• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic Variation Solutions and Tori like Solutions for Stochastic Hamiltonian Systems

    2021-04-16 08:20:50ZHUJun朱俊LIZe黎澤
    應(yīng)用數(shù)學(xué) 2021年2期

    ZHU Jun(朱俊),LI Ze(黎澤)

    (School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)

    Abstract: In this paper,we study recurrence phenomenon for Hamiltonian systems perturbed by noises,especially path-wise random periodic variation solution (RPVS)and invariant tori like solution.Concretely speaking,for linear Schr?dinger equations,we completely clarify when RPVS exists,and for nearly integrable Hamiltonian systems perturbed by noises we prove that the existence of invariant tori like solutions is related to the involution property of multi component driven Hamiltonian functions.

    Key words: Random system;Hamiltonian system;Recurrence phenomenon;Invariant tori

    1.Introduction

    We first consider finite dimensional random dynamical systems.LetMbe a 2ddimensional symplectic manifold with symplectic form m.Given a Hamiltonian functionHonM,the associated Hamiltonian vector field is denoted byXH.Given a filtered probability space(?,F,P),letZtbe an Rl-valued driving semi-martingale,Y0∈F0be anM-valued random variable,and{Hα}lα=0be Hamiltonian functions onM.We will study the following type stochastic differential equations which may be seen as the analogies of Hamiltonian systems of the deterministic case:

    where?refers to the Stratonovich integral and(1.1)is understood in the sense of the integral equation with initial dataY0.Moreover,for simplicity we write dt=dZ0tin (1.1)and in the following.

    Let’s first consider the caseM=T?Td,where Td=Rd/2πZddenotes thed-dimensional torus.In the perturbation theory,one considers the Hamiltonian functions defined inT?Td,which can be viewed as Td×Rd,of the following form

    where (p,q)∈Rd×Tdis the action and angle variables respectively.IfH1= 0,the Hamiltonian system associated with (1.2)is integrable.IfH1(p,q)is a small perturbation in some sense,the Hamiltonian system corresponding to (1.2)is called nearly integrable.The classic celebrated KAM theorem[2]states that the invariant tori persists under the perturbation with suitable non-degenerate conditions.The KAM theory in the deterministic case is a fundamental result of Hamiltonian systems,and it has many significant and wide applications to various problems,for instance celestial mechanics,symplectic algorithms[3,7],Anderson localization etc.In the stochastic case,few results are known.Let (?,F,P,{θt}t∈R)denote the canonical metric dynamical system describing R1-valued Brownian motion{Bt}t∈R.Let us begin with the toy model problem:

    whereN0,N1only depend onp,?Nidenotes the gradient field generated byNi,andJdenotes the standard complex structure in R2d.The solution of (1.3)can be written as

    This can be seen as the stochastic version of integrable systems.Now,assume that for someZd,?piN0(p?)=2πki/Tfor alli=1,··· ,d,then it is easy to see

    with (ξ,ζ)=(0,··· ,0,?p1N1(p?)BT(ω),··· ,?pdN1(p?)BT(ω))for all (t,ω)∈R×?,and as a random dynamical system[1]there holds

    whereφ(t,ω)(p,q)denotes the solution of (1.3)with initial data (p,q).

    Inspired by(1.5),(1.6),we introduce the notion of periodic variation solutions as follows:

    Definition 1.1LetMbe a finite or infinite dimensional linear space or a smooth manifold embedded into Euclidean spaces.Letφ:Λ×?×M →Mbe the mapping which defines a measurable random dynamical system on the measurable space(M,B)over a metric random dynamical system (?,F,P,(θt)t∈Λ).We sayY(t,ω)is a random periodic variation solution (RPVS)withF0measurable initial dataY(0,ω)if there exists someT >0 and anM-valued (whenMis a linear space)or RN-valued (whenMis a manifold)random functionξ:ω ∈? →Morξ:ω ∈? →RNsuch that for allt ∈Λ,ω ∈?,there holds

    where (i)in (1.7)holds in the Euclidean space RNifMis a manifold embedded into RN.

    If the random dynamical system is a two parameter stochastic flowφ:I×I×?×M →M,(1.7)is replaced by

    for anyt,s ∈I,ω ∈?.

    If we requireξ=0 in(i)of(1.7),then solutions satisfying(1.7)are called random periodic solutions (RPS),i.e.,

    See the works of ZHAO,et al.[13]and FENG,et al.[6]for existence of RPS of contraction systems and dissipative systems.

