• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computation of an Emptiable Minimal Siphon in a Subclass of Petri Nets Using Mixed-Integer Programming

    2021-04-14 06:55:14ShouguangWangSeniorMemberIEEEWenliDuoXinGuoXiaoningJiangDanYouKamelBarkaouiandMengChuZhouFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Shouguang Wang, Senior Member, IEEE, Wenli Duo, Xin Guo, Xiaoning Jiang,Dan You, Kamel Barkaoui, and MengChu Zhou, Fellow, IEEE

    Abstract—Deadlock resolution strategies based on siphon control are widely investigated. Their computational efficiency largely depends on siphon computation. Mixed-integer programming (MIP) can be utilized for the computation of an emptiable siphon in a Petri net (PN). Based on it, deadlock resolution strategies can be designed without requiring complete siphon enumeration that has exponential complexity. Due to this reason, various MIP methods are proposed for various subclasses of PNs. This work proposes an innovative MIP method to compute an emptiable minimal siphon (EMS) for a subclass of PNs named S4PR. In particular, many particular structural characteristics of EMS in S4PR are formalized as constraints,which greatly reduces the solution space. Experimental results show that the proposed MIP method has higher computational efficiency. Furthermore, the proposed method allows one to determine the liveness of an ordinary S4PR.

    I. INTRODUCTION

    PETRI nets (PNs) are an extensively used tool of mathematics for dealing with the presence of deadlock states in various discrete event systems, such as workflow systems [1]-[3], business systems, railway networks [4] and flexible manufacturing systems [5], [6]. A siphon is a structural object of PNs. Its token count is closely associated with the presence of deadlocks [7]. For example, a deadlock may arise in ordinary PNs when there is a siphon being emptied, i.e., when its token count is zero. Consequently,many deadlock resolution strategies [8]-[24] are developed based on siphon control. They all require a step called siphon computation. It in turn decides the computational complexity of such deadlock resolution strategies. Due to this reason,researchers study the ways to perform efficient siphon computation.

    Many studies focus on the complete enumeration of siphons in a PN. Some methods can be utilized for general nets, such as problem partitioning methods [25], [26], graph theory [27],[28], sign matrix methods [29], genetic algorithms [30], [31],binary decision diagrams [32] and INA-based methods [33].The other ones are proposed for specific subclasses of PNs[16], [34]-[39] which have higher computational efficiency than methods applicable to general nets. These proposed methods have greatly improved the computational efficiency of complete siphon enumeration. However, they are of exponential complexity with respect to the net size. This is because at worst, the number of siphons in a PN grows exponentially in terms of the net size. Therefore, deadlock resolution strategies calling for complete siphon enumeration have high computational complexity.

    Can we find deadlock control strategies with no complete siphon enumeration? Chu and Xie [40] introduce a mixedinteger programming (MIP) method for detecting the existence of deadlocks in PNs. In more detail, they propose an MIP problem where one maximal emptied siphon is derived if its solution is found. More significantly, no siphon is emptiable in the case no solution is found. This important result can thus be utilized to determine the deadlock-freedom or liveness of a PN. The MIP method is computationally efficient even when applied to large-scale nets since it does not require the reachability analysis and thus avoids the problem of state explosion. Based on it, Huang et al. [41]develop a liveness-enforcing policy in an iterative way for a subclass of PNs called “ systems of simple sequential processes with resources (S3PR)”. The basic idea is that, at every iteration, it uses an MIP method to compute a maximal emptied siphon, then extracts a minimal siphon from the obtained maximal emptied siphon, and finally makes the extracted minimal siphon controlled. Such a policy successfully avoids the complete enumeration of siphons and thereby has much higher computational efficiency than those requiring complete siphon enumeration. The minimal siphon extraction from a maximal emptiable siphon is also studied in[10] and [42]. In addition, after the work by Chu and Xie [40],a variety of revised MIP methods are proposed in the literature for the purpose of checking/ensuring liveness or deadlockfreedom of concerned subclasses of PNs, e.g., [43]-[46].

