• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic Variation Solutions and Tori like Solutions for Stochastic Hamiltonian Systems

    2021-04-16 08:20:50ZHUJun朱俊LIZe黎澤
    應(yīng)用數(shù)學(xué) 2021年2期

    ZHU Jun(朱俊),LI Ze(黎澤)

    (School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)

    Abstract: In this paper,we study recurrence phenomenon for Hamiltonian systems perturbed by noises,especially path-wise random periodic variation solution (RPVS)and invariant tori like solution.Concretely speaking,for linear Schr?dinger equations,we completely clarify when RPVS exists,and for nearly integrable Hamiltonian systems perturbed by noises we prove that the existence of invariant tori like solutions is related to the involution property of multi component driven Hamiltonian functions.

    Key words: Random system;Hamiltonian system;Recurrence phenomenon;Invariant tori

    1.Introduction

    We first consider finite dimensional random dynamical systems.LetMbe a 2ddimensional symplectic manifold with symplectic form m.Given a Hamiltonian functionHonM,the associated Hamiltonian vector field is denoted byXH.Given a filtered probability space(?,F,P),letZtbe an Rl-valued driving semi-martingale,Y0∈F0be anM-valued random variable,and{Hα}lα=0be Hamiltonian functions onM.We will study the following type stochastic differential equations which may be seen as the analogies of Hamiltonian systems of the deterministic case:

    where?refers to the Stratonovich integral and(1.1)is understood in the sense of the integral equation with initial dataY0.Moreover,for simplicity we write dt=dZ0tin (1.1)and in the following.

    Let’s first consider the caseM=T?Td,where Td=Rd/2πZddenotes thed-dimensional torus.In the perturbation theory,one considers the Hamiltonian functions defined inT?Td,which can be viewed as Td×Rd,of the following form

    where (p,q)∈Rd×Tdis the action and angle variables respectively.IfH1= 0,the Hamiltonian system associated with (1.2)is integrable.IfH1(p,q)is a small perturbation in some sense,the Hamiltonian system corresponding to (1.2)is called nearly integrable.The classic celebrated KAM theorem[2]states that the invariant tori persists under the perturbation with suitable non-degenerate conditions.The KAM theory in the deterministic case is a fundamental result of Hamiltonian systems,and it has many significant and wide applications to various problems,for instance celestial mechanics,symplectic algorithms[3,7],Anderson localization etc.In the stochastic case,few results are known.Let (?,F,P,{θt}t∈R)denote the canonical metric dynamical system describing R1-valued Brownian motion{Bt}t∈R.Let us begin with the toy model problem:

    whereN0,N1only depend onp,?Nidenotes the gradient field generated byNi,andJdenotes the standard complex structure in R2d.The solution of (1.3)can be written as

    This can be seen as the stochastic version of integrable systems.Now,assume that for someZd,?piN0(p?)=2πki/Tfor alli=1,··· ,d,then it is easy to see

    with (ξ,ζ)=(0,··· ,0,?p1N1(p?)BT(ω),··· ,?pdN1(p?)BT(ω))for all (t,ω)∈R×?,and as a random dynamical system[1]there holds

    whereφ(t,ω)(p,q)denotes the solution of (1.3)with initial data (p,q).

    Inspired by(1.5),(1.6),we introduce the notion of periodic variation solutions as follows:

    Definition 1.1LetMbe a finite or infinite dimensional linear space or a smooth manifold embedded into Euclidean spaces.Letφ:Λ×?×M →Mbe the mapping which defines a measurable random dynamical system on the measurable space(M,B)over a metric random dynamical system (?,F,P,(θt)t∈Λ).We sayY(t,ω)is a random periodic variation solution (RPVS)withF0measurable initial dataY(0,ω)if there exists someT >0 and anM-valued (whenMis a linear space)or RN-valued (whenMis a manifold)random functionξ:ω ∈? →Morξ:ω ∈? →RNsuch that for allt ∈Λ,ω ∈?,there holds

    where (i)in (1.7)holds in the Euclidean space RNifMis a manifold embedded into RN.

    If the random dynamical system is a two parameter stochastic flowφ:I×I×?×M →M,(1.7)is replaced by

    for anyt,s ∈I,ω ∈?.

    If we requireξ=0 in(i)of(1.7),then solutions satisfying(1.7)are called random periodic solutions (RPS),i.e.,

    See the works of ZHAO,et al.[13]and FENG,et al.[6]for existence of RPS of contraction systems and dissipative systems.

    The other widely used notion of periodic solutions is the periodic Markov process solution:We say the solution of a stochastic equation is a periodic homogeneous Markov process solution if it is an Rmvalued homogeneous Markov process and the joint distribution P(ut1∈A1,··· ,utn ∈An)satisfies

    for someT >0 and all 0≤t1<···

    We summarize the existence/non-existence of RPS and RPVS for (1.3)in the following lemma.It is somewhat casual,and the precise statement can be found in Section 3.