    The other widely used notion of periodic solutions is the periodic Markov process solution:We say the solution of a stochastic equation is a periodic homogeneous Markov process solution if it is an Rmvalued homogeneous Markov process and the joint distribution P(ut1∈A1,··· ,utn ∈An)satisfies

    for someT >0 and all 0≤t1<···

    We summarize the existence/non-existence of RPS and RPVS for (1.3)in the following lemma.It is somewhat casual,and the precise statement can be found in Section 3.

    Proposition 1.1(1.3)has no random periodic solutions except for some trivial cases(See Proposition 3.1).ForF0measurable initial data (p(0),q(0))= (ξ,η),the solution of(1.3)is a random periodic variation solution iff{?Ni(ξ)}i=0,1are deterministic.

    In general,if the frequencies{?piN0(p?)}di=1are rationally independent,the solution of(1.3)is invariant tori like:

    where{Yj(t,ω)}dj=1are RPVSs.

    If there is essentially only one driving Hamiltonian in (1.1),i.e.,Hα=Fα(H)for allα= 0,··· ,l,it is easy to apply the classic KAM theorem to obtain random invariant tori like solutions in the stochastic case.Generally multi driving Hamiltonian functions may lead to non-existence of invariant tori.For the special cased= 1,we will see there exists a neat result:

    Proposition 1.2Letd=1.LetH0be a Hamiltonian function on R×T which gives rise to a small analytic perturbation of integrable systems.Let{Hα}lα=1be analytic functions ofp,q ∈C2.If the driving Hamiltonian functions satisfy

    then under reasonable non-degenerate assumptions,(1.1)has random invariant tori.See Proposition 3.2 for the precise statement.

    In a summary for SODEs,we remark that(i)Random periodic solutions generally do not exist for Hamiltonian type equations;(ii)The existence of random periodic variation solutions and invariant tori depends heavily on the involution property of the driving Hamiltonian functions.

    Let’s consider infinite dimensional random dynamical systems.Let(?,F,(Ft)t∈R,P,(θt)t∈Λ)be the canonical complete filtered Wiener space endowed with filtrationFts:=σ{Br1?Br2:s ≤r1,r2≤t}.DenoteandLet{ζj(t)}j∈Zbe a sequence of independent R-valued standard Brownian motions ont ∈R associated to the filtration(Ft)t∈R.LetΦ:L2(Td;C)→L2(Td;C)be a linear bounded operator withQ=ΦΦ?being a finite trace operator inL2(Td;C).Lettingbe the orthonormal basis forL2(Td;C),we define the processWto be

    It is easy to see the series (1.11)converges inL2(?×Td;C)and almost surely inL2(Td;C).This process is a special case ofQ-cylindrical Wiener process withQ=ΦΦ?.

    Theorem 1.1(i)IfΦ0,then the linear stochastic Schr?dinger equation with addictive noise

    has no RPVS.

    (ii)Let us consider the linear stochastic Schr?dinger equation with combined noise:

    whereλ ∈R,fis a real valued function which is periodic int,f(t+T1)=f(t),and smooth inx ∈Td.Thenuis an RPVS withF0measurable initial datau0∈L2(?,L2x)for (1.12)if only iff=0 andu=0.

    In the following,we denote ?Tu(t,w)=u(t+T,w)?u(t,θTw).

    2.Linear SPDEs

    We divide the proof of Theorem 1.1 into two propositions.Let{ek}k∈Zdbe the eigenfunctions of ?in Tdsuch that ?ek=?|k|2ek,andπkdenote the projection onto span{ek}.We getf:? →L2xis (F,B(L2x))measurable iffπkfis (F,B(C))measurable for allk ∈Zd.And similar results hold withFreplaced byFts,FtandFtas well.These facts will be used widely in this section without emphasis.

    Proposition 2.1Assume that the operatorΦ0 in (1.11).The linear stochastic Schr?dinger equation with addictive noise

    has no RPVS.

    ProofDefine

    then we haveE|ξk(t,ω)|2=|t|β2kwhere{βk}are defined by

    Applying the Fourier transform to (2.1)gives

    The solution is an Ornstein-Uhlenbeck process

    whereak=(u0,ek),k ∈Zd.Thus we have

    And by change of variables,(2.4)reduces to

    Thus,ifuis a random periodic variation solution,then there holds

    By iteration of (2.6),there holds

    Since we have by be Cauchy-Schwartz inequality and the Itisometry formula that

    the contradiction follows ifβk0 by lettingL →∞.Therefore,βk=0 for allk ∈Zd,which leads toΦ= 0,since{}j∈Zand{ek}k∈Zdare complete bases.Hence,no random periodic variation solution exists ifΦ0 .