    We observe that the constraints in the existing MIP formulations like those in [40] represent properties of siphons in general nets only. In other words, although some revised MIP methods are proposed for specific subclasses of PNs, the particular properties or structural characteristics of emptiable siphons in specific nets are not taken into consideration, which actually may contribute to lowering the computational time.For example, in our previous work [47], we propose an improved MIP method for S3PR to compute an emptiable minimal siphon (EMS), where the structural characteristics of EMS in S3PR are utilized to construct constraints. We can see that the more non-redundant constraints we add, the smaller the solution space is and thus the higher the computational efficiency is. Experimental results in [47] validate that the improved MIP method outperforms greatly the MIP method in[40] in terms of computational efficiency, which is more evident for large-size nets.

    Inspired by the work [47], we seek to determine if such a strategy can be extended for a more general net than S3PR.This work addresses this issue by dealing with S4PR.Specifically, we propose a novel MIP method to compute an EMS in S4PR where the particular structural characteristics of EMS in such nets are formalized as constraints for the first time. Compared with the existing MIP formulations applicable to S4PR, the solution space of the proposed MIP problem is narrowed down since more non-redundant constraints are added. Experimental results in the paper show that the proposed method is of higher computational efficiency than existing ones in the literature.

    We note that S4PR are generalized PNs, i.e., they may contain arcs whose weight is more than one. Thus, the absence of EMS in an S4PR is only a necessary condition to guarantee the deadlock-freedom of the S4PR [48]. However, it is clear to see that if there exists an EMS in an S4PR, it can be concluded that the S4PR suffers from deadlocks. In addition, given an S4PR that is ordinary, if there exists no EMS, it can be concluded that the net is not only deadlock-free but also live[45]. Consequently, the proposed MIP method, which can detect whether or not there exists an EMS in an S4PR, is capable of determining the liveness of ordinary S4PR and denying the deadlock-freedom for some generalized S4PR.Moreover, since the absence of EMS in an S4PR is a necessary condition for the net being deadlock-free, iterative deadlock control strategies for S4PR may be developed involving the computation and control of an EMS as an intermediate step. In other words, the proposed MIP method may be involved in developing iterative deadlock control strategies for S4PR.

    The other sections of this paper are organized as follows.Section II reviews basic notions of Petri nets and S4PR.Section III shows the structural characteristics of EMS in S4PR. A new MIP method is proposed in Section IV to detect an EMS in S4PR and determine the liveness of an ordinary S4PR. In Section V, we compare the computational efficiency of the proposed MIP with others. Section VI concludes this paper.

    II. PRELIMINARIES

    A. Petri Nets

    A P-vector is a column vector I: P →Z indexed by P. I is called a P-invariant if I ≠ 0 and IT·[N] = 0Thold. ||I|| = {p ∈ P|I(p) ≠ 0} is called the support of I. A P-invariant I is called a P-semiflow if every element of I is non-negative. A Psemiflow I is minimal if the greatest common divisor of its non-zero components is 1 and ||I|| is not a superset of the support of any other P-semiflow.

    ·S ?S·

    A nonempty set S ? P is a siphon if . A siphon is called minimal if it does not contain any other siphon. A minimal siphon that does not contain the support of any Psemiflow is called a strict minimal siphon (SMS). Given a marked Petri net (N, M0), an emptiable minimal siphon (EMS)is a minimal siphon in N that can be emptied (or unmarked) at a marking M ∈ R(N, M0).

    Given a marked Petri net (N, M0), a transition t ∈ T is live at M0if ?M ∈ R(N, M0), ?M' ∈ R(N, M) such that t is enabled at M'. (N, M0) is live if ?t ∈ T, t is live at M0.

    B. S4PR

    The S4PR studied in our paper is proposed by Tricas et al. in[48], [49], where they say that the name “S4PR” does not have any specific meaning.

    Definition 1 [48], [49]: An S4PR is a generalized connected self-loop free Petri net N = (P, T, F, W), where

    III. EMPTIABLE MINIMAL SIPHONS IN S4PR

    In this section, we explore properties of EMS in S4PR,which can be utilized later to accelerate the computation of its EMS.

    Fig. 1. A marked S4PR (N, M0).

    In simple words, a pure activity path with respect to a resource subset Ω is an elementary path where each place is an activity place and none of transitions is connected with resources from Ω except the starting and ending ones.

    Consider the S4PR N in Fig. 1. There is a resource subset Ω = {r1, r2}. π1= t7p8t8p9t9and π2= t6p7t7p8t8p9t9are clearly two elementary paths. By Definition 3, π1is a pure activity path in regard to Ω, while π2is not.

