• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Efficient Numerical Method for Pricing American Options on Zero-coupon Bonds

    2021-04-26 08:20:30GANXiaotingYIHua
    工程數(shù)學學報 2021年6期

    GAN Xiaoting, YI Hua

    (1. School of Mathematics and Computer Science,Chuxiong Normal University, Chuxiong, Yunnan 675000;2. Department of Mathematics, Jinggangshan University, Ji’an, Jiangxi 343009)

    Abstract: Unlike the European options pricing, the closed-form solution generally does not exist due to the early exercise feature of American options. Hence, numerical approximation methods are normally employed to solve them. Presented in this paper is a new numerical method to price American bond options. To numerically solve the resulting partial differential complementarity problem (PDCP), we develop a class of finite volume method for the spatial discretization, coupled with the stable fully implicit time stepping scheme of the partial differential equation(PDE).Then,the resulting linear complementarity problems (LCPs) are solved by using an effi-cient iterative method,the modulus-based matrix splitting iteration method,where the H+-matrix property of the system matrix guarantees its convergence. Numerical experiments are implemented to verify the accuracy, efficiency and robustness of the new method.

    Keywords: American bond option; finite volume method; linear complementarity problems;modulus-based matrix splitting iteration method

    0 Introduction

    Pricing and hedging of interest rate derivatives, such as bond options, have been increasingly attracting much attention during the last two decades. Unlike a stock derivative, a bond option has a bond as its underlying asset whose price depends on both interest rates and time, hence the valuation of bond options is a very challenging task. For European bond options,it is possible to derive the analytical formulas for their prices directly[?]. While for the American bond options pricing,a so-called early exercise constraint is posed, which makes the pricing problem has no analytical solutions[?].Consequently, the American bond options pricing problems can be formulated as free boundary problems or variational inequality problems, then the efficient and robust numerical methods are usually required[?].

    In general,numerical methods for pricing American options consist two tasks which are the discretization of the underlying PDE and the solutions of the resulted large sparse LCP.In the last twenty years,numerical solutions of the American bond options have been studied by various approximation techniques,for instance,lattice method[?],full-implicit and implicit-explicit finite difference methods[?], a direct discrete-time approach[?],explicit finite difference method[?],finite volume method combined with the Brennan-Schwartz algorithm and the penalty method[8–9], finite element method[10–11],two-GJ approach[?], spectral method[?], fitted finite volume method[?,?,?,?], etc. Compared with other aforementioned methods,the finite volume method usually possesses a special feature of local conservation of the numerical fluxes, and has been gaining popularity. In this work, we adopt the accurate and stable finite volume scheme. On the other hand,much attention has been paid on the numerical solutions of the large sparse LCP, for instance, multisplitting iteration methods[?], projected relaxation methods[?],penalty methods[?,?]. Recently, the modulus-based matrix splitting iteration methods for solving LCP studied by Bai have attracted a great deal of attention for the good performance in actual computation[?]. By transforming the original idea in [?] as an implicit fixed-point equation based on a splitting of the system matrixA,these methods not only provide a general framework for the modified method[?]and nonstationary extrapolated modulus algorithms[?], but also yields a series of modulus-based relaxation methods. For more recent survey on modulus-based matrix splitting iteration methods,we refer the reader to [?,?,?,?,?] and the references therein.

    Motivated by the modulus-based matrix splitting iteration methods for LCP, the modulus-based successive overrelaxation (MSOR) method combined with the finite difference method and finite volume method has been extended for pricing Black-Scholes American options[?]and American jump-diffusion options[?], respectively. Based on these results, we derive a class of finite volume scheme combined with the modulusbased matrix splitting iteration method to price American options on a zero-coupon bond in this paper. We apply a finite volume scheme in space, along with the fully implicit scheme in time. And then,the modulus-based matrix splitting iteration method is used to solve the resulting large sparse LCP. We will also show that theH+-matrix property of the system matrix guarantees its convergence. Numerical experiments verify that the proposed methods are efficient and robust.

    The rest of this paper is organized as follows. In section 1, American option on a zero-coupon bond model is briefly reviewed. Then, the finite volume discretization and some theoretical analyses are presented in section 2. In section 3, we introduce the modulus-based matrix splitting iteration method and investigate its convergence for the LCP. Numerical experiments are reported in section 4, and section 5 provides a brief conclusion.

