• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PIECEWISE CONTINUOUS SOLUTIONS OF INITIAL VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS?

    2016-11-24 12:00:07YujiLIUDepartmentofMathematicsGuangdongUniversityofFinanceandEconomicsGuangzhou510320Chinamailyujiliusohucom

    Yuji LIUDepartment of Mathematics,Guangdong University of Finance and Economics, Guangzhou 510320,China E-mail:yujiliu@sohu.com

    PIECEWISE CONTINUOUS SOLUTIONS OF INITIAL VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS?

    Results on the existence of piecewise continuous solutions for two classes of initial value problems of impulsive singular fractional differential equations are obtained.

    singular fractional differential equation;impulsive effect;piecewise continuous solution;fixed point theorem

    2010 MR Subject Classification92D25;34A37;34K15

    1 Introduction

    Theory of impulsive differential equations describes processes which experience a sudden change of their state at certain moments.Processes with such a character arise naturally and often,for example,phenomena studied in physics,chemical technology,population dynamics, biotechnology and economics.For an introduction of the basic theory of impulsive differential equation,we refer the reader to[17].

    Fractional differential equations were found numerous applications in the field of viscoelasticity,feedback amplifiers,electrical circuits,electro analytical chemistry,fractional multipoles,neuron modelling encompassing different branches of physics,chemistry and biological sciences[18,19].

    In recent years,many authors studied the existence and uniqueness of solutions of the different kinds of initial value problems,two-point boundary value problems or multi-point boundary value problems for the impulsive fractional differential equations on finite intervals see papers[1–7,9–16,2o–34]and the references therein.

    In[9,1o,28,3o],the concept of solutions for fractional differential equations with impulse effects was argued extensively,while the concept presented in these papers could be controversial and deserved a further argument and mending.

    Motivated by[9,1o,28,3o],in this paper,we discuss the existence of piecewise continuous solutions of the following initial value problems of nonlinear singular fractional differential equations with impulse effects

    where

    (a)n is a positive integer and α satisfies n?1<α

    (b)o=to

    that there exist constants k>?α and l≤o with α+k+l?n+1>o and α+l?n+1>o such that|m1(t)|≤(t?ti)k(ti+1?t)lfor all t∈(ti,ti+1](m may be singular at t=ti),

    (d)m2:(o,1)→R satisfies that m2|(ti,ti+1]∈Co(ti,ti+1](s=o,1,2,···,p)and that there exist constants k>?α and l≤o with α+k+l?n+1>o and α+l?n+1>o such that|m2(t)|≤tk(1?t)lfor all t∈(o,1)(m may be singular at t=o,1),

    (e)f,Ij:(o,1)×Rn→R are Caratheodory functions(j=o,1,2,···,n?1).

    A functions x:(o,1]→R is said to be a piecewise continuous solution of(1.1)if x(j)|(ti,ti+1)∈Co(ti,ti+1)(i=o,1,2,···,p),(j=o,1,2,···,n?1)and the limits

    exist and all equations in(1.1)are satisfied.Similarly we can define the piecewise continuous solution of(1.2).

    We establish the existence results of solutions for impulsive singular fractional differential systems(1.1)and(1.2),respectively.Two example are given to illustrate the efficiency of the main theorems.

    The remainder of this paper is as follows:in Section 2,we present preliminary results.In Section 3,the main theorems on the existence of solutions of(1.1)and(1.2)are presented, respectively.

    2 Preliminary Results

    For the convenience of the readers,we present the necessary definitions from the fractional calculus theory.These definitions and results can be found in the monograph[19].For φ∈ L1(o,1),denoteLet the Gamma and beta functions Γ(α)and B(p,q)be defined by

    Definition 2.1(see[19])Let a≥o.The Riemann-Liouville fractional integral of order α>o of a function g:(a,∞)→R is given by

    provided that the right-hand side exists.

    Definition 2.2(see[19])Let a≥o.The Caputo fractional derivative of order α>o of a n-times differentiable function g:(a,∞)→R is given by

    where n?1≤α

    Remark 2.1Let n?1≤μ

    where Ci∈R,i=o,1,2,···,n?1.

    For x∈X,define the norm by

    It is easy to show that X is a real Banach space.

    Remark 2.2Define the matrix Miby

    Then|M|/=o and the inverse of M is denoted by

    Remark 2.3Define the matrix Ni(i=1,2,···,p)by

    By direct computation,we get that

    We know that aj,v,s,o=1 for j=v and aj,v,s,o=o for j/=v.

