoliton solutions in the presence of a boundary [11].Moreover,we can construct stationary vector solitons subject to the Robin BCs at the boundary.These correspond to boundarybound solitons.In section 5,we provide explicit examples of vector solitons interacting with the boundary.In particular,by combining the effects of the mixed Neumann/Dirichlet BCs and the U(n) -invariance of the VNLS equation,the boundary can act as a polarizer that tunes components of solitons after interacting with the boundary.We provide connections of our construction to the IST in section 6.Possible connections of the half-line VNLS equation under integrable BCs to the Gross–Pitaevskii (GP) equation are also discussed.

    2.DTs and soliton solutions

    The n-component VNLS equation (2) is equivalent to the compatibility of the linear differential system

    Here,U,V,known as the Lax pair,are (n+1×n+1)matrix-valued functions

    where λ is the spectral parameter,and Σ and Q are block matrices

    with In,Onbeing the identity and zero square matrices of size n,respectively.There is a natural gauge group acting on the Lax pair(3)

    and DTs can be represented by G that preserves the forms of U,V by extracting the singular structures,cf[24–27].A onestep DT for the VNLS equation amounts to the mapwhere D[1] is called a dressing factor of degree 1

    Here,Ψ1is a particular solution of the undressed Lax pair(3)associated with λ1.Having a set of N particular solutions{Ψj,λj},j=1,…,N,one can iterate the DTs and construct the dressing factor D[N] of degree N.For simplicity Ψj's are assumed to be vectors(of rank 1).In the IST formalism,D[N]plays the role of the scattering matrix: one adds a pair of complex zero/poleto the scattering system at each step of the DTs .There are two important properties of DTs:(1) the Bianchi permutativity,meaning that the order of adding Ψjis irrelevant; and (2) the action of D[N](λ) can be expressed in compact forms (usually in terms of determinant structures).

    Since we are focusing on soliton solutions,the zero seed solution r=0 is imposed to the undressed Lax pair.Without loss of generality,let Ψj's be in the forms

    where bj's are constant complex n-vectors called norming vectors.Now,encoding the soliton data into{bj,λj},j=1,…,N,with distinct λj,the N-soliton solutions to the VNLS equation (2) are,cf [21,26]

    where r?is the ?th component of r,with βj;?being its ?th component,and the N×N matrix M has the componentsAs an illustration,the one-soliton data {b1,λ1},withν1>0,lead to the one vector soliton solution

    3.Integrable BCs for VNLS

    Now we restrict the space domain of the VNLS equation to the positive semi-axis.Integrable BCs for the half-line VNLS equation were investigated in [11] (see also [28] in which only the vector Robin BCs were derived).The integrability in the presence of a boundary was translated into a constraint on the t-part of the Lax pair

    Here,the boundary matrix K(λ) is assumed to be nondegenerate.As solutions of the boundary constraint(11),two classes of BCs were obtained [11]: (i) the homogeneous vector Robin BCs:

    having the boundary matrix

    The real parameter α controls the boundary behavior: the Neumann(rx|x=0=0)and Dirichlet BCs(r|x=0=0)appear as special cases of (12) as α=0 and |α|→∞,respectively; (ii)the mixed Neumann/Dirichlet (mND) BCs:

    where r?is the ?th component of r.Accordingly,one has the boundary matrix

    where the+/?sign of δ?corresponds to Neumann/Dirichlet BCs.

    Remark 1.The boundary constraint (11) was derived in [11]by considering the space-reverse symmetry of the VNLS equation as a B?cklund transformation.The same constraint was also introduced in Fokas’ unified transform,known as linearizable BCs.Note that the boundary matrixKis related to a far-reaching context as it represents solutions of the classical and quantum reflection equations [1–3].