    Proposition 1.1(1.3)has no random periodic solutions except for some trivial cases(See Proposition 3.1).ForF0measurable initial data (p(0),q(0))= (ξ,η),the solution of(1.3)is a random periodic variation solution iff{?Ni(ξ)}i=0,1are deterministic.

    In general,if the frequencies{?piN0(p?)}di=1are rationally independent,the solution of(1.3)is invariant tori like:

    where{Yj(t,ω)}dj=1are RPVSs.

    If there is essentially only one driving Hamiltonian in (1.1),i.e.,Hα=Fα(H)for allα= 0,··· ,l,it is easy to apply the classic KAM theorem to obtain random invariant tori like solutions in the stochastic case.Generally multi driving Hamiltonian functions may lead to non-existence of invariant tori.For the special cased= 1,we will see there exists a neat result:

    Proposition 1.2Letd=1.LetH0be a Hamiltonian function on R×T which gives rise to a small analytic perturbation of integrable systems.Let{Hα}lα=1be analytic functions ofp,q ∈C2.If the driving Hamiltonian functions satisfy

    then under reasonable non-degenerate assumptions,(1.1)has random invariant tori.See Proposition 3.2 for the precise statement.

    In a summary for SODEs,we remark that(i)Random periodic solutions generally do not exist for Hamiltonian type equations;(ii)The existence of random periodic variation solutions and invariant tori depends heavily on the involution property of the driving Hamiltonian functions.

    Let’s consider infinite dimensional random dynamical systems.Let(?,F,(Ft)t∈R,P,(θt)t∈Λ)be the canonical complete filtered Wiener space endowed with filtrationFts:=σ{Br1?Br2:s ≤r1,r2≤t}.DenoteandLet{ζj(t)}j∈Zbe a sequence of independent R-valued standard Brownian motions ont ∈R associated to the filtration(Ft)t∈R.LetΦ:L2(Td;C)→L2(Td;C)be a linear bounded operator withQ=ΦΦ?being a finite trace operator inL2(Td;C).Lettingbe the orthonormal basis forL2(Td;C),we define the processWto be

    It is easy to see the series (1.11)converges inL2(?×Td;C)and almost surely inL2(Td;C).This process is a special case ofQ-cylindrical Wiener process withQ=ΦΦ?.

    Theorem 1.1(i)IfΦ0,then the linear stochastic Schr?dinger equation with addictive noise

    has no RPVS.

    (ii)Let us consider the linear stochastic Schr?dinger equation with combined noise:

    whereλ ∈R,fis a real valued function which is periodic int,f(t+T1)=f(t),and smooth inx ∈Td.Thenuis an RPVS withF0measurable initial datau0∈L2(?,L2x)for (1.12)if only iff=0 andu=0.

    In the following,we denote ?Tu(t,w)=u(t+T,w)?u(t,θTw).

    2.Linear SPDEs

    We divide the proof of Theorem 1.1 into two propositions.Let{ek}k∈Zdbe the eigenfunctions of ?in Tdsuch that ?ek=?|k|2ek,andπkdenote the projection onto span{ek}.We getf:? →L2xis (F,B(L2x))measurable iffπkfis (F,B(C))measurable for allk ∈Zd.And similar results hold withFreplaced byFts,FtandFtas well.These facts will be used widely in this section without emphasis.

    Proposition 2.1Assume that the operatorΦ0 in (1.11).The linear stochastic Schr?dinger equation with addictive noise

    has no RPVS.

    ProofDefine

    then we haveE|ξk(t,ω)|2=|t|β2kwhere{βk}are defined by

    Applying the Fourier transform to (2.1)gives

    The solution is an Ornstein-Uhlenbeck process

    whereak=(u0,ek),k ∈Zd.Thus we have

    And by change of variables,(2.4)reduces to

    Thus,ifuis a random periodic variation solution,then there holds

    By iteration of (2.6),there holds

    Since we have by be Cauchy-Schwartz inequality and the Itisometry formula that

    the contradiction follows ifβk0 by lettingL →∞.Therefore,βk=0 for allk ∈Zd,which leads toΦ= 0,since{}j∈Zand{ek}k∈Zdare complete bases.Hence,no random periodic variation solution exists ifΦ0 .

    Proposition 2.2Let us consider the linear stochastic Schr?dinger equation with combined noise:

    whereλ ∈R,fis a real valued function which is periodic int,f(t+T1)=f(t),and smooth inx ∈Td.Thenuis an RPVS withF0measurable initial datau0∈L2(?,L2x)for (2.8)if only iff=0 andu=0.