    Lemma 2.1u∈X is a solution of

    if and only if

    for t∈(ti,ti+1],i=o,1,2,···,p.Furthermore,we have

    ProofSuppose that u is a solution of(2.3).Thenis continuous and the limitsexist.Then by Remark 2.1,we get that there exists cj,i∈R (i=o,1,2,···,p,j=o,1,2,···,n?1)such that

    t∈(ti,ti+1],i=o,1,2,···,p,j=1,2,···,n?1.

    We know for t∈(ti,ti+1](using(c))that

    By Δu(j)(ti)=Ij,i(i=1,2,···,p,j=o,1,2,···,n?1),we get that

    where Ni,Biwere defined by Remark 2.3.Using Remark 2.3,we have that

    Hence we get for j=o,1,2,···,n?1 and i=1,2,···,p that

    Substituting cj,i(j=o,1,2,···,n?1,i=o,1,2,···,p)into(2.6),we get(2.4)and(2.5).Now we prove that x∈X.It is easy to see that x(j)|(ti,ti+1)is continuous and the limitsexists for all j=o,1,2,···,n?1 and i=1,2,···,p+1.exists for all j=o,1,2,···,n?1 and i=o,1,2,···,p. So x∈X.

    Now suppose that x satisfies(2.4).It is easy to show that x∈X and x is a solution of (2.3).The proof is completed.

    Lemma 2.2x∈X is a solution of

    for i=o,1,2,···,p. ProofSuppose that u is a solution of(2.7).One sees from Remark 2.1 thatu(t)= m2(t)implies that there exist constants cj,o∈R such that

    Now we will prove by using the mathematical induction method that there exist constants cj,i∈R such that

    From(2.9),we see that(2.1o)holds for i=o.Now,we suppose that(2.1o)holds for i= o,1,···,s(s≤p?1).We will prove that

    By mathematical induction method,we have that(2.1o)holds for all i=o,1,2,···,p. By(2.1o),we get that

    where i=o,1,2,···,p,v=o,1,2,···,n?1.By(d)we have

    By Δu(v)(ti)=Iv,i(v=o,1,2,···,n?1,i=1,2,···,p)and

    That is as follows:

    It follows from Remark 2.2 for i=1,2,···,p that

    Hence we get for i=o,1,2,···,p and v=o,1,2,···,n?1 that

    Substituting cj,iinto(2.1o),we get for i=o,1,2,···,p thatThis is just(2.8).We can prove that u∈X easily.On the other hand,if u satisfies(2.8),it is easy to show that u∈X and u is a solution of(2.7).The proof is completed.□

    Definition 2.3We call K:(o,1)×Rn→R a Caratheodory function if it satisfies the followings:

    (i)t→K(t,x1,···,xn)is measurable on(ti,ti+1](i=o,1,2,···,p),respectively,

    (ii)(x,y)→K(t,x1,···,xn)is continuous on Rnfor all most all t∈(o,1),

    (iii)for each r>o there exists a constant Mr>o such that

    Now,we define the operator T1,T2on X by

    Remark 2.4By Lemma 2.1,x∈X is a solution of(1.1)if and only if x∈X is a fixed point of the operator T1.By Lemma 2.2,x∈X is a solution of(1.2)if and only if x∈X is a fixed point of the operator T2.

    Lemma 2.3Suppose that(a)–(e)hold.Then both T1and T2:X→X are well defined and completely continuous.

    ProofFirst,we prove that T1is well defined;second,we prove that T1is continuous and finally,we prove that T1is compact.So T1is completely continuous.Similarly we can prove that T2is well defined and completely continuous.Thus the proof is divided into three steps.

    Step(i)Prove that T:X→X is well defined.

    For x∈X,we have‖x‖=r>o.From f,Ijare Caratheodory functions,then there exist constants Mf≥o,MI≥o such that

    By the definition of T1and Lemma 2.1,we have T1x∈X.Then T1:X→X is well defined.

    Step(ii)We prove that T1is continuous.Let xκ∈X with xκ→xoas n→∞.We will show that T1xκ→T1xoas κ→∞.

    In fact,we have r>o such that‖xκ‖≤r>o(κ=o,1,2,···).Since f,Ijare Caratheodory functions,then there exists Mf≥o,MI≥o such that(2.14)holds with x=xκ.By

    Hence for v=o,1,2,···,n?1,we have

    It is easy to show that{(T1xκ)(v)}is uniformly bounded.From the Lebesgue dominated convergence theorem,we get that both‖T1xκ?T1xo‖→o as κ→∞.It follows that T1is continuous.

    Step(iii)We prove that T1is compact,i.e.,for each nonempty open bounded subset ? of X,prove thatis uniformly bounded, equi-continuous on each interval(ti,ti+1](i=o,1,2,···,p).

    Let ? be a bounded open subset of X.We have r>o such that then‖x‖≤r for all x∈?.Since f,Ijare Caratheodory functions,then there exists Mf≥o,MI≥o such that (2.14)holds.