    Definition 4 [50]: Given a resource subset Ω, a transition t∈ T and an activity place p ∈ PAin an S4PR, p is said to be a restoring place of t with respect to Ω if t is accessible from p via a pure activity path with respect to Ω. P+(t, Ω) denotes the set of all restoring places of t with respect to Ω.

    Consider again the S4PR N in Fig. 1, a resource subset Ω ={r1, r2} and t9. It can be seen that t9is accessible from p9via a

    Fig. 2. The IRT net of N in Fig. 1 induced by Ω = {r1, r2, r3}.

    Proposition 3 [50]: Given an S4PR N and a resource subset Ω, the Ω-induced IRT net NΩis strongly connected if SΩis an SMS.

    For simplicity, we use NRto denote a PR-induced IRT net,i.e., the IRT net induced by the set of all resource places of an S4PR.

    Obviously, the IRT net induced by any resource subset Ω ?PRis a subnet of the PR-induced IRT net NR. Thus,straightforward from Proposition 3, we have the below result.

    Proposition 4: Given an S4PR N, its PR-induced IRT net NR,and a place set S in N, if S is an SMS, then ?r ∈ S ∩ PR, ?r'∈ I(r) such that r' ∈ S and ?r'' ∈ O(r) such that r'' ∈ S.

    It is clear that any EMS in an S4PR is definitely an SMS.Hence, the structural characteristics of SMS in S4PR can be used to search EMS more efficiently. Following Propositions 2 and 4, we can see that if a place set S in an S4PR is an EMS,then 1) S consists of resource and activity places; and 2) ?r ∈S ∩ PR, ?r' ∈ I(r) such that r' ∈ S and ?r'' ∈ O(r) such that r''∈ S.

    IV. COMPUTATION OF EMS IN S4PR

    In this section, we construct a new mixed-integer programming (MIP) problem to compute an EMS in S4PR.We introduce a binary variable vp∈ {0, 1} for each place p to indicate whether p is contained in a siphon. Specifically, vp=1 indicates p ∈ S and otherwise not, where S is a siphon.Then, we can compute an EMS in S4PR by solving the following MIP problem, denoted as MIP*.

    MIP*:

    Theorem 1: Given S4PR (N, M0) and M ∈ R(N, M0), a solution to (1)-(11), if it exists, corresponds to an EMS.

    Proof: Let S be a set of places that corresponds to a solution to (1)-(11). By Proposition 8, S is a minimal siphon. Because of (11), it is clear that S is emptied at M. Since M ∈ R(N, M0),S is an EMS. ■

    Theorem 2: Given S4PR (N, M0) and M ∈ R(N, M0), there is a solution to (1)-(11) if there is an EMS that can be emptied at M.

    Proof: Let S be the EMS that can be emptied at M. By Proposition 5, S corresponds to a solution to constraints (2)-(10). Since S is emptied at M, S corresponds to a solution to constraint (11). Hence, the solution space meeting constraints(2)-(11) is not empty. Clearly, there is a solution to the objective function (1) and constraints (2)-(11). ■

    Theorem 3: Given an S4PR (N, M0), if a solution to MIP*exists, then it corresponds to a minimal siphon in N that can be emptied at a marking M where M = M0+ [N]Y, M ≥ 0, Y ≥ 0.

    Proof: Let S be a set of places that corresponds to a solution to MIP*. By Proposition 8, S is a minimal siphon. Because of(11) and (12), it is trivial to see that S is a minimal siphon that is emptiable at M = M0+ [N]Y, M ≥ 0, Y ≥ 0. ■

    Remark 1: We should point out that a solution to MIP* is not necessarily an EMS in S4PR. This is because we use the state equation (12) to restrict the marking space searched in MIP*, which, however, is not exactly the reachable marking set R(N, M0). To be more precise, R(N, M0) is only a subset of the marking set described by (12). Consequently, it could happen that the solution to MIP* corresponds to a minimal siphon that is emptied at some markings satisfying (12) but none of them is reachable in a given S4PR. Such a minimal siphon is clearly not an EMS. ■

    Based on the solution for MIP*, we propose a sufficient condition under which an ordinary S4PR is live.

    Theorem 4: Given an ordinary S4PR (N, M0), it is live if its MIP* has no solution.