    ProofSince (2.8)is non-autonomous,for RPVS,we use the definition in (1.8).Let us choose the eigenfunctions{ek}for Laplacian to be real valued functions,The solution is written as

    whereak=(u0,ek),k ∈Zd.Then one has by change of variables that

    Now,we prove RPVS exists ifff=0 andu=0.Assume thatuis an RPVS,i.e.?Tu(t)=ξfor someF-measurable random variableξand allt ≥0.

    Step 1 Taking the covariance of both sides of (2.10),we obtain by the It? isometry formula and the Cauchy-Schwartz inequality that

    for allt ≥0.Sincefis real valued and we have taken the orthogonal basis to be real functions,we see{}are real fork ∈Zd.Then byf(t+T1)=f(t)for allt ≥0,one has

    forn ∈Z.Thus (2.11),(2.12)show

    where in the last line we applied the periodicity off,(2.12)and change of variables.Thus,lettingn →∞,we get

    which by the periodicity offfurther shows that

    holds for allt ≥0.Assume thatis not identically zero.Let(t1,t2)be any interval contained in((0,∞)),then,choosing|t1?t2|to be sufficiently small,we have fort ∈(t1,t2)

    for someL ∈Z which depends ont1,t2and is independent oft ∈(t1,t2).Taking derivatives tot ∈(t1,t2)yieldsfort ∈(t1,t2).

    Back to (2.10),we see,for allt ≥0,

    Recall ?Tu=ξ.DenoteSinceu0isF0measurable,the underline parts areFTmeasurable.Taking conditional expectation E(·|FT),by the independence ofBt+T ?BTandFT,we have

    Thus since

    by taking covariance of (2.14)and the It? formula,we get that

    which ast →∞yields E(ξk|FT)=0,a.s.

    Inserting this to (2.14)shows

    Then by iteration we obtain for allt ≥0

    where we chosetj:=LT ?(j+1)Tand applied the fact thatTis a period off.Then by the Itformula,

    Therefore,by lettingL →∞,we see there exists no RPVS iffis nontrivial.

    Step 2 Now,it remains to consider the degenerate case whenf ≡0.In this case,(2.10)reduces to

    which combined withθ?TP=P gives

    where in the second equality we usedBT ?B0is independent ofF0andu0isF0adapted.

    LettingL →∞,by (2.16),we have

    SinceF0:=σ{Bt ?Bs:s,t ≤0},u0isF0measurable and belongs toL2(?;L2x),we obtain by(2.17)and the representation theorem for square integrable random variables (see Theorem 1.1.3 in [11])that there exists a unique adapted processMt ∈L2((?∞,0)×?)such that

    Thus,by the same reason as (2.16),we see from (2.15)that

    Then,applying (2.18),we arrive at

    which by change of variables gives

    SinceM(t ?T,θTω)andM(t,ω)areFtadapted and belong toL2((?∞,0)×?),by the It? formula,(2.19)shows

    Taking conditional expectation of both sides of (2.15)w.r.t,FT0gives

    which combined with (2.18)shows

    However,sinceFT0is independent ofF0,we see E(ak|FT0)=E(ak)=0.

    Thus (2.21)shows

    which by the It? formula further yields

    SinceθTis invertible,taking(2.22)as the starting point and doing iteration by(2.20)illustrate that

    Therefore,we conclude from (2.18)that

    3.Finite Dimensional Case

    In this section,we prove the results stated in Section 1 for SODEs.

    Proposition 3.1LetN0,N1beC1bounded functions ofp ∈Rd.Consider the SODE for (p,q)∈Rd×Td:

    Then we have

    1)(p,q)is RPVS if and only if?pN0(ξ),?pN1(ξ)are independent ofω;

    2)(p,q)is RPS if and only ifwithandη,ξare deterministic.

    ProofStep 1 The solution for (3.1)is given by

    The covariance of (3.2)is of orderc0t2ast →∞,ifc0defined by

    does not vanish.If (p,q)is an RPVS,then the covariance of ?Tq(t,ω)is identical w.r.t.t ≥0.Thusc0= 0.SinceξisF0measurable,isFTmeasurable.ThenBt+T ?BTis independent ofHence there holds

    Thus byc0= 0,the covariance of (3.2)is of orderc1tast →∞ifc1:=is not zero.Hence,c1=0 as well.Now we summarize that if (p,q)is an RPVS then

    (3.3)impliesNi(ξ)is independent ofωby similar arguments in Section 2.In fact,the representation theorem of square random variables show

    forMi ∈L2((?∞,0)×?)because(ξ)∈L2(?)isF0measurable fori= 0,1.Inserting(3.4)into (3.3)yields

    Then the It? formula shows

    Therefore,we arrive at

    namely,they are independent ofω.