    Sub-step(iii1)Prove that is uniformly bounded.

    This follows similarly from the method used in Step(ii)and the details are omitted.

    Sub-step(iii2)Prove that T1(?)is equi-continuous on each interval(ti,ti+1](i=o,1,2, ···,p).

    3 Existence of Solutions

    In this section we shall establish the existence of at least one solution of(1.1)and(1.2) respectively.

    For easy referencing,we list the conditions needed as follows:

    (A)there exist numbers σ≥o(i=1,2,···,n,j=1,···,m)with

    σi,j(s=1,2,···,m)and bounded function ψ:(o,1)→R,numbers λi(i=1,2,···,p),and numbers aj≥o,bj≥o(j=1,2,···,m)such that

    Theorem 3.1Suppose that(a)–(e)and(A)σhold,f,Ijare Caratheodory functions. Then,system(1.1)has at least one solution if

    (i)σ=max{σs:s=1,2,···,m}>1 and

    (ii)σ=max{σs:s=1,2,···,m}∈[o,1),or

    (iii)σ=max{σs:s=1,2,···,m}=1 and Mo<1.

    ProofLet the Banach space X and the operator T1be defined as in Section 2.We know that

    (i)T1:X→X is well defined;

    (ii)For x∈X is a fixed point of T1if and only if x∈X is a solution of(1.1);

    (iii)T1:X→X is completely continuous.

    It is easy to show from Ψ∈X.Let r>o and define Mr={x∈X:‖x?Ψ‖≤r}. For x∈Mr,we find

    Then for t∈(ti,ti+1]and v=o,1,2,···,n?1 we get that

    Then,for x∈Mrowe have

    Hence,we have a bounded subset Mro?X such that T1(Mro)?Mro.Then,Schauder fixed point theorem implies that T1has a fixed point x∈Mro.Hence,x is a bounded solution of BVP(1.1).

    Case(ii)σ∈[o,1).Choose r>o sufficiently large such that Mo(r+‖Ψ‖)σ≤r.Then, for x∈Mrwe have

    So T(Mr)?Mrand Schauder fixed point theorem implies that T1has a fixed point x∈Mr. This x is a bounded solution of BVP(1.1).

    From above discussion,the proof is complete.

    Remark 3.1Suppose that(a)–(e)hold and f,Ijare Caratheodory functions.It follows from Theorem 3.1 that(1.1)has at least one solution if f and Ijare bounded.

    Now,let

    Theorem 3.2Suppose that(a)–(e)and(B)σhold,f,Ijare Caratheodory functions. Then,system(1.2)has at least one solution if

    (i)σ=max{σs:s=1,2,···,m}>1 and

    (ii)σ=max{σs:s=1,2,···,m}∈(o,1),or

    (iii)σ=max{σs:s=1,2,···,m}=1 and No<1.

    ProofLet the Banach space X and the operator T2be defined as in Section 2.We know that

    (i)T2:X→X is well defined;

    (ii)For x∈X is a fixed point of T2if and only if x∈X is a solution of(1.2);

    (iii)T2:X→X is completely continuous.

    It is easy to show from Ψ∈X.Let r>o and define Mr={x∈X:‖x?Ψ‖≤r}.For x∈Mr,we have(3.15).Then for t∈(ti,ti+1]and v=o,1,2,···,n?1,we get that

    The remainder of the proof is similar to that of the proof of Theorem 3.1 and is omitted.

    Remark 3.2Suppose that(a)–(e)hold and f,Ijare Caratheodory functions.It follows from Theorem 3.2 that(1.2)has at least one solution if f and Ijare bounded.

    References

    [1]Agarwal R P,Benchhra M,Slimani B A.Existence results for differential equations with fractional order and impulses.Memoirs Differ Equ Math Phys,2008,44:1–21

    [2]Anguraj A,Karthikeyan P,Rivero M,Trujillo J J.On new existence results for fractional integro-differential equations with impulsive and integral conditions.Comput Math Appl,2014,66:2587–2594

    [3]Ahmad B,Nieto J J.Existence of solutions for impulsive anti-periodic boundary value problems of fractional order.Taiwan J Math,2011,15:981–993

    [4]Ahmad B,Sivasundaram S.Existence of solutions for impulsive integral boundary value problems involving fractional differential equations.Nonlinear Anal,Hybrid Syst,2009,3:251–258

    [5]Ahmad B,Sivasundaram S.Existence of solutions for impulsive integral boundary value problems of fractional order.Nonlinear Anal,Hybrid Syst,2010,4:134–141

    [6]Ahmad B,Wang G.A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations.Comput Math Appl,2011,62:1341–1349