    1 Mathematical model for American bond option

    In this section,we briefly describe the mathematical model for pricing American put option on a zero-coupon bond. We assume that the short term interest rate (denoted by ‘r’) structure is governed by the Cox-Ingrosll-Ross (CIR) model, i.e.,ris governed by the following mean-reverting version of the square-root process

    where dWis the increment of a Wiener process,θis the long term level of the short rate,κ >0 stands for the reversion speed,σ2ris the variance withσ >0. In [?], it has been shown that the priceP(r,t,s) of a pure discount bond with face value $1 at its maturity datesis given as follows

    andζis the market risk premium. At the maturity dates, the price of a pure discount bond equals to its face value, i.e.,

    LetV(r,t) be the value of an European put bond option with striking priceK,where the holder can receive a given payoffΛ(r,t) at the expiry dateT. Introducing a time-reverse transformationτ=T-t, then the valueV(r,τ) can be governed by the following PDE

    2 The finite volume method

    2.1 Semi-discrete finite volume scheme

    The semi-discrete finite volume scheme for problem (??) is: findVh=Vh(·,τ)∈Sh(0≤τ ≤T) such that

    Summarizing (??)~(??), we conclude that S has non-positive off-diagonal and positive diagonal entries, and is strictly diagonally dominant. Hence, the semi-discrete matrix S is anH+-matrix.

    2.2 Full discretization finite volume scheme

    Now,we consider the time discretization of (??). Letτn=nΔτforn=0,1,··· ,N,whereNis a positive integer and Δτ=T/N. For simplicity,we apply the fully implicit scheme to (??), yields

    where I represents an (J-1)×(J-1) unit matrix.

    We comment that in (??), the Dirichlet boundary conditions (??) atr= 0 andr=Rhave been incorporated. Also, the initial condition is incorporated as the payofffunction, i.e., V0=Λ. The vectorΛcontains the values of the payofffunctionΛ(r,0)at the grid points.

    For the fully implicit scheme (??), the stability result is given as follows.

    Theorem 2 The fully implicit finite volume scheme (??) is stable, i.e.

    which then results in(??). Hence the fully implicit finite volume scheme(??)is stable.

    The following corollary can be obtained from Theorem 1 directly.

    then the full discrete matrix I+ΔτS in (??) is anH+-matrix.

    Remark 1 From the proof of Theorem 1, it is worth noting that both S and I+ΔτS areM-matrices under the assumption(??),which implies that the fully discretized system (??) satisfies the discrete maximum principle and thus the above discretization is monotone. This guarantees that an important property in option pricing theory,i.e.,the discrete arbitrage inequality holds.

    The monotonicity of the fully implicit scheme(??)is given in the following theorem.

    2.3 Linear complementarity problem

    In (??), we let

    Then the space and time discretization of the American bond option model (??) leads

    where the early exercise constraints are set to be zero instead of the payofffunction.For convenience, (??) is abbreviated as LCP(q,A).

    A number of efficient iteration methods have been proposed for solving LCP, for instance, penalty methods[?], multisplitting iteration methods[?], projected relaxation methods[?]and modulus-based matrix splitting iteration methods[?]. In this paper,we apply the modulus-based successive overrelaxation and accelerated overrelaxation iteration methods developed in [?] for the solution of the LCP(q,A) (??).

    3 Modulus-based matrix splitting iteration method

    In this section, for the solutions of the LCPs coming from the finite volume discretization of American bond options (??), we discuss an efficient numerical method in detail, i.e., the modulus-based matrix splitting iteration method. The following theorem implies that the LCP(q,A) (??) is equivalent to a fixed-point problem.

    Theorem 4[?]LetA=M-Nbe a splitting of the matrixA ∈Rn×n,Ω1andΩ2ben×nnonnegative diagonal matrices, andΩandΓben×npositive diagonal matrices such thatΩ=Ω1+Ω2. For the LCP(q,A), the following statements hold:

    1) If (w,z) is a solution of LCP(q,A), thenx= (Γ-1z-Ω-1w)/2 satisfies the implicit fixed-point equation

    is a solution of the LCP(q,A).

    Now, the MSOR and MAOR algorithms are described as follows.