    Step 2 If we assume furthermore that (p,q)is an RPS,then by (3.5)and (3.2),for someZdthere holds

    Similar arguments as Step 1 show that(3.6)impliesξis deterministic.And we seeTE(ξ)=by applying mathematical expectation to (3.7)sinceθ?P = P.Writingη= E(η)+for someh ∈L2((?∞,0)×?),taking conditional expectation of (3.7)w.r.t.FT0,one obtains

    And taking conditional expectation of (3.7)w.r.t.F0gives

    Sincethe Itformula with (3.8)shows

    By (3.10)and (3.11),we have

    which belongs toL2((?∞,0)×?)if and only if E(ξ)=0.Hence,we have deduced

    Therefore,by Step 1,we conclude that (p,q)is an RPS if and only if

    We have several examples:

    Example 3.1Letd= 2,N0(p)=f(p1),N1(p)=g(p1),then (p0,q0)= (c1,?,ψ1,ψ2),wherec1is deterministic and?,ψ1,ψ2areF0adapted random variables,evolves to an RPVS.It is an RPS iffψ1,ψ2are deterministic.

    Given?>0.p?∈Rd,define the setDp?,?={(p,q)∈C2d:|p ?p?|≤?,|?q|≤?},where?q= (?q1,··· ,?qd).Let Ap?,?be the set of complex valued continuous functions onDp?,?which are analytic functions in the interior,2π-periodic inq(i.e.f(p,q+2π)=f(p,q),?f ∈Ap?,?)and real valued for (p,q)∈R2d.

    Proposition 3.2LetH0be a Hamiltonian function of the formH0=N(p)+?(p,q)withN,∈Ap?,?.Denote

    Assume that (Bij)is a non-singulard×dmatrix andsatisfies the Diophantine condition,i.e.there exists a positive constantγsuch thatdefined by

    ?Consider the stochastic ODE (1.1)in R1×T with Hamiltonian functions{Hα}0≤α≤lwhich satisfy

    And assume that{Hα}lα=1are analytic functions inD?,p?and continuous to the boundary as well.Then there exists a constant?0>0 such that for given? ∈[0,?0] there exists a symplectic transformΨ:D?′,p?→D?,p?and solution (p(t),q(t))to (1.1)satisfying

    for someconstantsλα ∈R,α=1,··· ,l,andλ0=?pN(p?).

    ?Letd ≥1.Consider the stochastic ODE (1.1)in Rd×Tdwith Hamiltonian functionsH0(p,q)=N(p)+(p,q)and{Fβ(H0)}1≤β≤l:

    where{Fβ}are smooth functions.Then there exists a constant?0>0 such that for given? ∈[0,?0] there exists a symplectic transformΨ:D?′,p?→D?,p?satisfying

    ProofStep 1 Letλ=?N(p?)be the unperturbed frequency.By the classic KAM theorem,there exists a symplectic differmorphismsuch that

    in(p,q)for somez ∈R and an analytic functionR(·,·)which is of the order|p?p?|2.

    We will frequently use the following identity

    DenoteΨ=(Ψ1,··· ,Ψ2d)the inverse ofΦ,then

    Assume that (p(t),q(t))solve (3.13),then by It?’s formula

    By (3.16)and the factΦis a symplectic differmorphism,we get

    where in the last line we applied the Taylor expansion toFαatzand used (3.15)to expandH ?Φ.

    Thus (3.17),(3.18)show

    which implies that (3.14)is a solution.

    Step 2 It remains to prove the left S1×R1case.Applying (3.15)toH0gives the expansion

    for some symplectic differmorphismΦ,z0∈R,λ=H′0(p?),andRis of order|p ?p?|2.SinceΦkeeps the symplectic form,

    where we applied (3.12)in the last line.Therefore,we arrive at

    for allβ=0,...,l.Denote=Hβ ?Φ.Then one sees

    Then,comparing the coefficients of zero and one order of|p ?p?|,(3.19)gives

    Sinceλ0,A0(q)andA1(q)are constants.Thus (3.20)shows the symplectic transformΦtransforms all{Hα}into the canonical form

    Then the same argument in Step 1 gives the desired result.