    Proof: According to Proposition 6, there exists no EMS in(N, M0). It is proved in [45] that an ordinary S4PR is live if there is no EMS. Hence, (N, M0) is live. ■

    Remark 2: This work is a generalization of our previous work [47]. Specifically, an improved MIP for computing an EMS is proposed in [47] that is applicable to S3PR only, while in this work we propose MIP* that is applicable to S4PR.Since S4PR is a more general class of PNs than S3PR, MIP* is thereby also applicable to S3PR to compute an EMS. Actually,both the improved MIP in [47] and MIP* in this work are inspired by the idea of formulating the structural characteristics of EMS as constraints to narrow down the solution space. Due to the fact that the structural characteristics of EMS in S4PR are much more complex than those in S3PR, MIP* is more complex than the improved MIP in [47] in terms of constraints.

    V. COMPARISON ON COMPUTATIONAL EFFICIENCY

    In this section, we perform a computation experiment to compare the computational efficiency of the proposed MIP method (MIP*) and the MIP method in [40]. The computation is conducted on a 3.20 GHz Intel Core i5 computer with 6 GBRAM memory, and the software “Lingo12.0” is used as a tool to solve MIP problems.

    TABLE I EXPERIMENTAL RESULTS OF MIP [40] AND MIP*

    In the experiment, six S4PR named p26t20, p36t30, p39t36,p58t56, p86t70, p392t262are considered, whose net sizes vary from 46 nodes to 654 nodes. Note that their concrete models are presented in [51] for the sake of saving space. Indeed, the first five nets are classical examples studied in the literature,while the sixth net is the largest net among them constructed in our previous work [47]. By applying MIP* and the MIP in[40] to them to compute an EMS, the required memory consumption, run-time and the number of iterations are exhibited in Table I. We can see that, with the increase of the net size, it is clear that MIP* consumes less computer memory and enjoys higher computational efficiency than the MIP in[40].

    VI. CONCLUSIONS AND FUTURE WORK

    This work proposes a novel MIP method to compute an EMS in S4PR. It innovatively explores and utilizes the structural characteristics of EMS in it to construct new constraints for its MIP formulation. In particular, the structural characteristics of SMS in S4PR are formalized as constraints since an EMS in S4PR is proved to be an SMS. In comparison with the existing MIP methods, we conclude that the new one has higher computational efficiency since its solution space is reduced. Furthermore, based on the proposed MIP method, we establish a sufficient condition for an ordinary S4PR to be live.Our future work includes: 1) Developing liveness-enforcing supervisors for S4PR based on the proposed MIP method; and 2) Extending the presented method to more generalized classes of Petri nets modeling various discrete event systems[52]-[62].