    Remark 2.The integrable BCs are compatible with the U(n)-invariance of the VNLS equation.The transformationis trivial to the Robin BCs,because a collective change in the components ofrtakes place at the boundary underT.However,Tinduces a nontrivial effect under the mND BCs: since the components ofrcan interact differently with the boundary in two ways that are Neumann and Dirichlet BCs,the action ofTcan mix the two interactions and make transmissions among the different components appear.These transmission phenomena have the interpretation that the boundary acts as a‘polarizer’tuning the polarizations of the incoming solitons and,after interacting with the boundary,changes in the polarizations among the solitons take place [11].

    4.Dressing the boundary

    The integrable BCs for the VNLS equation on the half-line are completely determined by the t-part of the Lax pair through the boundary constraint (11).By dressing the boundary[14],we mean that in the process of DTs to generate exact solutions,the boundary constraint is preserved at each step of the DTs.By construction,this leads to exact solutions of the VNLS equation subject to the integrable BCs.In practice this requires one to find appropriate particular solutions in DTs.

    Lemma 1.[Dressing the boundary] LetU,Vbe the undressed Lax pair.Assume thatVsatisfies the boundary constraint (11),and that the Lax pair admits a pair of particular solutionsassociated withrespectively (assumeλjis not pure imaginary),such that

    whereK(λ)is the boundary matrix; then the boundary constraint (11) is preserved after dressingVusing Ψj,

    The proof is closely related to the structure of dressing factors.Similar statements can be found in[14]for the scalar case.To obtain exact solutions on the half-line,it remains to find the paired particular solutions Ψj,satisfying (16).

    Proposition 1.[N-soliton solutions on the half-line] Let{bj,λj} andj=1,…,N,be two sets of N-soliton data.Assume thatis not pure imaginary) andwithB(λ)=fα(λ)In(fα(λ)defined in (13)),then the so-constructed solutions restricted tox≥ 0 correspond to N-soliton solutions on the half-line subject to the Robin BCs(12);ifB= ?diag (δ1,...,δn),δ?= 1,δj= ?1,forj≠?,then the solutions restricted tox≥ 0 satisfy the mND BCs (14).

    The proof is a direct consequence of lemma 1 by taking into account the forms of the particular solutions(8).Dressing the Lax pair using the N-paired soliton data {bj,λj} andgives rise to 2N-soliton solutions on the whole-line,and the requirements thatcreate solitons with opposite velocities.By restricting the space domain to the positive semi-axis,the BCs appear as interactions of solitons with opposite velocities at x=0,then one obtains N-soliton solutions on the half-line.Although this whole-line picture helps to interpret interactions of solitons as BCs,the derivation of soliton solutions on the half-line can be restricted to x ≥0.This is in contrast to the nonlinear mirror-image technique[11,12],where an extended potential to the wholeline is required.

    Note that in the above construction,pure imaginary λj's,corresponding to stationary solitons are excluded.By dressing the boundary,we can also construct stationary solitons satisfying the Robin BCs.These are boundary-bound solitons on the half-line.

    Proposition 2.[Boundary-bound solitons] Letβbe any realn-vector such that∣β∣= 1,and,j= 1,… ,Nbe a set ofN-soliton data.Assume thatλj’s are pure imaginary numbers and distinct,and for given α,satisfyfα(λj)<0(fα(λ)defined in (13)).Moreover,assume the following forms of the norming constantsthen the so-constructed solutions restricted tox≥ 0 correspond toN-stationary solitons on the half-line subject to the Robin BCs (12).

    The requirement that β is a real vector with |β|=1 can be easily obtained by taking any real vectordivided by its normalAgain,the restriction on the soliton data follows the idea of dressing the boundary: the boundary constraint (11) is preserved at each step of the DTs.In computing the boundary-bound solitons,the expressions for the norming constants are different for the odd and even soliton numbers.One also excludes the situation where the stationary solitons are subject to the Dirichlet BCs by assuming fα(λj)<0.Note that for the scalar NLS case,the boundary-bound states were investigated in[14,29].One can put the stationary and moving solitons together by combining the associated soliton data.Due to the Bianchi permutativity of DTs,the order of adding the soliton data is irrelevant.