    [7]Bai C.Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative.J Math Anal Appl,2011,384:211–231

    [8]Babakhani A.Existence and uniqueness of solution for class of fractional order differential equations on an unbounded domain.Adv Differ Equ,2012,2012:41

    [9]Feckan M,Wang J,Zhou Y.On the concept and existence of solution for impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2012,17:3050–3060

    [10]Feckan M,Zhou Y,Wang J.Response to“Comments on the concept of existence of solution for impulsive fractional differential equations[Commun Nonlinear Sci Numer Simul 2014;19:401-3.]”.Commun Nonlinear Sci Numer Simul,2014,DOI:http://dx.doi.org/10.1016/j.cnsns.2014.04.014

    [11]Guo T,Jiang W.Impulsive problems for fractional differential equations with boundary value conditions. Comput Math Appl,2012,64:3281–3291

    [12]Hilfer R.Applications of Fractional Calculus in Physics.River Edge,NJ:World Scientific Publishing Co Inc,2000

    [13]Henderson J,Ouahab A.Impulsive differential inclusions with fractional order.Comput Math Appl,2010, 59:1191–1226

    [14]Ke T,Luo M.Existence and uniqueness of solutions of initial value problems for nonlinear langevin equation involving two fractional orders.Commun Nonlinear Sci Numer Simulat,2014,19:1661–1668

    [15]Li X,Chen F,Li X.Generalized anti-periodic boundary value problems of impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2013,18:28–41

    [16]Liu Z,Li X.Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations.Commun Nonlinear Sci Numer Simulat,2013,18:1362–1373

    [17]Lakshmikantham V V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations.Singapore: World Scientific,1989

    [18]Podlubny I.Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal,2002,5(4):367–386

    [19]Podlubny I.Fractional Differential Equations.London:Academic Press,1999

    [20]Rashid M H M,Al-Omari A.Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation.Commun Nonlinear Sci Numer Simul,2011,16:3493–3503

    [21]Rehman a M,Eloe P W.Existence and uniqueness of solutions for impulsive fractional differential equations. Appl Math Comput,2013,224:422–431

    [22]Stamova I.Global stability of impulsive fractional differential equations.Appl Math Comput,2014,237: 605–612

    [23]Su X,Chen Y,Lai Y.The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal,2011,74:2003–2011

    [38]Stamova I,Stamov G.Stability analysis of impulsive functional systems of fractional order.Commun Nonlinear Sci Numer Simul,2014,19:702–709

    [25]Tian Y,Bai Z.Existence results for three-point impulsive integral boundary value problems involving fractinal differential equations.Comput Math Appl,2010,59:2601–2609

    [26]Wang G,Ahmad B,Zhang L.Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order.Nonlinear Anal,2011,74:792–804

    [27]Wang G,Ahmad B,Zhang L.Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions.Comput Math Appl,2011,62:1389–1397

    [28]Wang G,Ahmad B,Zhang L,Nieto J J.Comments on the concept of existence of solution for impulsive fractional differential equations.Commun Nonlinear Sci Numer Simul,2014,19:401–403

    [29]Wang J,Zhou Y,Feckan M.Nonlinear impulsive problems for fractional differential equations and Ulam stability.Comput Math Appl,2012,64:3389–3405

    [30]Wang J,Zhou Y,Feckan M.On recent developments in the theory of boundary value problems for impulsive fractional differential equations.Comput Math Appl,2012,64:3008–3020

    [31]Wang J,Zhou Y.A class of nonlinear differential equations with fractional integrable impulses.Commun Nonlinear Sci Numer Simulat,2014,19:3001–3010

    [32]Wang X.Impulsive boundary value problem for nonlinear differential equations of fractional order.Comput Math Appl,2011,62:2383–2391

    [33]Zhou J,Feng M.Green’s function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application.Boundary Value Problems,2014,2014:69

    [34]Zhang X,Zhu C,Wu Z.Solvability for a coupled system of fractional differential equations with impulses at resonance.Boundary Value Problems,2013,2013:80

    [35]Liu Y,Ahmad B.A study of impulsive multiterm fractional differential equations with single and multiple base points and applications.Scientific World J,2014,2014:Article ID 194346

    [36]Liu Y,Nieto J J,Otero-Zarraquinos O.Existence results for a coupled system of nonlinear singular fractional differential equations with impulse effects.Math Problems Engin,2013,2013:Article ID 498781

    [37]Ahmad B,Nieto J J.Existence of solutions for impulsive anti-periodic boundary value problems of fractional order.Taiwan J Math,2011,15:981–993

    [38]Stamova I,Stamov G.Stability analysis of impulsive functional systems of fractional order.Commun Nonlinear Sci Numer Simul,2014,19:702–709

    ?July 25,2014.Supported by the Natural Science Foundation of Guangdong Province (S2011010001900)and the Guangdong Higher Education Foundation for High-Level Talents.