    Algorithm 1 MSOR method

    1.Choose x, Ω, α, tol, maxit;2.For it=1,2,··· ,maxit 3.z =|x|+x;4.b=[(1-α)D+αU]x+(Ω-αA)|x|-αq;5.Res=‖min(Az+q,z)‖2;6.If Res <tol 7.break;8.End 9.Solve (D+Ω-αL)x=b;10.End For

    Algorithm 2 MAOR method

    1.Choose x, Ω, α, β, tol, maxit;2.For it=1,2,··· ,maxit 3.z =|x|+x;4.b=[(1-α)D+(α-β)L+αU]x+(Ω-αA)|x|-αq;5.Res=‖min(Az+q,z)‖2;6.If Res <tol 7.break;8.End 9.Solve (D+Ω-βL)x=b;10.End For

    Convergence conditions for the MSOR and MAOR methods are provided in the following theorem when the system matrix is anH+-matrix.

    4 Numerical experiments

    In this section, we present some numerical results to demonstrate the performance and convergence of the new numerical method.

    For a fair comparison of different methods, in all the following experiments, the stopping criterion is

    Then, the numerical order of convergence is defined by

    Further, for comparison, we also consider the projected successive overrelaxation iterative method(PSOR)[?]and penalty method for LCP,which the relaxation factorωin PSOR is chosen by minimizing the number of iteration steps,and the penalty method approach along with the fully implicit finite volume scheme to (??) is as follows

    forn= 0,1,··· ,N-1, with V0being the given initial conditionΛ, P(Vn+1) is a(J-1)×(J-1) diagonal matrix with

    whereγis the penalty parameter.

    Following[?,?],to solve the nonlinear algebraic system(??)effectively,we propose an iterative method at each time step as follows.

    Algorithm 3 Iterative method for the numerical scheme (??)

    1. Let n=0.2. Set l=0, ^V0 =Vn.3. Solve[I+ΔτS+ΔτP(^Vl)]^Vl+1 =Vn+ΔτP(^Vl)Λ+ΔτF,|^Vl+1 4. If max i -^Vl i|i |) <tolerance, then stop; Else l:=l+1 and go to Step 3.5. Set Vn+1 = ^Vl,n=n+1 and go to Step 2.1≤i≤J-1 max(1,|^Vl+1

    In numerical experiments,the penalty parameterγand the tolerance are set to 104and 10-8in Algorithm 3, respectively. All codes were carried out in Matlab R2015b with 32.00 GB RAM and 3.20 GHz processor.

    4.1 American vanilla put option

    We present numerical results for American put option on zero-coupon bond with the corresponding parameters[?,?,?,?]

    Figure 1 displays the time evolution and the optimal exercise boundaries of the American vanilla put options with different values ofσandR, wheremandnare the respective number of grid steps in ther-direction andτ-direction. And the corresponding Greeks(Delta and Gamma)atτ=Tare displayed in Figure 2. The stability of the proposed method are evident in these figures. Further, the convergence performance of the PSOR, MSOR, MAOR and penalty methods for the LCP resulting from the finite volume discretization are compared. As the analytical solution is unavailable, by using the fully implicit finite volume scheme and the MSOR method, we compute the reference numerical solution based on a fine grid with (m,n)=(6 400,3 200) asR=2 and(m,n) = (4 800,4 800) asR= 3, respectively. Then, the number of average iteration steps (denoted by ‘IT’), elapsed CPU time in seconds (denoted by ‘CPU’) and the relative error (denoted by ‘Error’) are listed in Tables 1~4 with differentσandR. From these tables, we can observe that the accuracy of the numerical solution of the LCP improves as the discretisation grid is refined. Although there are more iteration steps for the MSOR and MAOR methods than the PSOR method, the MSOR and MAOR methods require less CPU time than PSOR and penalty methods, while the MAOR method requires the least CPU time. Finally, Tables 5 and 6 contain the computed ratios by the four methods with differentσandR. From the results in these two tables,we can see that the order of convergence of the fully implicit finite volume scheme is roughly 1 in the discrete maximum norm. This is consistent with the properties of the implicit scheme.