    5.Examples of VNLS soliton interacting with a boundary

    It is straightforward to apply Prop.1 and 2 to obtain soliton solutions of the VNLS equation on the half-line.Fix n=2;three examples under the Robin BCs are shown in figures 1–3.The left and right figures represent,respectively,the norms of the 1st and 2nd components of the solutions.

    As for the mND BCs,fix n=2,and let the transformation matrixT∈SU(2) (following remark 2) parameterized by three parameters ω,θ,ξ be in the form

    Clearly,r?Trinduces a mixture of components of r at the boundary.In the computations of the half-line soliton solution,this amounts to B ?TBT?1for B defined in Prop.1.Examples of two solitons interacting with an mND boundary are shown below.Having B=diag(1,?1) gives rise to solitons with the 1st component subject to Neumann BCs and 2nd to Dirichlet BCs(see figure 4);under the action of T,for certain choices of the parameters,one can make one component of the outgoing solitons vanishingly small1The complete analysis,requiring some asymptotic estimations of the solutions as t →±∞,is omitted here.Detailed analysis can be found,for instance,in [10].(see figure 5).In other words,the boundary polarizer switches off the 1st component after solitons interact with the boundary.

    6.Discussion

    The approach of dressing the boundary is successfully applied to the VNLS equation on the half-line.Although our construction is rather algebraic,it admits a perfect IST interpretation.Since the integrable BCs are only governed by the t-part of the Lax pair through the boundary constraint (11),the soliton data on the half-line can be derived by performing the IST using the t-part of the Lax pair on the boundary.Precisely,this amounts to the direct scattering analysis of

    where QTis defined in (4).Let Φ±be the fundamental solutions (3) at x=0

    Figure 2.One soliton interacts with a boundary-bound soliton subject to the Robin BCs (α=2).The moving soliton data are: b1} andwith μ1=1.4,ν1=4,=(3 ,2) ;the static soliton data are:

    Figure 3.Three stationary solitons interfere with themselves at the boundary subject to the Robin BCs (α=2).Here,

    Figure 4.Two solitons interact with the mixed Neumann(1st component)and Dirichlet(2nd component)BCs with B=?diag(1,?1).The soliton data areand j=1,2 with μ1=1,ν1=2,=(4 ,4),μ2=2,ν2=1.5

    they are connected by the scattering system Φ+(λ)=S(λ)Φ?(λ),where S(k) is the scattering matrix.The domain of analyticity of the components of S(k) can be split into the four quadrants of the complex plane.The boundary constraint (11) yields

    which governs the soliton data at the boundary x=0.It is easy to see that paired singularities {λj,?λj} appear (see figure 6),and the relations between the paired norming constants can also be accordingly extracted.These are the requirements listed in Prop.1.Then,making the soliton data evolve in x for x >0 gives rise to N-soliton solutions on the half-line.

    Figure 5.Polarizer effect:the boundary tunes the polarizations,and the 1st component becomes vanishingly small after interacting with the boundary.Here,the parameters in T (17) are fixed as ω=0,θ=0,ξ=50.66.

    Figure 6.Pairing of soliton data in the spectral plane

    Note that the relation (20) is in sharp contrast to the formulae (3.43) and (3.46) in [11],which are the governing relations of the soliton data following the nonlinear mirrorimage approach.In [11],the singularities are paired asand the paired norming constants,that are nonlinearly coupled,can be only be computed recursively.This makes the computation of N-soliton solutions on the half-line highly complicated.However,the relation (20) only involves linear relations between the paired norming constantsin Prop.1).Therefore,the half-line N-soliton solutions can be easily derived.