    久久久午夜欧美精品| 日韩一本色道免费dvd| 在线观看66精品国产| 黄色配什么色好看| 欧美人与善性xxx| 一边亲一边摸免费视频| 亚洲真实伦在线观看| 国产一区二区三区av在线| 黄片无遮挡物在线观看| 亚洲欧洲国产日韩| 国产精品一及| 中文精品一卡2卡3卡4更新| 黑人高潮一二区| 日日撸夜夜添| 久久综合国产亚洲精品| 欧美zozozo另类| 99久国产av精品国产电影| 精品人妻熟女av久视频| 在线免费观看不下载黄p国产| 色视频www国产| 99久久精品国产国产毛片| 2021少妇久久久久久久久久久| 久久韩国三级中文字幕| 日本黄色片子视频| 99热这里只有是精品50| 搞女人的毛片| 男女那种视频在线观看| 建设人人有责人人尽责人人享有的 | 欧美激情在线99| av国产久精品久网站免费入址| 91精品伊人久久大香线蕉| 久久精品夜色国产| 亚洲精品一区蜜桃| 99热这里只有是精品50| 赤兔流量卡办理| 国产伦理片在线播放av一区| 看十八女毛片水多多多| 久久精品人妻少妇| 最近最新中文字幕免费大全7| 日本免费一区二区三区高清不卡| 汤姆久久久久久久影院中文字幕 | 国产精品一区二区三区四区免费观看| 三级国产精品欧美在线观看| 熟女电影av网| 国产高潮美女av| 日韩欧美精品v在线| 国产国拍精品亚洲av在线观看| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩卡通动漫| 美女内射精品一级片tv| 日韩成人av中文字幕在线观看| 亚洲成人久久爱视频| 18禁动态无遮挡网站| 亚洲人成网站高清观看| 国产在视频线在精品| 国产成人午夜福利电影在线观看| 免费av不卡在线播放| 神马国产精品三级电影在线观看| 免费播放大片免费观看视频在线观看 | 搡女人真爽免费视频火全软件| 久久婷婷人人爽人人干人人爱| 久久久久免费精品人妻一区二区| 最近中文字幕2019免费版| 亚洲精品自拍成人| 日日撸夜夜添| 18禁在线播放成人免费| 中文字幕熟女人妻在线| 嫩草影院新地址| 欧美色视频一区免费| 国产精品永久免费网站| 免费看光身美女| 久久精品国产亚洲av涩爱| 久久这里有精品视频免费| 女的被弄到高潮叫床怎么办| 国产伦理片在线播放av一区| 国产乱人视频| 97人妻精品一区二区三区麻豆| 久久欧美精品欧美久久欧美| 少妇被粗大猛烈的视频| 国产av不卡久久| 男女视频在线观看网站免费| 精品一区二区三区视频在线| 国产精品熟女久久久久浪| 国产69精品久久久久777片| 国产精品国产三级国产专区5o | 村上凉子中文字幕在线| av免费在线看不卡| 美女国产视频在线观看| 青春草亚洲视频在线观看| 99久久无色码亚洲精品果冻| 三级国产精品片| 久久久a久久爽久久v久久| 国产亚洲精品av在线| 国产精品.久久久| 亚洲精品aⅴ在线观看| 国产成人免费观看mmmm| 听说在线观看完整版免费高清| 亚洲最大成人手机在线| 亚洲国产精品成人综合色| 水蜜桃什么品种好| 亚洲av成人精品一区久久| 99久久九九国产精品国产免费| 一区二区三区高清视频在线| 国产精品综合久久久久久久免费| 国产三级在线视频| 国产av不卡久久| 日韩精品有码人妻一区| 亚洲国产欧洲综合997久久,| 久久久久久久午夜电影| 两个人视频免费观看高清| 最近2019中文字幕mv第一页| 欧美高清性xxxxhd video| 熟妇人妻久久中文字幕3abv| 亚洲中文字幕一区二区三区有码在线看| 国产极品天堂在线| 亚洲国产精品sss在线观看| 长腿黑丝高跟| 亚洲精品影视一区二区三区av| 久99久视频精品免费| 男女那种视频在线观看| 尾随美女入室| 寂寞人妻少妇视频99o| 欧美日韩精品成人综合77777| 舔av片在线| 国产老妇伦熟女老妇高清| 欧美成人精品欧美一级黄| 最近最新中文字幕大全电影3| 久久这里有精品视频免费| 亚洲av日韩在线播放| 丰满人妻一区二区三区视频av| 欧美zozozo另类| 欧美成人a在线观看| 一边摸一边抽搐一进一小说| 人妻系列 视频| 日韩一区二区视频免费看| av.