    Figure 1 Surface plots and the optimal exercise boundaries of the American vanilla put option on a zero-coupon bond based on (m,n)=(800,400), using the fully implicit finite volume scheme combined with the MSOR method

    Figure 2 Delta and Gamma values of the American vanilla put option on a zero-coupon bond based on (m,n)=(400,200), using the fully implicit finite volume scheme combined with the MSOR method

    Table 1 Comparison of four methods on different grids with σ =0.5 and R=2 when m=2n

    Table 2 Comparison of four methods on different grids with σ =0.6 and R=2 when m=2n

    Table 3 Comparison of four methods on different grids with σ =0.7 and R=3 when m=n

    Table 4 Comparison of four methods on different grids with σ =0.8 and R=3 when m=n

    Table 5 Rates of convergence with σ =0.5 and R=2 when m=2n

    Table 6 Rates of convergence with σ =0.8 and R=3 when m=n

    4.2 American digital option

    We assume that American digital option has the discontinuous payoff

    In Figure 3, we plot the option value surface, the option value, Delta and Gamma values atτ=T. Obviously,these figures show that the numerical solutions contains no oscillations which implies our method is robust. We also can observe that the MSOR and MAOR methods require less CPU time than the PSOR and penalty methods, and the MAOR method requires the least CPU time in these four numerical methods for LCP from Figure 4. Hence, we should remark that the finite volume method combined with the MAOR method will be very effective for pricing American bond options.

    Figure 3 American digital option on a zero-coupon bond based on (m,n)=(1 200,1 200), using the fully implicit finite volume scheme combined with the MSOR method

    Figure 4 The elapsed CPU time of four methods when m=n

    5 Conclusion

    In this paper,we developed a class of finite volume method for the spatial discretization of the PDE arising from pricing American put option on a zero-coupon bond. The method is coupled with a fully implicit time-stepping scheme. We have shown that the discrete matrix is anH+-matrix under some parameters assumption, and the discretization scheme is stable and monotonic. Due to the early exercise constraint of the American bond options pricing, the modulus-based matrix splitting iteration method has been used to solve the resulting LCPs, and an associated convergence theorem has been established as well. Finally,numerical experiments were performed to demonstrate the convergence, efficiency and usefulness of the new method.