    As pointed out by Fokas,the scalar NLS equation on the half-line under the Robin BCs can even model solutions to the GP equation on the whole-line with a Dirac-function potential at the origin,cf [30],introduction.Similarly,the VNLS equation on the half-line under the integrable BCs can also describe certain special cases of the vector GP equation.Fix the number of components n=2,and one has the vector GP equation

    where u(x),v(x) are the potentials. Let u(x)=v(x)=?4αδ0(x),and let r1,r2be even in x.Then,after integration,the Dirac function δ0(x) introduces a jump in the derivatives

    which corresponds to the half-line VNLS equation under the vector Robin BCs (12).Again,let u(x)=0,v(x)=δ0(x),and let r1be even and r2be odd in x.This corresponds to the halfline VNLS equation under the mND BCs(14),with r1and r2satisfying,respectively,the Neumann and Dirichlet BCs.

    ORCID iDs

    精品国产一区二区三区四区第35| 高清毛片免费看| 一边摸一边做爽爽视频免费| 国产一级毛片在线| 欧美丝袜亚洲另类| 欧美成人午夜免费资源| 亚洲少妇的诱惑av| 亚洲,欧美,日韩| 99精国产麻豆久久婷婷| 日韩av在线免费看完整版不卡| 99香蕉大伊视频| 七月丁香在线播放| 久久99热这里只频精品6学生| 咕卡用的链子| 天堂俺去俺来也www色官网| 久久人人97超碰香蕉20202| 精品亚洲成国产av| 成人综合一区亚洲| 亚洲国产精品999| 久久久久精品人妻al黑| 久久久久久久久久人人人人人人| 高清黄色对白视频在线免费看| 国产免费一级a男人的天堂| 久久99蜜桃精品久久| 亚洲天堂av无毛| 久久这里只有精品19| 久久久久视频综合| √禁漫天堂资源中文www| av天堂久久9| 亚洲精品av麻豆狂野| 国产精品久久久久成人av| 最近2019中文字幕mv第一页| 建设人人有责人人尽责人人享有的| 18禁动态无遮挡网站| 老熟女久久久| 乱人伦中国视频| 午夜免费观看性视频| 热99久久久久精品小说推荐| 日本免费在线观看一区| 国产熟女午夜一区二区三区| 精品久久久久久电影网| 精品一区二区免费观看| 欧美精品国产亚洲| 啦啦啦视频在线资源免费观看| 亚洲精品国产av成人精品| 国产 精品1| 丝瓜视频免费看黄片| av视频免费观看在线观看| 性色av一级| 国产精品一二三区在线看| 熟妇人妻不卡中文字幕| 免费少妇av软件| 国产av一区二区精品久久| 波野结衣二区三区在线| 国产女主播在线喷水免费视频网站| 日韩中字成人| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽av亚洲精品天堂| 精品国产国语对白av| 亚洲国产色片| 亚洲美女搞黄在线观看| 国产日韩欧美在线精品| 在线精品无人区一区二区三| 波野结衣二区三区在线| 亚洲精品乱码久久久久久按摩| 免费在线观看黄色视频的| www.