    久久精品久久久久久噜噜老黄| 又爽又黄无遮挡网站| 国产成人精品一,二区| 亚洲,欧美,日韩| av.在线天堂| 3wmmmm亚洲av在线观看| 国产精品三级大全| 在线免费十八禁| 精品99又大又爽又粗少妇毛片| 久久这里有精品视频免费| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人| 丝袜脚勾引网站| 直男gayav资源| 不卡视频在线观看欧美| 国产黄色免费在线视频| 国产亚洲午夜精品一区二区久久 | 大话2 男鬼变身卡| 菩萨蛮人人尽说江南好唐韦庄| 在现免费观看毛片| 狠狠精品人妻久久久久久综合| 18+在线观看网站| 亚洲欧美一区二区三区黑人 | 街头女战士在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91 | 狂野欧美激情性xxxx在线观看| 亚洲av免费高清在线观看| 亚洲美女搞黄在线观看| 看免费成人av毛片| 少妇被粗大猛烈的视频| 久久97久久精品| 国产成人aa在线观看| av在线老鸭窝| 欧美xxⅹ黑人| 中国三级夫妇交换| 午夜福利视频1000在线观看| 亚洲天堂国产精品一区在线| 免费av不卡在线播放| 亚洲熟女精品中文字幕| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 午夜免费男女啪啪视频观看| 国产爱豆传媒在线观看| 久久久久久国产a免费观看| 2021少妇久久久久久久久久久| 啦啦啦啦在线视频资源| av线在线观看网站| 久久女婷五月综合色啪小说 | 男男h啪啪无遮挡| 国产视频内射| 久久久欧美国产精品| 国产午夜福利久久久久久| 久久精品国产自在天天线| 舔av片在线| 中文乱码字字幕精品一区二区三区| 别揉我奶头 嗯啊视频| 亚洲性久久影院| 在线观看av片永久免费下载| 最近最新中文字幕免费大全7| 国产综合精华液| 少妇人妻精品综合一区二区| 国产在线男女| 22中文网久久字幕| 欧美另类一区| 韩国高清视频一区二区三区| 日韩欧美一区视频在线观看 | 欧美97在线视频| 国产黄片美女视频| 搡女人真爽免费视频火全软件| 校园人妻丝袜中文字幕| 美女视频免费永久观看网站| 免费看光身美女| 久久久午夜欧美精品| 国产成人精品婷婷| 日本一二三区视频观看| 中文字幕人妻熟人妻熟丝袜美| 国产毛片a区久久久久| 日本与韩国留学比较| av一本久久久久| 国产片特级美女逼逼视频| av在线老鸭窝| av网站免费在线观看视频| 国产成人精品婷婷| 亚洲性久久影院| 人妻一区二区av| 国产熟女欧美一区二区| 国产亚洲5aaaaa淫片| 最新中文字幕久久久久| 我的女老师完整版在线观看| 草草在线视频免费看| 大码成人一级视频| 国产av不卡久久| 黑人高潮一二区| 大码成人一级视频| 狂野欧美激情性xxxx在线观看| 久久久精品94久久精品| 超碰av人人做人人爽久久| 丝袜美腿在线中文| 男插女下体视频免费在线播放| 精品人妻熟女av久视频| 下体分泌物呈黄色| 天堂俺去俺来也www色官网| 久久精品国产a三级三级三级| kizo精华| 男女啪啪激烈高潮av片| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 国产爱豆传媒在线观看| 青春草亚洲视频在线观看| 久久99热6这里只有精品| 欧美激情国产日韩精品一区| 国产成人免费观看mmmm| 最近的中文字幕免费完整| 亚洲精品一二三| 亚洲真实伦在线观看| 超碰av人人做人人爽久久| 亚洲av不卡在线观看| 亚洲色图av天堂| 国产成人免费观看mmmm| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 少妇人妻一区二区三区视频| 中文字幕av成人在线电影| 欧美另类一区| 国产精品久久久久久精品古装| 精品酒店卫生间| 少妇人妻久久综合中文| 精品人妻熟女av久视频| 国产精品一区二区三区四区免费观看| 欧美精品国产亚洲| 国产精品久久久久久精品古装| 看十八女毛片水多多多| xxx大片免费视频| 国产黄色视频一区二区在线观看| 国产伦理片在线播放av一区| 高清毛片免费看| 肉色欧美久久久久久久蜜桃 | av在线老鸭窝| 国产精品偷伦视频观看了| 国精品久久久久久国模美| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| a级毛片免费高清观看在线播放| 三级国产精品片| 天天一区二区日本电影三级| 国产男人的电影天堂91| 亚洲成人久久爱视频| 久久久欧美国产精品| 97人妻精品一区二区三区麻豆| 午夜福利视频精品| 午夜视频国产福利| 亚洲欧洲国产日韩| 午夜爱爱视频在线播放| 国产黄片美女视频| av一本久久久久| 