    Proposition 2.2Let us consider the linear stochastic Schr?dinger equation with combined noise:

    whereλ ∈R,fis a real valued function which is periodic int,f(t+T1)=f(t),and smooth inx ∈Td.Thenuis an RPVS withF0measurable initial datau0∈L2(?,L2x)for (2.8)if only iff=0 andu=0.

    ProofSince (2.8)is non-autonomous,for RPVS,we use the definition in (1.8).Let us choose the eigenfunctions{ek}for Laplacian to be real valued functions,The solution is written as

    whereak=(u0,ek),k ∈Zd.Then one has by change of variables that

    Now,we prove RPVS exists ifff=0 andu=0.Assume thatuis an RPVS,i.e.?Tu(t)=ξfor someF-measurable random variableξand allt ≥0.

    Step 1 Taking the covariance of both sides of (2.10),we obtain by the It? isometry formula and the Cauchy-Schwartz inequality that

    for allt ≥0.Sincefis real valued and we have taken the orthogonal basis to be real functions,we see{}are real fork ∈Zd.Then byf(t+T1)=f(t)for allt ≥0,one has

    forn ∈Z.Thus (2.11),(2.12)show

    where in the last line we applied the periodicity off,(2.12)and change of variables.Thus,lettingn →∞,we get

    which by the periodicity offfurther shows that

    holds for allt ≥0.Assume thatis not identically zero.Let(t1,t2)be any interval contained in((0,∞)),then,choosing|t1?t2|to be sufficiently small,we have fort ∈(t1,t2)

    for someL ∈Z which depends ont1,t2and is independent oft ∈(t1,t2).Taking derivatives tot ∈(t1,t2)yieldsfort ∈(t1,t2).

    Back to (2.10),we see,for allt ≥0,

    Recall ?Tu=ξ.DenoteSinceu0isF0measurable,the underline parts areFTmeasurable.Taking conditional expectation E(·|FT),by the independence ofBt+T ?BTandFT,we have

    Thus since

    by taking covariance of (2.14)and the It? formula,we get that

    which ast →∞yields E(ξk|FT)=0,a.s.

    Inserting this to (2.14)shows

    Then by iteration we obtain for allt ≥0

    where we chosetj:=LT ?(j+1)Tand applied the fact thatTis a period off.Then by the Itformula,

    Therefore,by lettingL →∞,we see there exists no RPVS iffis nontrivial.

    Step 2 Now,it remains to consider the degenerate case whenf ≡0.In this case,(2.10)reduces to

    which combined withθ?TP=P gives

    where in the second equality we usedBT ?B0is independent ofF0andu0isF0adapted.

    LettingL →∞,by (2.16),we have

    SinceF0:=σ{Bt ?Bs:s,t ≤0},u0isF0measurable and belongs toL2(?;L2x),we obtain by(2.17)and the representation theorem for square integrable random variables (see Theorem 1.1.3 in [11])that there exists a unique adapted processMt ∈L2((?∞,0)×?)such that

    Thus,by the same reason as (2.16),we see from (2.15)that

    Then,applying (2.18),we arrive at

    which by change of variables gives

    SinceM(t ?T,θTω)andM(t,ω)areFtadapted and belong toL2((?∞,0)×?),by the It? formula,(2.19)shows

    Taking conditional expectation of both sides of (2.15)w.r.t,FT0gives

    which combined with (2.18)shows

    However,sinceFT0is independent ofF0,we see E(ak|FT0)=E(ak)=0.

    Thus (2.21)shows

    which by the It? formula further yields

    SinceθTis invertible,taking(2.22)as the starting point and doing iteration by(2.20)illustrate that

    Therefore,we conclude from (2.18)that

    3.Finite Dimensional Case

    In this section,we prove the results stated in Section 1 for SODEs.

    Proposition 3.1LetN0,N1beC1bounded functions ofp ∈Rd.Consider the SODE for (p,q)∈Rd×Td:

    Then we have

    1)(p,q)is RPVS if and only if?pN0(ξ),?pN1(ξ)are independent ofω;

    2)(p,q)is RPS if and only ifwithandη,ξare deterministic.

    ProofStep 1 The solution for (3.1)is given by

    The covariance of (3.2)is of orderc0t2ast →∞,ifc0defined by

    does not vanish.If (p,q)is an RPVS,then the covariance of ?Tq(t,ω)is identical w.r.t.t ≥0.Thusc0= 0.SinceξisF0measurable,isFTmeasurable.ThenBt+T ?BTis independent ofHence there holds

    Thus byc0= 0,the covariance of (3.2)is of orderc1tast →∞ifc1:=is not zero.Hence,c1=0 as well.Now we summarize that if (p,q)is an RPVS then

    (3.3)impliesNi(ξ)is independent ofωby similar arguments in Section 2.In fact,the representation theorem of square random variables show

    forMi ∈L2((?∞,0)×?)because(ξ)∈L2(?)isF0measurable fori= 0,1.Inserting(3.4)into (3.3)yields

    Then the It? formula shows

    Therefore,we arrive at

    namely,they are independent ofω.