色视频.com| 亚洲av男天堂| 欧美另类一区| 午夜福利影视在线免费观看| 啦啦啦啦在线视频资源| 亚洲国产毛片av蜜桃av| 亚洲,欧美,日韩| 精品国产露脸久久av麻豆| 午夜福利在线观看免费完整高清在| 天天躁夜夜躁狠狠久久av| 欧美日韩精品成人综合77777| 精品一区二区免费观看| 国产片内射在线| 亚洲,一卡二卡三卡| 国产精品久久久久成人av| 欧美3d第一页| 国产色爽女视频免费观看| 亚洲精华国产精华液的使用体验| 国产男女超爽视频在线观看| 日韩av在线免费看完整版不卡| 国产极品粉嫩免费观看在线| 爱豆传媒免费全集在线观看| 一本—道久久a久久精品蜜桃钙片| 777米奇影视久久| 在线观看美女被高潮喷水网站| 欧美 亚洲 国产 日韩一| 色视频在线一区二区三区| 欧美性感艳星| 少妇猛男粗大的猛烈进出视频| 性色avwww在线观看| 日本欧美国产在线视频| 国产精品久久久久久精品古装| 午夜福利视频在线观看免费| 久久狼人影院| 国产av一区二区精品久久| 在线精品无人区一区二区三| 肉色欧美久久久久久久蜜桃| 国产精品无大码| 美女国产视频在线观看| 久久影院123| 欧美精品亚洲一区二区| 精品亚洲乱码少妇综合久久| 另类亚洲欧美激情| 99精国产麻豆久久婷婷| 汤姆久久久久久久影院中文字幕| 久久久久久伊人网av| 制服人妻中文乱码| 咕卡用的链子| 三级国产精品片| 久久久久久久亚洲中文字幕| 人人妻人人爽人人添夜夜欢视频| 亚洲av电影在线进入| 亚洲精品视频女| 亚洲精品乱久久久久久| 国产亚洲午夜精品一区二区久久| 啦啦啦中文免费视频观看日本| 亚洲精品国产av成人精品| 日本欧美国产在线视频| 中文字幕亚洲精品专区| 精品视频人人做人人爽| 成年人免费黄色播放视频| 亚洲第一区二区三区不卡| 亚洲精品久久久久久婷婷小说| 国产极品粉嫩免费观看在线| 亚洲av电影在线观看一区二区三区| 热re99久久国产66热| 青春草国产在线视频| 男女无遮挡免费网站观看| 精品人妻熟女毛片av久久网站| 男的添女的下面高潮视频| 成人国产麻豆网| 丰满乱子伦码专区| 一本大道久久a久久精品| 国产精品久久久久久精品古装| 国产淫语在线视频| 成人亚洲欧美一区二区av| a级毛片在线看网站| 我的女老师完整版在线观看| 啦啦啦中文免费视频观看日本| 国产 精品1| 亚洲国产精品国产精品| 宅男免费午夜| 九九在线视频观看精品| av免费观看日本| 亚洲精品国产色婷婷电影| 性色avwww在线观看| 中文字幕制服av| 亚洲丝袜综合中文字幕| 女性生殖器流出的白浆| 美女大奶头黄色视频| 五月伊人婷婷丁香| 一级片'在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 日韩精品免费视频一区二区三区 | 久久久久久久久久久久大奶| 亚洲天堂av无毛| 少妇的丰满在线观看| 一二三四中文在线观看免费高清| 欧美xxxx性猛交bbbb| 飞空精品影院首页| 另类亚洲欧美激情| 免费女性裸体啪啪无遮挡网站| 亚洲天堂av无毛| 青春草亚洲视频在线观看| 9191精品国产免费久久| 亚洲精品中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 在线天堂最新版资源| 亚洲色图 男人天堂 中文字幕 | 精品一区二区三区视频在线| 高清毛片免费看| 久久鲁丝午夜福利片| 日韩av不卡免费在线播放| 国产一区二区在线观看av| 久久精品熟女亚洲av麻豆精品| 宅男免费午夜| 国产免费一级a男人的天堂| 国产国语露脸激情在线看| 亚洲av福利一区| 看免费av毛片| 99久国产av精品国产电影| 久久久久久久大尺度免费视频| 少妇的逼水好多| 永久免费av网站大全| 国产一区亚洲一区在线观看| 校园人妻丝袜中文字幕| 一边摸一边做爽爽视频免费| 久久久久久久亚洲中文字幕| 久久久国产精品麻豆| 免费人妻精品一区二区三区视频| 国产成人91sexporn| 久久精品久久精品一区二区三区| 99热全是精品| 久久婷婷青草| 成年美女黄网站色视频大全免费| 看非洲黑人一级黄片| 亚洲内射少妇av| 久久韩国三级中文字幕| 成人二区视频| 18禁国产床啪视频网站| 中文天堂在线官网| 在线观看三级黄色| 国产1区2区3区精品| 久久精品夜色国产| 精品99又大又爽又粗少妇毛片| 国产精品人妻久久久久久| 国产熟女欧美一区二区| 