    一夜夜www| 亚洲av美国av| 大香蕉久久成人网| 日本黄色视频三级网站网址 | 国产黄频视频在线观看| 亚洲性夜色夜夜综合| 男女无遮挡免费网站观看| 999久久久国产精品视频| 黄色 视频免费看| 亚洲午夜精品一区,二区,三区| 国产99久久九九免费精品| 久久久久精品国产欧美久久久| 一级片免费观看大全| 国产成人精品久久二区二区91| 大陆偷拍与自拍| 精品人妻熟女毛片av久久网站| 国产欧美日韩一区二区三| 伊人久久大香线蕉亚洲五| 黑人巨大精品欧美一区二区mp4| 亚洲自偷自拍图片 自拍| 国产99久久九九免费精品| 免费在线观看日本一区| 9色porny在线观看| 久久人妻av系列| 国产精品久久电影中文字幕 | 精品久久久久久久毛片微露脸| 久久精品人人爽人人爽视色| 黑丝袜美女国产一区| 露出奶头的视频| 成人亚洲精品一区在线观看| 啦啦啦 在线观看视频| 两个人免费观看高清视频| 国产欧美日韩一区二区三区在线| 国产精品久久久久成人av| av不卡在线播放| 欧美国产精品va在线观看不卡| 色视频在线一区二区三区| 国产在线精品亚洲第一网站| 亚洲精品久久午夜乱码| 最新美女视频免费是黄的| 久久久久久久久免费视频了| 黄色丝袜av网址大全| 99久久国产精品久久久| 国产极品粉嫩免费观看在线| 久久久久久亚洲精品国产蜜桃av| 精品熟女少妇八av免费久了| 日本av免费视频播放| 久久午夜亚洲精品久久| 一边摸一边抽搐一进一小说 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲av电影在线进入| 久久久国产精品麻豆| 精品国产一区二区三区久久久樱花| 俄罗斯特黄特色一大片| 俄罗斯特黄特色一大片| 91av网站免费观看| 久久久久久久精品吃奶| 男女免费视频国产| av网站免费在线观看视频| 亚洲国产欧美一区二区综合| 久久精品91无色码中文字幕| 成人手机av| 欧美精品一区二区免费开放| 国产熟女午夜一区二区三区| 无人区码免费观看不卡 | 天天躁夜夜躁狠狠躁躁| 国产在线一区二区三区精| 丁香六月天网| 亚洲 国产 在线| 丁香六月天网| 1024香蕉在线观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲综合一区二区三区_| 久久中文字幕人妻熟女| 久久中文字幕人妻熟女| 国产成人精品无人区| 日韩大码丰满熟妇| 免费观看a级毛片全部| 国精品久久久久久国模美| 麻豆国产av国片精品| 欧美日韩一级在线毛片| 99久久国产精品久久久| 无人区码免费观看不卡 | 欧美日韩亚洲高清精品| 天天躁夜夜躁狠狠躁躁| 国产又爽黄色视频| 热99久久久久精品小说推荐| 黄片小视频在线播放| 国产精品二区激情视频| 国产精品.久久久| 免费女性裸体啪啪无遮挡网站| 纵有疾风起免费观看全集完整版| 夜夜爽天天搞| 青草久久国产| 一区二区av电影网| 一区二区av电影网| 国产亚洲午夜精品一区二区久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲 欧美一区二区三区| 91精品国产国语对白视频| 欧美精品啪啪一区二区三区| 亚洲成人免费电影在线观看| 美女视频免费永久观看网站| 日本五十路高清| 精品一区二区三卡| 91麻豆精品激情在线观看国产 | 久久精品国产综合久久久| 夜夜骑夜夜射夜夜干| 亚洲一区中文字幕在线| 老司机靠b影院| 国产在线观看jvid| 少妇被粗大的猛进出69影院| videosex国产| 丝袜美腿诱惑在线| 高清毛片免费观看视频网站 | 久久久精品94久久精品| 精品国产乱子伦一区二区三区| 亚洲中文日韩欧美视频| 精品少妇一区二区三区视频日本电影| av线在线观看网站| 91麻豆精品激情在线观看国产 | 黑人巨大精品欧美一区二区mp4| 亚洲伊人色综图| 午夜福利乱码中文字幕| 亚洲中文av在线| 最新的欧美精品一区二区| 老司机午夜十八禁免费视频| 国产激情久久老熟女| 色视频在线一区二区三区| 欧美人与性动交α欧美软件| 黑人巨大精品欧美一区二区mp4| av天堂在线播放| 欧美激情 高清一区二区三区| 性色av乱码一区二区三区2| 亚洲天堂av无毛| 国产男女内射视频| 久久青草综合色| 国产精品1区2区在线观看. | 日韩免费高清中文字幕av| 麻豆成人av在线观看| 日韩制服丝袜自拍偷拍| 久久久精品免费免费高清| 免费高清在线观看日韩| 一级片免费观看大全| 一区二区av电影网| 久久国产精品人妻蜜桃| 我要看黄色一级片免费的| 妹子高潮喷水视频| 久久久国产欧美日韩av| 18禁国产床啪视频网站| 欧美激情高清一区二区三区| av福利片在线| 国产成人欧美在线观看 | 国产亚洲精品av在线| 女同久久另类99精品国产91| 色在线成人网| 麻豆国产97在线/欧美| 天天躁日日操中文字幕| 色视频www国产| 脱女人内裤的视频| av福利片在线观看| 国产av在哪里看| 国产精品免费一区二区三区在线| 性色av乱码一区二区三区2| 99热6这里只有精品| 日韩大尺度精品在线看网址| 精品福利观看| 丁香欧美五月| 久久久久久久精品吃奶| 高清毛片免费观看视频网站| 亚洲精品456在线播放app | 丝袜人妻中文字幕| 久久这里只有精品19| 真实男女啪啪啪动态图| 亚洲专区字幕在线| 999精品在线视频| 精品国产三级普通话版| 国产三级黄色录像| 黄片大片在线免费观看| or卡值多少钱| 亚洲五月婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品99久久久久| 日本成人三级电影网站| 欧美在线黄色| 淫秽高清视频在线观看| 久久久色成人| 高清在线国产一区| 91九色精品人成在线观看| 老汉色∧v一级毛片| 国产91精品成人一区二区三区| 69av精品久久久久久| 无人区码免费观看不卡| 日韩欧美国产在线观看| 欧美日韩精品网址| 无遮挡黄片免费观看| 欧美一区二区国产精品久久精品| 丝袜人妻中文字幕| 欧美中文综合在线视频| 757午夜福利合集在线观看| 人人妻,人人澡人人爽秒播| 国产精品免费一区二区三区在线| 久久天躁狠狠躁夜夜2o2o| 亚洲一区高清亚洲精品| 一区二区三区国产精品乱码| 夜夜看夜夜爽夜夜摸| 一a级毛片在线观看| av视频在线观看入口| 国内精品久久久久久久电影| 制服人妻中文乱码| 国产精品98久久久久久宅男小说| 亚洲国产精品999在线| 美女高潮喷水抽搐中文字幕| 99久久无色码亚洲精品果冻| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| 大型黄色视频在线免费观看| 国产私拍福利视频在线观看| 我要搜黄色片| 国产真实乱freesex| 亚洲精品456在线播放app | 婷婷亚洲欧美| 亚洲精品在线观看二区| 久久香蕉国产精品| 最近在线观看免费完整版| 亚洲人成网站高清观看| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全免费视频| 99久久精品国产亚洲精品| 啦啦啦韩国在线观看视频| 精品国产超薄肉色丝袜足j| 深夜精品福利| 国产亚洲精品久久久com| 国内久久婷婷六月综合欲色啪| 手机成人av网站| 国产成人系列免费观看| 亚洲狠狠婷婷综合久久图片| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 成年版毛片免费区| 91av网一区二区| 欧美成人性av电影在线观看| 99久国产av精品| 亚洲午夜理论影院| 国产精品影院久久| 舔av片在线| 热99re8久久精品国产| 一级毛片女人18水好多| 亚洲中文字幕日韩| 18禁国产床啪视频网站| a级毛片在线看网站| 日本三级黄在线观看| 网址你懂的国产日韩在线| 搡老岳熟女国产| 精品免费久久久久久久清纯| 桃色一区二区三区在线观看| 在线观看舔阴道视频| 国产av在哪里看| 听说在线观看完整版免费高清| 99精品久久久久人妻精品| 久久久久久久久免费视频了| 国产视频一区二区在线看| 久久久成人免费电影| 色精品久久人妻99蜜桃| 国产精品久久电影中文字幕| 日本熟妇午夜| 国产一区在线观看成人免费| 琪琪午夜伦伦电影理论片6080| 精品熟女少妇八av免费久了| 高潮久久久久久久久久久不卡| 日本黄大片高清| 国产黄a三级三级三级人| 香蕉国产在线看| 国产又黄又爽又无遮挡在线| av天堂中文字幕网| 色吧在线观看| 精品一区二区三区视频在线 | 亚洲在线自拍视频| 亚洲熟女毛片儿| 岛国视频午夜一区免费看| 在线观看午夜福利视频| 国产成人啪精品午夜网站| 婷婷精品国产亚洲av| avwww免费| 69av精品久久久久久| 人妻久久中文字幕网| 国产毛片a区久久久久| 亚洲激情在线av| 成人av在线播放网站| 91九色精品人成在线观看| 日韩欧美精品v在线| 亚洲九九香蕉| 欧洲精品卡2卡3卡4卡5卡区| 白带黄色成豆腐渣| 美女午夜性视频免费| 一夜夜www| 性欧美人与动物交配| 国产午夜精品论理片| 欧美在线黄色| 免费搜索国产男女视频| 久久伊人香网站| 国产午夜福利久久久久久| 亚洲熟妇熟女久久| aaaaa片日本免费| 免费在线观看影片大全网站| 日韩欧美三级三区| 久久久国产成人免费| 在线国产一区二区在线| 最好的美女福利视频网| 18禁美女被吸乳视频| 亚洲男人的天堂狠狠| 国产午夜福利久久久久久| 亚洲精品粉嫩美女一区| 国产日本99.