特大巨黑吊av在线直播| 成人毛片a级毛片在线播放| 久久ye,这里只有精品| 久久久久久久大尺度免费视频| 老司机影院毛片| 又粗又硬又长又爽又黄的视频| 少妇 在线观看| 亚洲最大成人中文| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷久久久亚洲欧美| 搞女人的毛片| 各种免费的搞黄视频| 亚洲av一区综合| 亚洲成人一二三区av| 日韩欧美一区视频在线观看 | 看免费成人av毛片| 色吧在线观看| 女人被狂操c到高潮| 亚洲经典国产精华液单| 97在线视频观看| 免费看av在线观看网站| 精品熟女少妇av免费看| 视频中文字幕在线观看| 国产色婷婷99| 国产精品福利在线免费观看| 卡戴珊不雅视频在线播放| 日本三级黄在线观看| 午夜福利网站1000一区二区三区| 久久影院123| 精品99又大又爽又粗少妇毛片| 成年女人看的毛片在线观看| 噜噜噜噜噜久久久久久91| 成人亚洲精品av一区二区| 欧美三级亚洲精品| 久久97久久精品| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 婷婷色综合www| 国产精品国产av在线观看| 精品国产三级普通话版| 久久精品国产亚洲网站| 免费观看在线日韩| 欧美zozozo另类| 日韩视频在线欧美| 久久久久精品久久久久真实原创| 一级黄片播放器| 久久久久久久久久久免费av| 国产成人精品婷婷| 久久久久久久久久久丰满| 天天躁夜夜躁狠狠久久av| 69av精品久久久久久| 成人综合一区亚洲| 亚洲欧洲国产日韩| 啦啦啦啦在线视频资源| 欧美精品人与动牲交sv欧美| 欧美成人一区二区免费高清观看| 熟女av电影| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 精品人妻偷拍中文字幕| 能在线免费看毛片的网站| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 国产视频内射| 欧美精品人与动牲交sv欧美| 久久久久九九精品影院| 麻豆成人av视频| 日韩大片免费观看网站| 国产亚洲一区二区精品| av网站免费在线观看视频| 免费观看无遮挡的男女| 亚洲无线观看免费| 日韩av免费高清视频| 亚洲人成网站在线播| 中文天堂在线官网| 最近手机中文字幕大全| 九草在线视频观看| 国产精品精品国产色婷婷| 久久久a久久爽久久v久久| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 亚洲最大成人中文| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 午夜福利在线在线| 国产 精品1| 夫妻性生交免费视频一级片| 国产黄片视频在线免费观看| kizo精华| 各种免费的搞黄视频| 国产精品久久久久久久久免| 亚洲一区二区三区欧美精品 | 欧美精品人与动牲交sv欧美| 日韩免费高清中文字幕av| 国产精品99久久久久久久久| 精品一区在线观看国产| 男女那种视频在线观看| 日韩欧美精品v在线| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 国产亚洲5aaaaa淫片| 99久久精品国产国产毛片| 亚洲国产日韩一区二区| 欧美性猛交╳xxx乱大交人| 免费黄频网站在线观看国产| 少妇人妻 视频| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久成人| 国产精品三级大全| 成人美女网站在线观看视频| 一级毛片 在线播放| 蜜桃亚洲精品一区二区三区| 亚洲精品aⅴ在线观看| 嫩草影院入口| 高清视频免费观看一区二区| 亚洲内射少妇av| 伊人久久国产一区二区| 免费播放大片免费观看视频在线观看| 韩国av在线不卡| 国产成人精品久久久久久| 欧美zozozo另类| 欧美高清成人免费视频www| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 国产在视频线精品| av福利片在线观看| 一个人观看的视频www高清免费观看| 97超碰精品成人国产| 各种免费的搞黄视频| 免费黄网站久久成人精品| 交换朋友夫妻互换小说| 国产亚洲av嫩草精品影院| 国产成人freesex在线| a级毛片免费高清观看在线播放| 最近最新中文字幕大全电影3| 一本色道久久久久久精品综合| 国产v大片淫在线免费观看| 亚洲av国产av综合av卡| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 黄色怎么调成土黄色| a级一级毛片免费在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产v大片淫在线免费观看| 神马国产精品三级电影在线观看| 乱系列少妇在线播放| 九九在线视频观看精品| 国产精品久久久久久av不卡| 看免费成人av毛片| 综合色丁香网| 久久久久久久久久成人| 久久综合国产亚洲精品| 欧美日本视频| 精品一区在线观看国产| 午夜免费观看性视频| av免费在线看不卡| 亚洲av在线观看美女高潮| 国产 一区精品| 久久久久精品性色| 亚洲av日韩在线播放| 一区二区三区免费毛片| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 国产男人的电影天堂91| 又黄又爽又刺激的免费视频.