91aial.com中文字幕在线观看| 久久久国产一区二区| 性色avwww在线观看| 国产精品一二三区在线看| 成年女人在线观看亚洲视频| 国产一区二区三区综合在线观看 | 黄色毛片三级朝国网站| 国产成人aa在线观看| 少妇精品久久久久久久| 久久久国产精品麻豆| 国产黄频视频在线观看| 一边亲一边摸免费视频| av国产精品久久久久影院| 超碰97精品在线观看| 亚洲,欧美,日韩| av播播在线观看一区| 中文字幕最新亚洲高清| 亚洲国产色片| 成年女人在线观看亚洲视频| 国产免费一级a男人的天堂| 日韩大片免费观看网站| 日本爱情动作片www.在线观看| 日韩一区二区三区影片| av视频免费观看在线观看| 中文天堂在线官网| 国产一区二区在线观看av| 精品一区二区免费观看| 亚洲 欧美一区二区三区| 麻豆精品久久久久久蜜桃| 国产高清三级在线| 久久久久久久亚洲中文字幕| 国产免费现黄频在线看| 久久久国产精品麻豆| 日韩中字成人| 亚洲av电影在线观看一区二区三区| 亚洲人与动物交配视频| 两个人免费观看高清视频| 国产av码专区亚洲av| av播播在线观看一区| 中文字幕最新亚洲高清| 最近2019中文字幕mv第一页| 国产午夜精品一二区理论片| 国产免费福利视频在线观看| 飞空精品影院首页| 少妇的逼水好多| 中文天堂在线官网| 国产精品欧美亚洲77777| 九色亚洲精品在线播放| 日韩一区二区视频免费看| 国产精品 国内视频| 黑人猛操日本美女一级片| 少妇人妻精品综合一区二区| 国产精品国产av在线观看| 1024视频免费在线观看| 亚洲国产精品一区三区| 婷婷色av中文字幕| 亚洲图色成人| 岛国毛片在线播放| 26uuu在线亚洲综合色| 久久 成人 亚洲| 中文字幕免费在线视频6| 欧美人与善性xxx| 日本与韩国留学比较| 天美传媒精品一区二区| 欧美3d第一页| 亚洲精品美女久久av网站| 一区在线观看完整版| 亚洲,一卡二卡三卡| 久久精品国产a三级三级三级| 国产熟女欧美一区二区| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 国产精品久久久av美女十八| 满18在线观看网站| 日韩av免费高清视频| 国产69精品久久久久777片| 亚洲成色77777| 黑人高潮一二区| 曰老女人黄片| 两个人免费观看高清视频| 黄片无遮挡物在线观看| 黄色怎么调成土黄色| av线在线观看网站| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 免费看光身美女| 欧美bdsm另类| 国产在视频线精品| 国产日韩欧美在线精品| 成人毛片60女人毛片免费| 欧美少妇被猛烈插入视频| 韩国av在线不卡| 亚洲久久久国产精品| 91aial.com中文字幕在线观看| 在线观看美女被高潮喷水网站| 美女视频免费永久观看网站| 日韩,欧美,国产一区二区三区| 欧美bdsm另类| 日韩欧美精品免费久久| 国产成人精品一,二区| 最近最新中文字幕大全免费视频 | 咕卡用的链子| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| 国产av国产精品国产| 日本91视频免费播放| 伊人亚洲综合成人网| 两个人看的免费小视频| 欧美 日韩 精品 国产| 狠狠婷婷综合久久久久久88av| 亚洲成国产人片在线观看| 国产成人aa在线观看| 精品人妻熟女毛片av久久网站| 成人国产av品久久久| 久久久久久久国产电影| 黑丝袜美女国产一区| 一级a做视频免费观看| 久久久久久人妻| 亚洲av日韩在线播放| 最近中文字幕高清免费大全6| 久久精品国产鲁丝片午夜精品| 人体艺术视频欧美日本| 狂野欧美激情性xxxx在线观看| 99热全是精品| 日韩熟女老妇一区二区性免费视频| 男女边吃奶边做爰视频| 国产亚洲精品第一综合不卡 | 久久人人97超碰香蕉20202| av网站免费在线观看视频| 日韩成人av中文字幕在线观看| 天天影视国产精品| 大香蕉久久成人网| 99久国产av精品国产电影| 欧美人与善性xxx| 精品久久蜜臀av无| 亚洲人与动物交配视频| 久久久国产精品麻豆| √禁漫天堂资源中文www| 丝瓜视频免费看黄片| 