    少妇猛男粗大的猛烈进出视频| 国产熟女午夜一区二区三区| 91精品三级在线观看| 国产成人欧美| 一区二区三区激情视频| 在线观看www视频免费| 欧美亚洲日本最大视频资源| 美女国产高潮福利片在线看| 97人妻天天添夜夜摸| 国产精品1区2区在线观看. | 十分钟在线观看高清视频www| 久久久国产一区二区| 国产人伦9x9x在线观看| www.精华液| 欧美另类亚洲清纯唯美| 男男h啪啪无遮挡| 免费一级毛片在线播放高清视频 | 日韩有码中文字幕| 美女福利国产在线| 国产男靠女视频免费网站| 国产亚洲欧美在线一区二区| 99久久国产精品久久久| 一区二区三区国产精品乱码| 国产亚洲精品第一综合不卡| 51午夜福利影视在线观看| 中文字幕人妻熟女乱码| 午夜福利视频精品| 男女午夜视频在线观看| 久久中文字幕一级| 99久久国产精品久久久| 王馨瑶露胸无遮挡在线观看| 免费看a级黄色片| 国产在线免费精品| 18禁黄网站禁片午夜丰满| 两个人看的免费小视频| 变态另类成人亚洲欧美熟女 | e午夜精品久久久久久久| 国产精品电影一区二区三区 | 亚洲视频免费观看视频| 亚洲精品自拍成人| 欧美精品av麻豆av| 动漫黄色视频在线观看| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 国精品久久久久久国模美| 另类精品久久| 在线天堂中文资源库| 久久午夜亚洲精品久久| 99国产精品99久久久久| tube8黄色片| 欧美激情高清一区二区三区| 熟女少妇亚洲综合色aaa.| 日韩免费高清中文字幕av| 99久久人妻综合| 国产精品.久久久| 亚洲天堂av无毛| 欧美久久黑人一区二区| 免费日韩欧美在线观看| 好男人电影高清在线观看| 国产一区二区三区综合在线观看| 日韩有码中文字幕| 又黄又粗又硬又大视频| 久久精品熟女亚洲av麻豆精品| 免费观看av网站的网址| 一级毛片电影观看| 不卡一级毛片| 午夜福利在线免费观看网站| 桃花免费在线播放| 一本综合久久免费| 成年动漫av网址| 欧美在线一区亚洲| 欧美成人免费av一区二区三区 | 99热国产这里只有精品6| 女警被强在线播放| 国产成人欧美在线观看 | 欧美精品av麻豆av| 日日摸夜夜添夜夜添小说| 757午夜福利合集在线观看| 999精品在线视频| 欧美亚洲日本最大视频资源| 国产真人三级小视频在线观看| 考比视频在线观看| 国产精品二区激情视频| 国产三级黄色录像| 黄色视频,在线免费观看| 免费看十八禁软件| 国产区一区二久久| 亚洲欧洲精品一区二区精品久久久| 91九色精品人成在线观看| 亚洲五月色婷婷综合| 亚洲少妇的诱惑av| 蜜桃在线观看..| 欧美日韩亚洲综合一区二区三区_| 高清黄色对白视频在线免费看| 久久九九热精品免费| 少妇的丰满在线观看| 黄色a级毛片大全视频| 久久精品亚洲熟妇少妇任你| 每晚都被弄得嗷嗷叫到高潮| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 国产一区二区三区综合在线观看| 成人国产av品久久久| 99re在线观看精品视频| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 变态另类成人亚洲欧美熟女 | 9191精品国产免费久久| 久久国产精品男人的天堂亚洲| 久久久久久久精品吃奶| 国产精品 欧美亚洲| 亚洲成人免费电影在线观看| videosex国产| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 免费观看人在逋| 欧美一级毛片孕妇| 天堂俺去俺来也www色官网| 亚洲成av片中文字幕在线观看| 一区在线观看完整版| 丁香六月欧美| 日本五十路高清| 51午夜福利影视在线观看| 国产精品 欧美亚洲| 建设人人有责人人尽责人人享有的| 亚洲成av片中文字幕在线观看| 国产极品粉嫩免费观看在线| 不卡av一区二区三区| 日韩精品免费视频一区二区三区| 日本av免费视频播放| 午夜免费鲁丝| 成人国产一区最新在线观看| 国产在线视频一区二区| 久9热在线精品视频| 久久99热这里只频精品6学生| 在线十欧美十亚洲十日本专区| 久久国产精品男人的天堂亚洲| 国产黄色免费在线视频| 黄色a级毛片大全视频| 自线自在国产av| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| www.自偷自拍.com| 久久精品91无色码中文字幕| 日日摸夜夜添夜夜添小说| videos熟女内射| cao死你这个sao货| 精品第一国产精品| 国产深夜福利视频在线观看| 日韩大码丰满熟妇| 少妇猛男粗大的猛烈进出视频| 国产一区有黄有色的免费视频| 母亲3免费完整高清在线观看| 欧美大码av| 国产精品1区2区在线观看. | 搡老熟女国产l中国老女人| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美日韩在线播放| 国产一卡二卡三卡精品| 狠狠婷婷综合久久久久久88av| 99热网站在线观看| 天天躁日日躁夜夜躁夜夜| 三上悠亚av全集在线观看| 日韩欧美一区视频在线观看| 亚洲精品国产精品久久久不卡| 亚洲av第一区精品v没综合| 黄色片一级片一级黄色片| 午夜久久久在线观看| 精品高清国产在线一区| 婷婷成人精品国产| 蜜桃在线观看..