免费观看| 搞女人的毛片| 婷婷六月久久综合丁香| 日韩高清综合在线| 国产欧美日韩精品一区二区| 国产av在哪里看| 亚洲五月天丁香| 久久久久久久久免费视频了| 日本免费一区二区三区高清不卡| 国产亚洲欧美在线一区二区| 国产精品美女特级片免费视频播放器 | 女警被强在线播放| 欧美日本视频| 亚洲国产精品999在线| 搡老妇女老女人老熟妇| 熟女少妇亚洲综合色aaa.| 成年女人看的毛片在线观看| 国产成人福利小说| 桃色一区二区三区在线观看| 超碰成人久久| 久久亚洲精品不卡| 男人的好看免费观看在线视频| 国产探花在线观看一区二区| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 精品久久蜜臀av无| www日本在线高清视频| 国产蜜桃级精品一区二区三区| 禁无遮挡网站| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 又大又爽又粗| 亚洲在线观看片| 男女午夜视频在线观看| 色播亚洲综合网| 亚洲天堂国产精品一区在线| 一区二区三区高清视频在线| 制服丝袜大香蕉在线| 在线播放国产精品三级| 全区人妻精品视频| 精品久久久久久久毛片微露脸| www国产在线视频色| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 欧美中文日本在线观看视频| 国产精品亚洲一级av第二区| 90打野战视频偷拍视频| 首页视频小说图片口味搜索| 免费无遮挡裸体视频| 免费高清视频大片| 亚洲人与动物交配视频| 欧美不卡视频在线免费观看| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 亚洲va日本ⅴa欧美va伊人久久| 九九久久精品国产亚洲av麻豆 | 国产成人av激情在线播放| 最好的美女福利视频网| 欧美黑人巨大hd| 夜夜躁狠狠躁天天躁| 久久人人精品亚洲av| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 人人妻人人澡欧美一区二区| 中亚洲国语对白在线视频| 精品国产乱子伦一区二区三区| 色在线成人网| 嫩草影院入口| 亚洲 欧美一区二区三区| 丁香欧美五月| 香蕉国产在线看| 小蜜桃在线观看免费完整版高清| 91av网一区二区| 真人一进一出gif抽搐免费| 欧美绝顶高潮抽搐喷水| 最新中文字幕久久久久 | 亚洲欧美日韩高清在线视频| 亚洲 国产 在线| 亚洲国产精品成人综合色| 精品国产乱子伦一区二区三区| 男人舔奶头视频| 色播亚洲综合网| 99热精品在线国产| 欧美在线黄色| 欧美色视频一区免费| 99国产精品一区二区三区| 97超视频在线观看视频| 麻豆成人午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美一区二区三区在线观看| av女优亚洲男人天堂 | 久久中文字幕一级| 亚洲天堂国产精品一区在线| av中文乱码字幕在线| 亚洲精品久久国产高清桃花| 亚洲无线观看免费| 十八禁网站免费在线| 欧美一级毛片孕妇| 欧美三级亚洲精品| 免费观看人在逋| 一本精品99久久精品77| 日本与韩国留学比较| 香蕉国产在线看| 757午夜福利合集在线观看| 天堂√8在线中文| 国产成人欧美在线观看| 久久香蕉精品热| 国产精品女同一区二区软件 | 亚洲国产欧美网| 丰满人妻一区二区三区视频av | 欧美zozozo另类| 两个人看的免费小视频| 亚洲真实伦在线观看| 午夜精品在线福利| 欧美激情久久久久久爽电影| 久久香蕉国产精品| 熟女少妇亚洲综合色aaa.| 日韩精品青青久久久久久| 99久久无色码亚洲精品果冻| 久久精品国产综合久久久| 宅男免费午夜| 午夜激情欧美在线| 成年版毛片免费区| 国产一区二区激情短视频| 国产高清videossex| 亚洲自拍偷在线| 男人和女人高潮做爰伦理| 免费看光身美女| 99在线人妻在线中文字幕| www.