欧美日韩成人在线一区二区| 青青草视频在线视频观看| 在线 av 中文字幕| 亚洲三级黄色毛片| 久久99一区二区三区| 人妻 亚洲 视频| 69精品国产乱码久久久| av女优亚洲男人天堂| 黑丝袜美女国产一区| 高清不卡的av网站| 成年动漫av网址| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 高清毛片免费看| 超色免费av| 欧美人与性动交α欧美软件 | 免费播放大片免费观看视频在线观看| 日本欧美国产在线视频| 人人妻人人爽人人添夜夜欢视频| 色婷婷av一区二区三区视频| 建设人人有责人人尽责人人享有的| 久久国内精品自在自线图片| h视频一区二区三区| 婷婷色麻豆天堂久久| 欧美 亚洲 国产 日韩一| 免费高清在线观看日韩| 午夜免费鲁丝| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 国产av精品麻豆| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 大话2 男鬼变身卡| 啦啦啦中文免费视频观看日本| 国产xxxxx性猛交| 一区二区av电影网| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av涩爱| 有码 亚洲区| 久久久国产欧美日韩av| 精品福利永久在线观看| av电影中文网址| 高清视频免费观看一区二区| 日本wwww免费看| 丰满饥渴人妻一区二区三| 肉色欧美久久久久久久蜜桃| 亚洲 欧美一区二区三区| 亚洲第一av免费看| 人人妻人人澡人人看| 国产综合精华液| 纯流量卡能插随身wifi吗| 国产精品国产av在线观看| 亚洲国产av影院在线观看| 精品久久久精品久久久| 久久久精品免费免费高清| 一级毛片 在线播放| 免费观看无遮挡的男女| 日韩在线高清观看一区二区三区| 精品国产乱码久久久久久小说| 卡戴珊不雅视频在线播放| 免费看不卡的av| 91国产中文字幕| 天堂俺去俺来也www色官网| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 国产无遮挡羞羞视频在线观看| 国产在线视频一区二区| 国产一区亚洲一区在线观看| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 在线 av 中文字幕| 欧美xxⅹ黑人| 成人无遮挡网站| 亚洲久久久国产精品| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 国产激情久久老熟女| 亚洲少妇的诱惑av| 日本wwww免费看| 飞空精品影院首页| 日本午夜av视频| 久久99热6这里只有精品| 美女大奶头黄色视频| 丝袜脚勾引网站| 日本-黄色视频高清免费观看| 欧美人与性动交α欧美软件 | 波多野结衣一区麻豆| 在线免费观看不下载黄p国产| 交换朋友夫妻互换小说| 国产 精品1| 欧美精品一区二区大全| 国产在视频线精品| 深夜精品福利| 各种免费的搞黄视频| 韩国精品一区二区三区 | 如日韩欧美国产精品一区二区三区| 午夜福利乱码中文字幕| 成人国产麻豆网| 欧美亚洲日本最大视频资源| 亚洲激情五月婷婷啪啪| 下体分泌物呈黄色| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 18+在线观看网站| √禁漫天堂资源中文www| 日韩视频在线欧美| 亚洲成国产人片在线观看| 少妇 在线观看| 亚洲人成77777在线视频| 高清不卡的av网站| 国产在线免费精品| 国产高清国产精品国产三级| av黄色大香蕉| 亚洲美女黄色视频免费看| 三级国产精品片| 国产精品国产三级专区第一集| 99热6这里只有精品| 男女啪啪激烈高潮av片| 男人爽女人下面视频在线观看| 狠狠婷婷综合久久久久久88av| 午夜福利影视在线免费观看| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 国产av码专区亚洲av| 在线观看美女被高潮喷水网站| 尾随美女入室| 两个人看的免费小视频| 欧美+日韩+精品| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| 