| 99热国产这里只有精品6| 日韩一区二区三区影片| 日日啪夜夜撸| 午夜激情福利司机影院| av网站免费在线观看视频| 免费观看的影片在线观看| 国产精品一区二区在线观看99| 天美传媒精品一区二区| 欧美人与善性xxx| a级毛片免费高清观看在线播放| 夜夜爽夜夜爽视频| 国产欧美另类精品又又久久亚洲欧美| av在线app专区| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 中文欧美无线码| 国产美女午夜福利| 久久久久久九九精品二区国产| 春色校园在线视频观看| 免费观看av网站的网址| 婷婷色综合www| 国产精品一区二区在线观看99| 最近中文字幕高清免费大全6| 日日摸夜夜添夜夜添av毛片| 舔av片在线| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| 小蜜桃在线观看免费完整版高清| 国产亚洲午夜精品一区二区久久 | 我要看日韩黄色一级片| 少妇的逼水好多| 国产男人的电影天堂91| 联通29元200g的流量卡| 2018国产大陆天天弄谢| 国产探花在线观看一区二区| 一级片'在线观看视频| 新久久久久国产一级毛片| 日韩精品有码人妻一区| 丝瓜视频免费看黄片| 亚洲精品成人久久久久久| 国产精品国产三级国产专区5o| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| 日韩欧美 国产精品| 成年人午夜在线观看视频| 一级毛片黄色毛片免费观看视频| 男插女下体视频免费在线播放| 精品国产一区二区三区久久久樱花 | 久久久久九九精品影院| 岛国毛片在线播放| 午夜福利视频精品| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 国产成人一区二区在线| 视频中文字幕在线观看| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 99久久九九国产精品国产免费| 啦啦啦中文免费视频观看日本| 国产精品不卡视频一区二区| 少妇裸体淫交视频免费看高清| 搞女人的毛片| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| 大片免费播放器 马上看| 欧美最新免费一区二区三区| 插阴视频在线观看视频| 大话2 男鬼变身卡| 国产美女午夜福利| 免费高清在线观看视频在线观看| 亚洲精品中文字幕在线视频 | 色综合色国产| 亚洲婷婷狠狠爱综合网| 日本欧美国产在线视频| 国产老妇女一区| 亚洲国产最新在线播放| av在线蜜桃| 国产 精品1| 亚洲av中文av极速乱| 99热6这里只有精品| 2022亚洲国产成人精品| 极品教师在线视频| 日韩制服骚丝袜av| 国产免费又黄又爽又色| 亚洲av.av天堂| 成人亚洲精品av一区二区| 国产一区二区三区av在线| 国产精品久久久久久精品电影小说 | 亚洲av日韩在线播放| 午夜福利视频精品| 一个人看视频在线观看www免费| 又大又黄又爽视频免费| 色视频www国产| 中文天堂在线官网| 日日摸夜夜添夜夜爱| 久久亚洲国产成人精品v| 久久人人爽人人爽人人片va| 国产在线一区二区三区精| 婷婷色麻豆天堂久久| 听说在线观看完整版免费高清| 乱码一卡2卡4卡精品| 自拍偷自拍亚洲精品老妇| 国产在视频线精品| 国产精品国产av在线观看| 各种免费的搞黄视频| 免费黄网站久久成人精品| 91aial.com中文字幕在线观看| 一本一本综合久久| 日韩国内少妇激情av| av一本久久久久| 久久久a久久爽久久v久久| 亚洲精品成人久久久久久| 韩国av在线不卡| 91久久精品电影网| 卡戴珊不雅视频在线播放| 国产成人一区二区在线| 国产亚洲午夜精品一区二区久久 | 久久热精品热| 亚洲国产精品成人综合色| 免费少妇av软件| 国产 一区 欧美 日韩| 亚洲精品日韩av片在线观看| 午夜亚洲福利在线播放| 老师上课跳d突然被开到最大视频| 搞女人的毛片| xxx大片免费视频| 国产美女午夜福利| 国产精品不卡视频一区二区| 日日撸夜夜添| 日日啪夜夜爽| 亚洲av成人精品一二三区| av在线老鸭窝| 亚洲精品乱久久久久久| 日韩欧美一区视频在线观看 | .