在线天堂| 男女啪啪激烈高潮av片| 精品国产三级普通话版| 99九九线精品视频在线观看视频| 国产人妻一区二区三区在| 99热这里只有是精品50| 日韩成人伦理影院| 日本免费在线观看一区| 欧美bdsm另类| 乱人视频在线观看| av女优亚洲男人天堂| 亚洲在线观看片| 国产高清不卡午夜福利| 亚洲欧美日韩无卡精品| 国产成人免费观看mmmm| 97在线视频观看| 亚洲国产精品成人综合色| 欧美成人精品欧美一级黄| 国产在线男女| 永久免费av网站大全| 久久国产乱子免费精品| 免费看美女性在线毛片视频| 99热全是精品| 赤兔流量卡办理| 最近中文字幕2019免费版| 国产av在哪里看| 婷婷六月久久综合丁香| 亚洲内射少妇av| 精品免费久久久久久久清纯| 特大巨黑吊av在线直播| 国产在线男女| 少妇人妻一区二区三区视频| 国产成人福利小说| 亚洲国产色片| 免费av观看视频| 日韩av在线免费看完整版不卡| a级毛片免费高清观看在线播放| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 亚洲乱码一区二区免费版| АⅤ资源中文在线天堂| 免费黄色在线免费观看| 高清毛片免费看| 欧美高清成人免费视频www| 国产老妇女一区| 亚洲国产精品专区欧美| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 亚洲高清免费不卡视频| 国产精品久久电影中文字幕| 亚洲国产精品合色在线| 日韩精品有码人妻一区| 久久久久久久久大av| 免费大片18禁| 婷婷色av中文字幕| 国产探花极品一区二区| 成人三级黄色视频| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 又爽又黄a免费视频| 亚洲中文字幕日韩| 99热网站在线观看| 亚洲精品影视一区二区三区av| 久久精品国产亚洲网站| 国产成人freesex在线| 精品久久久久久久久亚洲| 69人妻影院| 中文字幕精品亚洲无线码一区| 国产成人午夜福利电影在线观看| 久久久午夜欧美精品| 国产一区二区亚洲精品在线观看| 精品无人区乱码1区二区| 啦啦啦观看免费观看视频高清| av在线蜜桃| 国产一区二区在线av高清观看| 日本欧美国产在线视频| 国产乱人偷精品视频| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 久久精品综合一区二区三区| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| 精品人妻偷拍中文字幕| 国产精品三级大全| 在线免费十八禁| 国产精品野战在线观看| 国产精品一区二区在线观看99 | 久久精品熟女亚洲av麻豆精品 | 亚洲在久久综合| 自拍偷自拍亚洲精品老妇| 亚洲av免费在线观看| 国内精品宾馆在线| 亚洲国产成人一精品久久久| 黄色日韩在线| 国产精品,欧美在线| 六月丁香七月| 直男gayav资源| 国语自产精品视频在线第100页| 欧美精品国产亚洲| 嫩草影院入口| 国产亚洲一区二区精品| 久久久久国产网址| 久久久久久伊人网av| 国产精品熟女久久久久浪| 欧美潮喷喷水| 久久久亚洲精品成人影院| 国产一区二区亚洲精品在线观看| 亚洲欧美一区二区三区国产| 在线播放无遮挡| 黄片无遮挡物在线观看| 嫩草影院入口| 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 26uuu在线亚洲综合色| 亚洲av电影在线观看一区二区三区 | 国产欧美日韩精品一区二区| 小蜜桃在线观看免费完整版高清| 91久久精品电影网| 久久精品国产自在天天线| 两个人视频免费观看高清| 国产在视频线在精品| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 永久网站在线| 亚洲精品国产成人久久av| 免费看日本二区| 三级男女做爰猛烈吃奶摸视频| 爱豆传媒免费全集在线观看| 国产淫片久久久久久久久| 国产又色又爽无遮挡免| 亚洲精品日韩av片在线观看| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 亚洲自拍偷在线| 亚洲高清免费不卡视频| 啦啦啦韩国在线观看视频| 午夜日本视频在线| 国产精品久久久久久av不卡| 亚洲三级黄色毛片| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 国产精品乱码一区二三区的特点| 久久久久久久久大av| 性插视频无遮挡在线免费观看| 在线免费观看不下载黄p国产| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站| 国产精品1区2区在线观看.| 最近最新中文字幕免费大全7| 中文字幕熟女人妻在线| 国产一级毛片在线| 97超碰精品成人国产| 热99在线观看视频| 国产片特级美女逼逼视频| 高清视频免费观看一区二区 | 亚洲经典国产精华液单| 亚洲熟妇中文字幕五十中出| 成人二区视频| 欧美精品一区二区大全| 草草在线视频免费看| 六月丁香七月| 久久久久久久久中文| 国产亚洲5aaaaa淫片| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 身体一侧抽搐| 中国国产av一级| 精品99又大又爽又粗少妇毛片| 国产伦理片在线播放av一区| 日韩视频在线欧美| 国内精品美女久久久久久| 深爱激情五月婷婷| 亚洲av电影不卡..