久久久久久久精品精品| 人人妻人人爽人人添夜夜欢视频| 美女xxoo啪啪120秒动态图| 国产又色又爽无遮挡免| 国产激情久久老熟女| 乱码一卡2卡4卡精品| 免费在线观看黄色视频的| 久久久久精品性色| 你懂的网址亚洲精品在线观看| 91精品伊人久久大香线蕉| 少妇被粗大的猛进出69影院 | 国产精品女同一区二区软件| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品偷伦视频观看了| 99热全是精品| 91国产中文字幕| 亚洲av综合色区一区| 亚洲天堂av无毛| 中文字幕亚洲精品专区| 成人黄色视频免费在线看| 成人二区视频| 一区在线观看完整版| 午夜精品国产一区二区电影| 人人妻人人澡人人看| 日韩制服丝袜自拍偷拍| 国产一区二区在线观看av| 国产日韩欧美亚洲二区| 我的女老师完整版在线观看| 国产高清三级在线| 啦啦啦在线观看免费高清www| h视频一区二区三区| 男女高潮啪啪啪动态图| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 看免费成人av毛片| av卡一久久| 中文字幕另类日韩欧美亚洲嫩草| 国产精品熟女久久久久浪| av.在线天堂| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡 | 在线观看一区二区三区激情| 国产精品国产三级国产av玫瑰| 少妇精品久久久久久久| 啦啦啦在线观看免费高清www| 亚洲精品久久成人aⅴ小说| 国产精品三级大全| 免费看不卡的av| 色视频在线一区二区三区| 欧美激情极品国产一区二区三区 | 大陆偷拍与自拍| 亚洲国产色片| 日本与韩国留学比较| 国产深夜福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 久久久a久久爽久久v久久| 久久久国产一区二区| 国产不卡av网站在线观看| av天堂久久9| 久久人人爽人人片av| 高清视频免费观看一区二区| 久久综合国产亚洲精品| 久久久欧美国产精品| 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院 | 国产精品嫩草影院av在线观看| 男女下面插进去视频免费观看 | 免费日韩欧美在线观看| 免费高清在线观看日韩| 精品久久久精品久久久| 欧美xxⅹ黑人| 水蜜桃什么品种好| 只有这里有精品99| 国产成人欧美| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 婷婷色av中文字幕| 亚洲欧洲国产日韩| 老女人水多毛片| 欧美精品国产亚洲| av视频免费观看在线观看| 亚洲av电影在线观看一区二区三区| 免费看光身美女| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆| 国产精品熟女久久久久浪| 欧美精品人与动牲交sv欧美| a级毛色黄片| 欧美日韩视频精品一区| 久久久久久人妻| 99久久中文字幕三级久久日本| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 久久狼人影院| 中文字幕最新亚洲高清| 亚洲精品美女久久久久99蜜臀 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲av综合色区一区| 国产精品免费大片| 大陆偷拍与自拍| 成人二区视频| 欧美国产精品一级二级三级| 插逼视频在线观看| 国产无遮挡羞羞视频在线观看| 高清av免费在线| 久久久久久久久久久免费av| 青春草国产在线视频| 啦啦啦在线观看免费高清www| 90打野战视频偷拍视频| 久久99热6这里只有精品| 又粗又硬又长又爽又黄的视频| 亚洲成色77777| 另类精品久久| 精品久久国产蜜桃| 久久国产精品大桥未久av| 国产一级毛片在线| 男女高潮啪啪啪动态图| 久久人妻熟女aⅴ| 天天躁夜夜躁狠狠躁躁| 丰满迷人的少妇在线观看| 国产女主播在线喷水免费视频网站| 成年av动漫网址| 美女xxoo啪啪120秒动态图| 天天操日日干夜夜撸|