    Step 2 If we assume furthermore that (p,q)is an RPS,then by (3.5)and (3.2),for someZdthere holds

    Similar arguments as Step 1 show that(3.6)impliesξis deterministic.And we seeTE(ξ)=by applying mathematical expectation to (3.7)sinceθ?P = P.Writingη= E(η)+for someh ∈L2((?∞,0)×?),taking conditional expectation of (3.7)w.r.t.FT0,one obtains

    And taking conditional expectation of (3.7)w.r.t.F0gives

    Sincethe Itformula with (3.8)shows

    By (3.10)and (3.11),we have

    which belongs toL2((?∞,0)×?)if and only if E(ξ)=0.Hence,we have deduced

    Therefore,by Step 1,we conclude that (p,q)is an RPS if and only if

    We have several examples:

    Example 3.1Letd= 2,N0(p)=f(p1),N1(p)=g(p1),then (p0,q0)= (c1,?,ψ1,ψ2),wherec1is deterministic and?,ψ1,ψ2areF0adapted random variables,evolves to an RPVS.It is an RPS iffψ1,ψ2are deterministic.

    Given?>0.p?∈Rd,define the setDp?,?={(p,q)∈C2d:|p ?p?|≤?,|?q|≤?},where?q= (?q1,··· ,?qd).Let Ap?,?be the set of complex valued continuous functions onDp?,?which are analytic functions in the interior,2π-periodic inq(i.e.f(p,q+2π)=f(p,q),?f ∈Ap?,?)and real valued for (p,q)∈R2d.

    Proposition 3.2LetH0be a Hamiltonian function of the formH0=N(p)+?(p,q)withN,∈Ap?,?.Denote

    Assume that (Bij)is a non-singulard×dmatrix andsatisfies the Diophantine condition,i.e.there exists a positive constantγsuch thatdefined by

    ?Consider the stochastic ODE (1.1)in R1×T with Hamiltonian functions{Hα}0≤α≤lwhich satisfy

    And assume that{Hα}lα=1are analytic functions inD?,p?and continuous to the boundary as well.Then there exists a constant?0>0 such that for given? ∈[0,?0] there exists a symplectic transformΨ:D?′,p?→D?,p?and solution (p(t),q(t))to (1.1)satisfying

    for someconstantsλα ∈R,α=1,··· ,l,andλ0=?pN(p?).

    ?Letd ≥1.Consider the stochastic ODE (1.1)in Rd×Tdwith Hamiltonian functionsH0(p,q)=N(p)+(p,q)and{Fβ(H0)}1≤β≤l:

    where{Fβ}are smooth functions.Then there exists a constant?0>0 such that for given? ∈[0,?0] there exists a symplectic transformΨ:D?′,p?→D?,p?satisfying

    ProofStep 1 Letλ=?N(p?)be the unperturbed frequency.By the classic KAM theorem,there exists a symplectic differmorphismsuch that

    in(p,q)for somez ∈R and an analytic functionR(·,·)which is of the order|p?p?|2.

    We will frequently use the following identity

    DenoteΨ=(Ψ1,··· ,Ψ2d)the inverse ofΦ,then

    Assume that (p(t),q(t))solve (3.13),then by It?’s formula

    By (3.16)and the factΦis a symplectic differmorphism,we get

    where in the last line we applied the Taylor expansion toFαatzand used (3.15)to expandH ?Φ.

    Thus (3.17),(3.18)show

    which implies that (3.14)is a solution.

    Step 2 It remains to prove the left S1×R1case.Applying (3.15)toH0gives the expansion

    for some symplectic differmorphismΦ,z0∈R,λ=H′0(p?),andRis of order|p ?p?|2.SinceΦkeeps the symplectic form,

    where we applied (3.12)in the last line.Therefore,we arrive at

    for allβ=0,...,l.Denote=Hβ ?Φ.Then one sees

    Then,comparing the coefficients of zero and one order of|p ?p?|,(3.19)gives

    Sinceλ0,A0(q)andA1(q)are constants.Thus (3.20)shows the symplectic transformΦtransforms all{Hα}into the canonical form

    Then the same argument in Step 1 gives the desired result.