在线观看| 全区人妻精品视频| 欧美性感艳星| 国产91av在线免费观看| 亚洲经典国产精华液单| 国产精品,欧美在线| 好男人在线观看高清免费视频| 亚洲,欧美,日韩| 日韩欧美三级三区| 日本欧美国产在线视频| 国产精品麻豆人妻色哟哟久久 | 精品少妇黑人巨大在线播放 | 免费看av在线观看网站| 人人妻人人看人人澡| 亚洲美女视频黄频| 国产亚洲精品久久久com| 国产成人午夜福利电影在线观看| 看非洲黑人一级黄片| 欧美成人一区二区免费高清观看| 美女被艹到高潮喷水动态| 最新中文字幕久久久久| 亚洲av免费高清在线观看| 午夜免费男女啪啪视频观看| av播播在线观看一区| 国产成人a∨麻豆精品| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 老司机影院成人| 岛国毛片在线播放| 亚洲精品乱久久久久久| 非洲黑人性xxxx精品又粗又长| 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 三级国产精品片| 国产熟女欧美一区二区| 欧美一区二区国产精品久久精品| 成人二区视频| 中文天堂在线官网| 视频中文字幕在线观看| 十八禁国产超污无遮挡网站| 自拍偷自拍亚洲精品老妇| 女人十人毛片免费观看3o分钟| 精品人妻一区二区三区麻豆| 国产亚洲5aaaaa淫片| 男女视频在线观看网站免费| 国产色爽女视频免费观看| 午夜日本视频在线| 日日摸夜夜添夜夜爱| 99久久成人亚洲精品观看| 精品不卡国产一区二区三区| 国产一区亚洲一区在线观看| 三级国产精品片| 人人妻人人澡人人爽人人夜夜 | 日韩一本色道免费dvd| 精品免费久久久久久久清纯| 真实男女啪啪啪动态图| 日韩人妻高清精品专区| 丝袜美腿在线中文| 欧美日韩国产亚洲二区| 五月玫瑰六月丁香| 成人二区视频| 午夜福利网站1000一区二区三区| av在线播放精品| 久久久精品大字幕| 国产av码专区亚洲av| 变态另类丝袜制服| 成年av动漫网址| 亚洲精品,欧美精品| 能在线免费看毛片的网站| 小蜜桃在线观看免费完整版高清| 久久国产乱子免费精品| 色播亚洲综合网| 成人一区二区视频在线观看| 国产不卡一卡二| 韩国高清视频一区二区三区| 国产熟女欧美一区二区| 中文字幕熟女人妻在线| 国产一区有黄有色的免费视频 | 白带黄色成豆腐渣| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 网址你懂的国产日韩在线| 亚洲国产欧美人成| 欧美成人午夜免费资源| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 男女那种视频在线观看| 黄片无遮挡物在线观看| 国产精品嫩草影院av在线观看| 岛国毛片在线播放| 99在线人妻在线中文字幕| 99久国产av精品| 国产精品一区二区三区四区免费观看| 99在线人妻在线中文字幕| 久久久久久久国产电影| 亚洲精品自拍成人| 男插女下体视频免费在线播放| 不卡视频在线观看欧美| 亚洲精品色激情综合| 日本三级黄在线观看| 国产三级中文精品| 国产精品日韩av在线免费观看| 建设人人有责人人尽责人人享有的 | 69av精品久久久久久| 99久久精品一区二区三区| 久久精品国产自在天天线| 麻豆乱淫一区二区| 国产熟女欧美一区二区| 嫩草影院新地址| 十八禁国产超污无遮挡网站| 自拍偷自拍亚洲精品老妇| 一区二区三区乱码不卡18| 一个人看视频在线观看www免费| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 日韩精品青青久久久久久| 亚洲欧美清纯卡通| 看免费成人av毛片| 国产精品日韩av在线免费观看| 精品人妻一区二区三区麻豆| 91av网一区二区| 最近的中文字幕免费完整| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 最近视频中文字幕2019在线8| 免费观看的影片在线观看| 亚洲人成网站在线观看播放| 亚洲av成人精品一二三区| 国产精品国产三级国产专区5o | videossex国产| 日韩,欧美,国产一区二区三区 | 精品人妻一区二区三区麻豆| 97人妻精品一区二区三区麻豆| 18禁裸乳无遮挡免费网站照片| 久久久久久久久中文| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 国产av在哪里看| 水蜜桃什么品种好| 久久精品91蜜桃| 午夜亚洲福利在线播放| 99热这里只有是精品50| 日本wwww免费看| 嘟嘟电影网在线观看| 国产精品国产三级专区第一集| 2021少妇久久久久久久久久久| 亚洲色图av天堂| 青春草亚洲视频在线观看| 国产成人精品一,二区| 