| 亚洲五月婷婷丁香| 欧美日韩亚洲国产一区二区在线观看 | 99在线人妻在线中文字幕 | 久久亚洲真实| 夜夜夜夜夜久久久久| 精品少妇久久久久久888优播| 亚洲成人免费电影在线观看| 十八禁网站网址无遮挡| 丝袜人妻中文字幕| 色尼玛亚洲综合影院| 午夜福利视频精品| 天堂俺去俺来也www色官网| 国产不卡av网站在线观看| 天天操日日干夜夜撸| 一本色道久久久久久精品综合| 亚洲av片天天在线观看| 亚洲全国av大片| 十八禁网站免费在线| 亚洲人成电影观看| 国产片内射在线| 777久久人妻少妇嫩草av网站| 搡老岳熟女国产| 黄色视频,在线免费观看| 老司机午夜十八禁免费视频| 亚洲精品久久午夜乱码| 亚洲熟女毛片儿| 欧美激情 高清一区二区三区| 亚洲国产精品一区二区三区在线| 最近最新中文字幕大全电影3 | 午夜福利乱码中文字幕| 国产麻豆69| 麻豆成人av在线观看| 成人免费观看视频高清| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 国产成人免费观看mmmm| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 成人永久免费在线观看视频 | 脱女人内裤的视频| 考比视频在线观看| 777米奇影视久久| 免费在线观看影片大全网站| 午夜福利在线观看吧| 91精品国产国语对白视频| h视频一区二区三区| 后天国语完整版免费观看| 国产成+人综合+亚洲专区| 高清视频免费观看一区二区| 久久久国产一区二区| 在线亚洲精品国产二区图片欧美| 国产成人影院久久av| 91九色精品人成在线观看| 亚洲,欧美精品.| 日本撒尿小便嘘嘘汇集6| 女同久久另类99精品国产91| 69av精品久久久久久 | 久久人妻熟女aⅴ| 高潮久久久久久久久久久不卡| 亚洲第一av免费看| 国产麻豆69| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av | 男人舔女人的私密视频| 嫁个100分男人电影在线观看| 一区二区三区国产精品乱码| 久久久久精品人妻al黑| 高清在线国产一区| 色在线成人网| 人人妻人人澡人人看| 女同久久另类99精品国产91| 精品免费久久久久久久清纯 | www.自偷自拍.com| 成年人黄色毛片网站| 色老头精品视频在线观看| 性高湖久久久久久久久免费观看| 成人影院久久| 久久精品国产亚洲av香蕉五月 | 亚洲专区字幕在线| 人妻一区二区av| 777米奇影视久久| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说 | 欧美精品高潮呻吟av久久| 亚洲一卡2卡3卡4卡5卡精品中文| 建设人人有责人人尽责人人享有的| 一夜夜www| 久久青草综合色| 午夜福利乱码中文字幕| av片东京热男人的天堂| 在线亚洲精品国产二区图片欧美| 99riav亚洲国产免费| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 亚洲欧洲日产国产| 十八禁高潮呻吟视频| 狠狠狠狠99中文字幕| 亚洲综合色网址| 在线观看舔阴道视频| 午夜福利欧美成人| 久久精品亚洲av国产电影网| 色播在线永久视频| 精品亚洲成国产av| 香蕉丝袜av| 一级毛片电影观看| 成年版毛片免费区| 国产精品香港三级国产av潘金莲| 日韩大码丰满熟妇| 色综合婷婷激情| 巨乳人妻的诱惑在线观看| a在线观看视频网站| 一区二区三区国产精品乱码| 国产高清激情床上av| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 国产无遮挡羞羞视频在线观看| 人妻 亚洲 视频| 国产免费现黄频在线看| 国产97色在线日韩免费| 曰老女人黄片| 国产三级黄色录像| 日本vs欧美在线观看视频| 久久影院123| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜一区二区| 最黄视频免费看| 国产在视频线精品| 一区福利在线观看| 色精品久久人妻99蜜桃| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 香蕉丝袜av| 国产精品一区二区在线不卡| 日韩欧美国产一区二区入口| 男女免费视频国产| 中文字幕最新亚洲高清| 欧美亚洲日本最大视频资源| 国产精品自产拍在线观看55亚洲 | 久久人妻av系列| 久久精品熟女亚洲av麻豆精品| 欧美黄色淫秽网站| 国产男靠女视频免费网站| 日本一区二区免费在线视频| 久久婷婷成人综合色麻豆| 亚洲精华国产精华精| 免费日韩欧美在线观看| 国产精品自产拍在线观看55亚洲 | 伊人久久大香线蕉亚洲五| 国产精品成人在线| 亚洲精品国产区一区二| 亚洲天堂av无毛| 成人特级黄色片久久久久久久 | 不卡av一区二区三区| 大陆偷拍与自拍| 丝袜美足系列| 精品国产一区二区三区久久久樱花| av国产精品久久久久影院| 午夜福利,免费看| www.