    中文乱码字字幕精品一区二区三区| 男人舔女人的私密视频| 亚洲丝袜综合中文字幕| 黑丝袜美女国产一区| 亚洲精品,欧美精品| 日韩av免费高清视频| 午夜免费鲁丝| 久久精品久久久久久久性| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人 | 男女国产视频网站| 韩国av在线不卡| 在线观看人妻少妇| 永久网站在线| 久久久久精品久久久久真实原创| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| av片东京热男人的天堂| 一本久久精品| tube8黄色片| 90打野战视频偷拍视频| av免费在线看不卡| 精品国产国语对白av| 亚洲精品中文字幕在线视频| 国产精品不卡视频一区二区| 国产精品成人在线| 美女xxoo啪啪120秒动态图| 亚洲人与动物交配视频| a级片在线免费高清观看视频| 男女啪啪激烈高潮av片| 欧美国产精品一级二级三级| 久久精品夜色国产| 亚洲国产精品999| 男女边摸边吃奶| 一级片'在线观看视频| 精品国产国语对白av| 狠狠精品人妻久久久久久综合| 欧美+日韩+精品| 欧美亚洲 丝袜 人妻 在线| 亚洲av福利一区| 成人无遮挡网站| 国产在线一区二区三区精| 九草在线视频观看| 制服诱惑二区| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 免费看不卡的av| 亚洲av国产av综合av卡| 在线观看美女被高潮喷水网站| 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| 波多野结衣一区麻豆| 校园人妻丝袜中文字幕| 国产在线一区二区三区精| 免费高清在线观看日韩| 国产国拍精品亚洲av在线观看| www日本在线高清视频| 夜夜爽夜夜爽视频| 欧美精品一区二区大全| 成人18禁高潮啪啪吃奶动态图| 一级黄片播放器| 免费看不卡的av| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲av天美| 久久久久久久久久久免费av| 各种免费的搞黄视频| 中文字幕精品免费在线观看视频 | 国产国拍精品亚洲av在线观看| 男人爽女人下面视频在线观看| 国产色婷婷99| 久久99精品国语久久久| 国产综合精华液| 亚洲精品456在线播放app| 久久久久精品人妻al黑| 看非洲黑人一级黄片| 亚洲精品av麻豆狂野| 亚洲精品国产av蜜桃| 亚洲精品美女久久久久99蜜臀 | 国产色爽女视频免费观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美另类一区| 丝袜在线中文字幕| 亚洲成人av在线免费| 最近最新中文字幕免费大全7| 一级毛片我不卡| 少妇精品久久久久久久| 午夜日本视频在线| 看免费av毛片| 久久久a久久爽久久v久久| 亚洲欧美一区二区三区黑人 | 亚洲人与动物交配视频| 少妇高潮的动态图| xxx大片免费视频| 成年人午夜在线观看视频| 成人综合一区亚洲| 伊人亚洲综合成人网| 精品一区在线观看国产| 在线亚洲精品国产二区图片欧美| 永久网站在线| 欧美少妇被猛烈插入视频| 少妇熟女欧美另类| 99国产精品免费福利视频| 哪个播放器可以免费观看大片| 日日摸夜夜添夜夜爱| 丝瓜视频免费看黄片| 国产av码专区亚洲av| 国产成人精品婷婷| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 搡女人真爽免费视频火全软件| 成人无遮挡网站| 国产又爽黄色视频| 日本av免费视频播放| 国产免费视频播放在线视频| 久久婷婷青草| 国产熟女午夜一区二区三区| 免费日韩欧美在线观看| 熟女av电影| 亚洲天堂av无毛| 91精品国产国语对白视频| 97在线人人人人妻| 国产黄色免费在线视频| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 成人亚洲精品一区在线观看| 国产男人的电影天堂91| 建设人人有责人人尽责人人享有的| 日韩,欧美,国产一区二区三区| 精品国产一区二区久久| 人妻少妇偷人精品九色| 91精品三级在线观看| 又大又黄又爽视频免费| 人妻少妇偷人精品九色| 少妇高潮的动态图| 18禁裸乳无遮挡动漫免费视频| 9热在线视频观看99| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看av| www日本在线高清视频| 国产日韩欧美在线精品| 男女啪啪激烈高潮av片| xxxhd国产人妻xxx| 久久国产精品男人的天堂亚洲 | 国产深夜福利视频在线观看| 国产免费一级a男人的天堂| 91久久精品国产一区二区三区| 成人二区视频| 亚洲国产精品一区二区三区在线| 午夜免费鲁丝| 国产淫语在线视频| 日韩精品有码人妻一区| 熟女人妻精品中文字幕| 波野结衣二区三区在线| 成人影院久久| 老熟女久久久| 一区二区三区精品91| 国产1区2区3区精品| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| 久久国产亚洲av麻豆专区| 又黄又爽又刺激的免费视频.