国产一区二区在线观看日韩| 国产中年淑女户外野战色| 网址你懂的国产日韩在线| av在线天堂中文字幕| 夜夜爽夜夜爽视频| 99久久精品热视频| 女的被弄到高潮叫床怎么办| 中文欧美无线码| 中文字幕精品亚洲无线码一区| 国产精品一区二区性色av| 狠狠狠狠99中文字幕| 午夜视频国产福利| 亚洲自偷自拍三级| 99热这里只有是精品50| 色综合亚洲欧美另类图片| 如何舔出高潮| av国产免费在线观看| 干丝袜人妻中文字幕| 欧美日本亚洲视频在线播放| 麻豆精品久久久久久蜜桃| 日韩欧美 国产精品| 日本欧美国产在线视频| 亚洲成色77777| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 久久人人爽人人爽人人片va| 亚洲丝袜综合中文字幕| av免费在线看不卡| 真实男女啪啪啪动态图| 美女国产视频在线观看| 久久久久久久国产电影| 人人妻人人澡欧美一区二区| 国产精品一区www在线观看| 小说图片视频综合网站| 欧美zozozo另类| 九九热线精品视视频播放| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| 国产亚洲av嫩草精品影院| 岛国毛片在线播放| 一个人观看的视频www高清免费观看| 精品少妇黑人巨大在线播放 | 晚上一个人看的免费电影| av在线观看视频网站免费| 久热久热在线精品观看| 91av网一区二区| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 最近2019中文字幕mv第一页| 日本五十路高清| 91精品国产九色| 男人舔女人下体高潮全视频| 国产乱人偷精品视频| 五月玫瑰六月丁香| 亚洲av中文字字幕乱码综合| 听说在线观看完整版免费高清| 免费看光身美女| 精品久久久久久久末码| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 一区二区三区高清视频在线| 少妇熟女欧美另类| 国产精品久久久久久久电影| 日韩亚洲欧美综合| ponron亚洲| 国产人妻一区二区三区在| 久久久亚洲精品成人影院| 欧美xxxx性猛交bbbb| 中文欧美无线码| 久久久久久久国产电影| 久久久久久伊人网av| 国产大屁股一区二区在线视频| 久久精品久久久久久噜噜老黄 | 少妇被粗大猛烈的视频| 99久国产av精品| www日本黄色视频网| 欧美极品一区二区三区四区| 亚洲综合色惰| 亚洲三级黄色毛片| 欧美性猛交黑人性爽| 日韩在线高清观看一区二区三区| 国产精品国产三级国产av玫瑰| 国产精品野战在线观看| 男女国产视频网站| 亚洲,欧美,日韩| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 搡老妇女老女人老熟妇| 午夜免费男女啪啪视频观看| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av一区综合| 黄色配什么色好看| 免费搜索国产男女视频| 国产高清不卡午夜福利| 久久久色成人| 国产亚洲5aaaaa淫片| 亚洲欧美精品综合久久99| 少妇丰满av| 亚洲av不卡在线观看| 少妇丰满av| 日本一本二区三区精品| 国产亚洲最大av| 熟妇人妻久久中文字幕3abv| 久久精品影院6| 免费av观看视频| 岛国在线免费视频观看| 国产av码专区亚洲av| 最近的中文字幕免费完整| 日韩中字成人| 亚洲美女搞黄在线观看| 亚洲18禁久久av| 久久这里有精品视频免费| 成人漫画全彩无遮挡| 看十八女毛片水多多多| 国产成人a∨麻豆精品| av.在线天堂| 国产精品一区www在线观看| 亚洲真实伦在线观看| 人妻系列 视频| 亚洲精品亚洲一区二区| 国产精品蜜桃在线观看| 国产成人91sexporn| 亚洲av成人精品一区久久| 亚洲精品国产成人久久av| 亚洲在久久综合| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影| 亚洲欧美一区二区三区国产| 国产 一区精品| 高清毛片免费看| 亚洲自偷自拍三级| 国产伦一二天堂av在线观看| 一区二区三区四区激情视频| 在线a可以看的网站| 一本久久精品| 我的老师免费观看完整版| 99在线视频只有这里精品首页| av在线观看视频网站免费| 99久久人妻综合| 色哟哟·www| 国产探花极品一区二区| 国语对白做爰xxxⅹ性视频网站| 大话2 男鬼变身卡| 99热6这里只有精品| 免费观看a级毛片全部| 精品人妻一区二区三区麻豆| 国产精品三级大全| 不卡视频在线观看欧美| 午夜福利在线观看吧| 日韩欧美 国产精品| 国产亚洲一区二区精品| 午夜a级毛片| 大又大粗又爽又黄少妇毛片口| 久久久精品欧美日韩精品| 三级经典国产精品|