熟女人妻精品国产| 村上凉子中文字幕在线| 免费观看的影片在线观看| 亚洲专区字幕在线| 岛国视频午夜一区免费看| 欧美色欧美亚洲另类二区| 国产黄片美女视频| 国产精品av久久久久免费| 怎么达到女性高潮| 热99在线观看视频| 很黄的视频免费| 老汉色∧v一级毛片| 免费大片18禁| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 午夜福利在线观看吧| 久久精品国产综合久久久| 五月玫瑰六月丁香| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 男人和女人高潮做爰伦理| 手机成人av网站| 91av网站免费观看| 可以在线观看毛片的网站| 国产成年人精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利18| 可以在线观看的亚洲视频| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 无限看片的www在线观看| 琪琪午夜伦伦电影理论片6080| 最新美女视频免费是黄的| 日本 av在线| 少妇的丰满在线观看| 久久精品人妻少妇| 免费观看的影片在线观看| 欧美日韩精品网址| 制服丝袜大香蕉在线| 9191精品国产免费久久| 久久久久久久午夜电影| 精品一区二区三区av网在线观看| 美女大奶头视频| 精品一区二区三区四区五区乱码| 每晚都被弄得嗷嗷叫到高潮| 美女cb高潮喷水在线观看 | 日韩欧美免费精品| 一级毛片高清免费大全| 亚洲av成人av| 久久久精品大字幕| 亚洲美女视频黄频| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 国产视频内射| 97碰自拍视频| 成人av在线播放网站| 欧美日韩黄片免| 99riav亚洲国产免费| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 免费在线观看视频国产中文字幕亚洲| 成在线人永久免费视频| 少妇的逼水好多| 90打野战视频偷拍视频| 国产精品野战在线观看| 天堂动漫精品| 久久热在线av| 久久中文看片网| 久久人妻av系列| 美女黄网站色视频| 日韩欧美国产在线观看| 丰满的人妻完整版| 国产精品永久免费网站| 美女免费视频网站| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 午夜福利在线在线| 亚洲欧美激情综合另类| 97碰自拍视频| 在线观看免费午夜福利视频| 一区二区三区高清视频在线| 久久九九热精品免费| 欧美日韩黄片免| 久久午夜亚洲精品久久| 色哟哟哟哟哟哟| 99精品久久久久人妻精品| 两个人的视频大全免费| 成年人黄色毛片网站| 亚洲一区二区三区色噜噜| 久久九九热精品免费| 999精品在线视频| 精品一区二区三区视频在线 | 国产高潮美女av| 久9热在线精品视频| 亚洲成人久久性| 亚洲国产色片| 国产高潮美女av| 熟女人妻精品中文字幕| 久久久久久人人人人人| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 亚洲成人久久爱视频| 日韩人妻高清精品专区| 18禁黄网站禁片午夜丰满| 国产一区二区三区视频了| 亚洲欧美日韩高清专用| 日本黄大片高清| 国产欧美日韩一区二区精品| 国产高潮美女av| 国产成人aa在线观看| 国产乱人视频| aaaaa片日本免费| 亚洲国产精品999在线| 99热这里只有精品一区 | 18美女黄网站色大片免费观看| 在线a可以看的网站| 在线观看午夜福利视频| 亚洲电影在线观看av| 男人和女人高潮做爰伦理| 久久精品91蜜桃| 精品欧美国产一区二区三| 每晚都被弄得嗷嗷叫到高潮| 国产美女午夜福利| 久久欧美精品欧美久久欧美| aaaaa片日本免费| 91av网一区二区| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 九色国产91popny在线| 国产精品一区二区三区四区久久| 窝窝影院91人妻| 欧美性猛交黑人性爽| 国产成+人综合+亚洲专区| cao死你这个sao货| 精品不卡国产一区二区三区| 成人无遮挡网站| 日本黄色视频三级网站网址| 久久九九热精品免费| 久久久久久人人人人人| 免费在线观看成人毛片| 国产精品久久久av美女十八| 欧美中文综合在线视频| 美女高潮喷水抽搐中文字幕| 国产精品电影一区二区三区| 天堂√8在线中文| 夜夜躁狠狠躁天天躁| 久久99热这里只有精品18| 首页视频小说图片口味搜索| 999久久久精品免费观看国产| 日韩欧美三级三区| 免费在线观看亚洲国产| 欧美绝顶高潮抽搐喷水| 久久久久久久久久黄片| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三| 精品国产乱子伦一区二区三区| 中文字幕人妻丝袜一区二区| 制服人妻中文乱码| 久久中文看片网| 久久国产精品人妻蜜桃| www.999成人在线观看| 看片在线看免费视频| av在线天堂中文字幕| 成人高潮视频无遮挡免费网站| 精品久久久久久久末码| 人妻夜夜爽99麻豆av| 亚洲人成伊人成综合网2020| 亚洲国产看品久久| 最新美女视频免费是黄的| 国产精品日韩av在线免费观看| 超碰成人久久|