| 一级,二级,三级黄色视频| 看免费av毛片| 午夜免费观看性视频| 亚洲美女黄色视频免费看| 午夜福利视频精品| 日韩欧美一区视频在线观看| 国产成人91sexporn| 人妻少妇偷人精品九色| 成人亚洲欧美一区二区av| 国产精品三级大全| 日日啪夜夜爽| 午夜日本视频在线| 又黄又粗又硬又大视频| 亚洲精品一二三| 亚洲欧洲国产日韩| 亚洲精品第二区| 久久久久久久久久久免费av| 成人18禁高潮啪啪吃奶动态图| 老熟女久久久| 国产一区二区三区av在线| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 国产精品国产三级国产av玫瑰| 亚洲精品成人av观看孕妇| av有码第一页| 多毛熟女@视频| 久久久久久人人人人人| 亚洲精品自拍成人| 2021少妇久久久久久久久久久| kizo精华| 777米奇影视久久| 建设人人有责人人尽责人人享有的| 久久国产精品大桥未久av| 精品久久国产蜜桃| videos熟女内射| 日韩av在线免费看完整版不卡| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 欧美bdsm另类| 水蜜桃什么品种好| 欧美日韩一区二区视频在线观看视频在线| av在线播放精品| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 九色亚洲精品在线播放| 在线天堂最新版资源| 国产日韩一区二区三区精品不卡| 成人综合一区亚洲| 国产一区二区三区综合在线观看 | 熟女av电影| 亚洲av.av天堂| 国产日韩欧美视频二区| 天天操日日干夜夜撸| 国精品久久久久久国模美| 久久国产精品男人的天堂亚洲 | 国产色爽女视频免费观看| 只有这里有精品99| 久久久久网色| 精品国产一区二区三区久久久樱花| 狂野欧美激情性xxxx在线观看| 亚洲av在线观看美女高潮| 亚洲av中文av极速乱| 9191精品国产免费久久| 中国美白少妇内射xxxbb| 久久久久久伊人网av| 秋霞在线观看毛片| 日本黄大片高清| 91在线精品国自产拍蜜月| 男人添女人高潮全过程视频| av免费在线看不卡| 国产爽快片一区二区三区| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 国产一区二区三区综合在线观看 | 国产在线视频一区二区| 91久久精品国产一区二区三区| 精品人妻一区二区三区麻豆| 香蕉国产在线看| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区 | 久久久久精品人妻al黑| 亚洲av电影在线观看一区二区三区| 涩涩av久久男人的天堂| 国产一区二区在线观看日韩| 欧美成人午夜精品| av网站免费在线观看视频| 国产精品久久久久久av不卡| 精品人妻熟女毛片av久久网站| 国产激情久久老熟女| 亚洲图色成人| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| 国产男女超爽视频在线观看| av在线播放精品| 国产精品国产av在线观看| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 汤姆久久久久久久影院中文字幕| 欧美人与性动交α欧美软件 | 国产亚洲精品久久久com| 日本黄色日本黄色录像| 欧美性感艳星| 亚洲精华国产精华液的使用体验| 国产亚洲午夜精品一区二区久久| 在线观看一区二区三区激情| 日日撸夜夜添| 韩国精品一区二区三区 | 日日啪夜夜爽| 搡女人真爽免费视频火全软件| 韩国高清视频一区二区三区| 美女大奶头黄色视频| 午夜91福利影院| 精品少妇黑人巨大在线播放| 9色porny在线观看| 日韩在线高清观看一区二区三区| 欧美国产精品一级二级三级| 亚洲丝袜综合中文字幕| 欧美精品国产亚洲| 日本欧美视频一区| 精品久久久久久电影网| 久久人人97超碰香蕉20202| 两性夫妻黄色片 | 日本免费在线观看一区| 午夜老司机福利剧场| 国产又色又爽无遮挡免| 97在线视频观看| 亚洲欧美色中文字幕在线| 日韩精品有码人妻一区| 欧美亚洲日本最大视频资源| 久久99蜜桃精品久久| 九色亚洲精品在线播放| av网站免费在线观看视频| 婷婷色综合www| 女性生殖器流出的白浆| 91精品国产国语对白视频| 国产成人一区二区在线| 成人18禁高潮啪啪吃奶动态图| 精品视频人人做人人爽| 777米奇影视久久| 亚洲少妇的诱惑av| 久久这里只有精品19| 美女视频免费永久观看网站| 91国产中文字幕| 欧美xxxx性猛交bbbb| 国产成人精品无人区| 精品国产国语对白av| 免费大片黄手机在线观看| 亚洲国产精品一区三区| 亚洲国产精品999| 一级毛片电影观看| 国产午夜精品一二区理论片| www.