熟女人妻精品国产| 另类亚洲欧美激情| 成人18禁在线播放| av视频免费观看在线观看| 大片电影免费在线观看免费| 一区福利在线观看| 成人18禁在线播放| 80岁老熟妇乱子伦牲交| 成人影院久久| 人妻一区二区av| av天堂久久9| 热99久久久久精品小说推荐| 国产日韩一区二区三区精品不卡| 免费在线观看完整版高清| 欧美大码av| 日韩欧美一区二区三区在线观看 | 色尼玛亚洲综合影院| h视频一区二区三区| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 亚洲avbb在线观看| 成年动漫av网址| 自拍欧美九色日韩亚洲蝌蚪91| 色在线成人网| 午夜激情久久久久久久| 欧美黑人精品巨大| 搡老乐熟女国产| 日本欧美视频一区| av网站在线播放免费| 啦啦啦免费观看视频1| 亚洲成国产人片在线观看| 91成人精品电影| 国产区一区二久久| 欧美在线黄色| 国产精品欧美亚洲77777| h视频一区二区三区| 国产激情久久老熟女| 国产又色又爽无遮挡免费看| 夫妻午夜视频| 亚洲成人国产一区在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产精品久久久不卡| 一级毛片精品| 久久国产精品大桥未久av| 王馨瑶露胸无遮挡在线观看| 久久人妻福利社区极品人妻图片| 757午夜福利合集在线观看| 满18在线观看网站| 国产精品99久久99久久久不卡| 一级片免费观看大全| 亚洲专区国产一区二区| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 成人手机av| 老汉色∧v一级毛片| 久久久国产成人免费| 日韩一区二区三区影片| 国产精品成人在线| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 亚洲伊人色综图| 桃花免费在线播放| 国产日韩欧美在线精品| 国产精品免费大片| 欧美老熟妇乱子伦牲交| 国产精品一区二区免费欧美| 国产精品九九99| 国产成人免费无遮挡视频| 国产三级黄色录像| 香蕉久久夜色| 亚洲黑人精品在线| 日本黄色视频三级网站网址 | 日日爽夜夜爽网站| 99精国产麻豆久久婷婷| 超碰成人久久| 1024视频免费在线观看| 国产精品久久久久久精品古装| 别揉我奶头~嗯~啊~动态视频| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| 精品人妻在线不人妻| av天堂久久9| 91精品三级在线观看| 啦啦啦中文免费视频观看日本| 成人免费观看视频高清| 亚洲自偷自拍图片 自拍| 国产一区二区三区在线臀色熟女 | 一区二区三区国产精品乱码| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影 | 大型黄色视频在线免费观看| 欧美黄色淫秽网站| 精品人妻在线不人妻| 久久国产精品人妻蜜桃| 成人免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美+亚洲+日韩+国产| 99热网站在线观看| av在线播放免费不卡| 久久久久精品国产欧美久久久| 久久中文看片网| 免费在线观看日本一区| 成在线人永久免费视频| 激情在线观看视频在线高清 | 91大片在线观看| 欧美黑人欧美精品刺激| 99国产精品99久久久久| 国产免费福利视频在线观看| 欧美成人午夜精品| 久久久久国内视频| 激情在线观看视频在线高清 | 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| 国产主播在线观看一区二区| av福利片在线| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| av天堂久久9| 日韩视频在线欧美| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 肉色欧美久久久久久久蜜桃| 免费一级毛片在线播放高清视频 | 交换朋友夫妻互换小说| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久| 久久久国产精品麻豆| 亚洲精品久久午夜乱码| 极品教师在线免费播放| 水蜜桃什么品种好| 欧美精品一区二区免费开放| 