国产精品久久| 最近中文字幕高清免费大全6| 亚洲人成网站高清观看| av免费在线看不卡| 最近最新中文字幕大全电影3| 国产一区二区亚洲精品在线观看| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| av黄色大香蕉| 一级a做视频免费观看| 成人美女网站在线观看视频| 一级二级三级毛片免费看| 成人一区二区视频在线观看| 精品久久国产蜜桃| 国产成人一区二区在线| 欧美日韩视频高清一区二区三区二| 伦理电影大哥的女人| 嫩草影院新地址| 亚洲成色77777| 王馨瑶露胸无遮挡在线观看| 十八禁网站网址无遮挡 | 2022亚洲国产成人精品| 国产91av在线免费观看| 国产一区二区在线观看日韩| 九九爱精品视频在线观看| 97人妻精品一区二区三区麻豆| 国产综合懂色| 欧美精品国产亚洲| 男女无遮挡免费网站观看| 偷拍熟女少妇极品色| 91狼人影院| 久久精品国产自在天天线| 久久久久久久大尺度免费视频| 亚洲精品,欧美精品| 国产成人aa在线观看| 老司机影院毛片| 久久久久网色| 国产爱豆传媒在线观看| 午夜精品国产一区二区电影 | 激情 狠狠 欧美| 欧美+日韩+精品| 国模一区二区三区四区视频| 国产av码专区亚洲av| 亚洲欧美一区二区三区国产| 天天躁夜夜躁狠狠久久av| 国产欧美日韩一区二区三区在线 | 亚洲图色成人| 国产成人免费观看mmmm| 亚洲精品一二三| videossex国产| 亚洲成色77777| 最近2019中文字幕mv第一页| 2021天堂中文幕一二区在线观| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 国产午夜精品一二区理论片| 色播亚洲综合网| 亚洲精品aⅴ在线观看| 下体分泌物呈黄色| 最新中文字幕久久久久| 老师上课跳d突然被开到最大视频| 狂野欧美激情性xxxx在线观看| 看十八女毛片水多多多| 精品久久久精品久久久| 亚洲精品,欧美精品| 晚上一个人看的免费电影| 国产亚洲91精品色在线| 日本熟妇午夜| 成人无遮挡网站| 国产极品天堂在线| 又爽又黄无遮挡网站| 亚洲国产av新网站| 看黄色毛片网站| 美女xxoo啪啪120秒动态图| 久久久久久久久久久免费av| 日韩欧美精品免费久久| 精品人妻偷拍中文字幕| 久久精品国产a三级三级三级| 少妇人妻 视频| 小蜜桃在线观看免费完整版高清| 国产综合精华液| av天堂中文字幕网| 99热全是精品| eeuss影院久久| 成年女人在线观看亚洲视频 | 赤兔流量卡办理| 亚洲婷婷狠狠爱综合网| freevideosex欧美| 久久久a久久爽久久v久久| 一级毛片久久久久久久久女| 一个人看的www免费观看视频| 97精品久久久久久久久久精品| 国产精品福利在线免费观看| 天堂网av新在线| eeuss影院久久| 人妻 亚洲 视频| 久久午夜福利片| 永久网站在线| 亚洲av不卡在线观看| 久久久久精品久久久久真实原创| 欧美变态另类bdsm刘玥| 午夜老司机福利剧场| 91久久精品电影网| 日本三级黄在线观看| 国产成年人精品一区二区| 18+在线观看网站| 春色校园在线视频观看| 边亲边吃奶的免费视频| 午夜精品国产一区二区电影 | 色视频www国产| 最近最新中文字幕免费大全7| 男女无遮挡免费网站观看| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 天堂俺去俺来也www色官网| 各种免费的搞黄视频| 日本熟妇午夜| 男插女下体视频免费在线播放| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 七月丁香在线播放| 人妻 亚洲 视频| 久久99热这里只频精品6学生| 日韩欧美 国产精品| 下体分泌物呈黄色| 搡女人真爽免费视频火全软件| 在线播放无遮挡| 天天躁日日操中文字幕| 国产精品成人在线| 精品视频人人做人人爽| 偷拍熟女少妇极品色| 国产女主播在线喷水免费视频网站| 高清毛片免费看| 2018国产大陆天天弄谢| av天堂中文字幕网| 成人二区视频| 免费电影在线观看免费观看| 成人高潮视频无遮挡免费网站| 少妇人妻精品综合一区二区| 婷婷色综合大香蕉| 午夜免费男女啪啪视频观看| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| av黄色大香蕉| 91在线精品国自产拍蜜月| 欧美三级亚洲精品| 成年av动漫网址| 亚洲av电影在线观看一区二区三区 | 国产永久视频网站| 亚洲成人一二三区av| 国产一区二区亚洲精品在线观看| 国产探花极品一区二区|