熟女人妻精品国产 | 天美传媒精品一区二区| 国产精品人妻久久久久久| 有码 亚洲区| 国产成人精品一,二区| 亚洲国产精品专区欧美| 伊人久久国产一区二区| 亚洲国产精品专区欧美| 国产日韩欧美亚洲二区| 亚洲一级一片aⅴ在线观看| av线在线观看网站| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 天天躁夜夜躁狠狠躁躁| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 最新中文字幕久久久久| 内地一区二区视频在线| 极品人妻少妇av视频| 中文字幕免费在线视频6| 国产 一区精品| 欧美丝袜亚洲另类| 中文欧美无线码| 国产精品国产三级国产专区5o| 亚洲激情五月婷婷啪啪| 日韩一区二区三区影片| 亚洲美女黄色视频免费看| 国产精品国产三级国产专区5o| 男女边摸边吃奶| 国产精品99久久99久久久不卡 | 最近中文字幕2019免费版| av卡一久久| 五月开心婷婷网| av国产精品久久久久影院| 欧美+日韩+精品| 9色porny在线观看| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 欧美激情 高清一区二区三区| 国产高清国产精品国产三级| 人妻一区二区av| 久久午夜综合久久蜜桃| 亚洲在久久综合| 视频中文字幕在线观看| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| 国产欧美亚洲国产| av卡一久久| 国产成人精品在线电影| 亚洲国产最新在线播放| 成年美女黄网站色视频大全免费| 免费日韩欧美在线观看| 精品人妻偷拍中文字幕| 韩国av在线不卡| av在线观看视频网站免费| 亚洲精品第二区| freevideosex欧美| 国产精品久久久久久精品古装| 午夜av观看不卡| 黄色 视频免费看| 婷婷色综合大香蕉| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 涩涩av久久男人的天堂| 国产男人的电影天堂91| 国产av一区二区精品久久| 久久久精品94久久精品| 日韩成人伦理影院| 亚洲精品久久午夜乱码| 国产成人精品福利久久| 一级毛片我不卡| 你懂的网址亚洲精品在线观看| 高清欧美精品videossex| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频 | 热re99久久精品国产66热6| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 看十八女毛片水多多多| 日本av手机在线免费观看| 18禁国产床啪视频网站| 一区二区三区四区激情视频| 国产精品一区二区在线观看99| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 久久久精品区二区三区| 亚洲熟女精品中文字幕| av线在线观看网站| xxx大片免费视频| 亚洲丝袜综合中文字幕| 两个人看的免费小视频| 少妇高潮的动态图| 春色校园在线视频观看| 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| 欧美日韩成人在线一区二区| 在线亚洲精品国产二区图片欧美| 亚洲av.av天堂| 亚洲精品一区蜜桃| 国产欧美另类精品又又久久亚洲欧美| h视频一区二区三区| 中文字幕最新亚洲高清| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 中文乱码字字幕精品一区二区三区| 日韩一本色道免费dvd| 韩国高清视频一区二区三区| 久久久久精品久久久久真实原创| 一个人免费看片子| 欧美少妇被猛烈插入视频| 赤兔流量卡办理| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 热99国产精品久久久久久7| a级毛片在线看网站| 久久久精品区二区三区| 国产精品秋霞免费鲁丝片| 又黄又爽又刺激的免费视频.