国产深夜福利视频在线观看| 国产男女内射视频| 欧美黑人欧美精品刺激| 亚洲午夜理论影院| 交换朋友夫妻互换小说| 欧美亚洲日本最大视频资源| 欧美黄色淫秽网站| 亚洲视频免费观看视频| 日本av手机在线免费观看| 国产男女超爽视频在线观看| 欧美精品亚洲一区二区| 亚洲天堂av无毛| 精品亚洲成a人片在线观看| 91麻豆av在线| 国产精品久久久人人做人人爽| 精品国产乱子伦一区二区三区| 午夜福利免费观看在线| 激情在线观看视频在线高清 | 亚洲情色 制服丝袜| 19禁男女啪啪无遮挡网站| 一本久久精品| 视频在线观看一区二区三区| 成人国产一区最新在线观看| 777米奇影视久久| 精品乱码久久久久久99久播| 日日爽夜夜爽网站| 狠狠狠狠99中文字幕| 麻豆乱淫一区二区| 在线观看免费午夜福利视频| 日本欧美视频一区| 黄色a级毛片大全视频| 国产精品av久久久久免费| 五月天丁香电影| 18在线观看网站| 12—13女人毛片做爰片一| 少妇的丰满在线观看| 宅男免费午夜| 亚洲av成人一区二区三| 日韩人妻精品一区2区三区| 免费在线观看影片大全网站| 大码成人一级视频| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美软件| 91国产中文字幕| 涩涩av久久男人的天堂| 欧美大码av| 国产一区二区三区在线臀色熟女 | 无限看片的www在线观看| 又大又爽又粗| 伊人久久大香线蕉亚洲五| 大片电影免费在线观看免费| 十八禁网站免费在线| 一本综合久久免费| 汤姆久久久久久久影院中文字幕| 精品亚洲乱码少妇综合久久| 亚洲精品国产色婷婷电影| 成人亚洲精品一区在线观看| 国产精品免费视频内射| 国产麻豆69| 国产精品久久久人人做人人爽| 91精品国产国语对白视频| 99国产精品一区二区蜜桃av | 成人免费观看视频高清| 国产精品一区二区精品视频观看| 操出白浆在线播放| h视频一区二区三区| 丁香六月欧美| 电影成人av| 久久久久久人人人人人| 国产激情久久老熟女| 19禁男女啪啪无遮挡网站| 色老头精品视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产不卡一卡二| 人人澡人人妻人| 久久精品人人爽人人爽视色| 香蕉久久夜色| 亚洲一码二码三码区别大吗| 成人精品一区二区免费| 露出奶头的视频| 又黄又粗又硬又大视频| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 久久国产精品大桥未久av| 在线观看舔阴道视频| 99国产综合亚洲精品| 啦啦啦在线免费观看视频4| 亚洲精品美女久久av网站| 午夜免费鲁丝| 国产在线视频一区二区| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 无限看片的www在线观看| 99国产精品一区二区蜜桃av | 黄色 视频免费看| 精品国产一区二区久久| 免费黄频网站在线观看国产| 一级片'在线观看视频| 久久久欧美国产精品| 淫妇啪啪啪对白视频| 视频区欧美日本亚洲| 一本综合久久免费| 纵有疾风起免费观看全集完整版| 在线观看免费视频日本深夜| 欧美精品一区二区免费开放| www.自偷自拍.com| 国产成人欧美在线观看 | 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 男女免费视频国产| 黑人巨大精品欧美一区二区mp4| 成人手机av| 好男人电影高清在线观看| 成人国产av品久久久| 国产熟女午夜一区二区三区| 午夜精品国产一区二区电影| 十分钟在线观看高清视频www| 精品一品国产午夜福利视频| 成人18禁在线播放| www.999成人在线观看| 国产99久久九九免费精品| 午夜福利在线免费观看网站| 天堂8中文在线网| 捣出白浆h1v1| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 热re99久久国产66热| 久久99一区二区三区| 热99国产精品久久久久久7| av超薄肉色丝袜交足视频| 一边摸一边做爽爽视频免费| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看| 成人国语在线视频| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| 中文字幕人妻丝袜一区二区| 亚洲欧美一区二区三区久久| 久久中文字幕人妻熟女| 午夜激情av网站| 久久九九热精品免费| 99国产极品粉嫩在线观看| 高清av免费在线| 考比视频在线观看| 精品国内亚洲2022精品成人 | av视频免费观看在线观看| 亚洲精品久久午夜乱码| 露出奶头的视频| 亚洲色图av天堂| 日本av免费视频播放| 99国产极品粉嫩在线观看| 亚洲欧洲日产国产| 日韩欧美一区二区三区在线观看 | 欧美性长视频在线观看|