| 免费久久久久久久精品成人欧美视频 | 成人综合一区亚洲| 成人18禁高潮啪啪吃奶动态图| 欧美日本中文国产一区发布| 美国免费a级毛片| 欧美精品一区二区大全| 超碰97精品在线观看| 亚洲欧美成人综合另类久久久| av黄色大香蕉| 亚洲内射少妇av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 视频中文字幕在线观看| 免费高清在线观看日韩| 9热在线视频观看99| 日本与韩国留学比较| 欧美日韩亚洲高清精品| av免费在线看不卡| 少妇的逼水好多| 天美传媒精品一区二区| 插逼视频在线观看| 少妇人妻精品综合一区二区| av免费观看日本| 精品亚洲乱码少妇综合久久| 欧美精品国产亚洲| 高清视频免费观看一区二区| 嫩草影院入口| 欧美精品人与动牲交sv欧美| 亚洲精品中文字幕在线视频| 99久久中文字幕三级久久日本| 在线观看免费视频网站a站| 久久午夜综合久久蜜桃| 国产白丝娇喘喷水9色精品| 婷婷色综合www| 一级,二级,三级黄色视频| 婷婷成人精品国产| 亚洲伊人久久精品综合| 午夜免费观看性视频| 久久久久久久精品精品| 99视频精品全部免费 在线| a 毛片基地| 国产精品成人在线| videos熟女内射| 免费av中文字幕在线| 日韩,欧美,国产一区二区三区| av电影中文网址| 一级,二级,三级黄色视频| 晚上一个人看的免费电影| 日本vs欧美在线观看视频| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 亚洲av电影在线进入| 国产老妇伦熟女老妇高清| 在线观看免费日韩欧美大片| 新久久久久国产一级毛片| 欧美国产精品一级二级三级| 女人久久www免费人成看片| 中文字幕精品免费在线观看视频 | 丝瓜视频免费看黄片| 国产国拍精品亚洲av在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最近手机中文字幕大全| 亚洲一区二区三区欧美精品| 韩国精品一区二区三区 | 亚洲精品美女久久av网站| 中文字幕精品免费在线观看视频 | 亚洲伊人色综图| 国产男女内射视频| 岛国毛片在线播放| 曰老女人黄片| 国产一区二区在线观看日韩| 美女中出高潮动态图| 国产综合精华液| 在线天堂最新版资源| 国产日韩欧美视频二区| av片东京热男人的天堂| 日韩在线高清观看一区二区三区| 成人无遮挡网站| 视频在线观看一区二区三区| 内地一区二区视频在线| 免费av中文字幕在线| 日韩熟女老妇一区二区性免费视频| 美女国产高潮福利片在线看| 美女主播在线视频| 精品视频人人做人人爽| 久久 成人 亚洲| 国产女主播在线喷水免费视频网站| 丝袜在线中文字幕| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av涩爱| 国产精品久久久久成人av| 成人手机av| 免费黄频网站在线观看国产| 久久综合国产亚洲精品| 免费女性裸体啪啪无遮挡网站| 丰满饥渴人妻一区二区三| 99久久中文字幕三级久久日本| 欧美老熟妇乱子伦牲交| 毛片一级片免费看久久久久| 91午夜精品亚洲一区二区三区| 欧美成人午夜免费资源| 久久久精品94久久精品| 久久国产精品大桥未久av| 亚洲欧美日韩另类电影网站| 精品一区二区三区四区五区乱码 | 五月玫瑰六月丁香| 亚洲在久久综合| 五月天丁香电影| 美女主播在线视频| 午夜福利乱码中文字幕| 大片免费播放器 马上看| 亚洲av国产av综合av卡| 国产亚洲精品第一综合不卡 | 人体艺术视频欧美日本| 国产精品一二三区在线看| 亚洲成国产人片在线观看| 国产成人一区二区在线| 亚洲av免费高清在线观看| av免费观看日本| 成年女人在线观看亚洲视频| av卡一久久| 2022亚洲国产成人精品| 国产亚洲av片在线观看秒播厂| 在线观看美女被高潮喷水网站| 男女免费视频国产| 男人舔女人的私密视频| 国产视频首页在线观看| 国产精品久久久久久久电影| 亚洲精品456在线播放app| 少妇的逼好多水| 色94色欧美一区二区| 欧美成人午夜精品| 亚洲精品色激情综合| 免费看光身美女| 美女国产高潮福利片在线看| 少妇人妻 视频| 国产午夜精品一二区理论片| av电影中文网址| 国产 一区精品| 亚洲丝袜综合中文字幕| 久久精品国产综合久久久 | 男女午夜视频在线观看 | 香蕉丝袜av| 成人二区视频| 有码 亚洲区| 黑丝袜美女国产一区| 妹子高潮喷水视频| 免费久久久久久久精品成人欧美视频 | 日韩伦理黄色片| 人妻 亚洲 视频| 人妻人人澡人人爽人人| av免费观看日本| 考比视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲天堂av无毛| 午夜视频国产福利| 国产在视频线精品| 日本午夜av视频| 久久毛片免费看一区二区三区| 一本大道久久a久久精品| av免费观看日本| 少妇的逼水好多| 国产亚洲精品久久久com| 久久精品久久久久久噜噜老黄| 亚洲精华国产精华液的使用体验| av不卡在线播放| 亚洲欧美成人综合另类久久久| 国产伦理片在线播放av一区| 成年人午夜在线观看视频| 亚洲国产av新网站| 伦精品一区二区三区| 丝袜脚勾引网站| 亚洲伊人久久精品综合| 99国产精品免费福利视频| 亚洲人与动物交配视频| 日韩三级伦理在线观看| 成人亚洲精品一区在线观看| 欧美3d第一页| 一级毛片电影观看|