• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computation of an Emptiable Minimal Siphon in a Subclass of Petri Nets Using Mixed-Integer Programming

    2021-04-14 06:55:14ShouguangWangSeniorMemberIEEEWenliDuoXinGuoXiaoningJiangDanYouKamelBarkaouiandMengChuZhouFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Shouguang Wang, Senior Member, IEEE, Wenli Duo, Xin Guo, Xiaoning Jiang,Dan You, Kamel Barkaoui, and MengChu Zhou, Fellow, IEEE

    Abstract—Deadlock resolution strategies based on siphon control are widely investigated. Their computational efficiency largely depends on siphon computation. Mixed-integer programming (MIP) can be utilized for the computation of an emptiable siphon in a Petri net (PN). Based on it, deadlock resolution strategies can be designed without requiring complete siphon enumeration that has exponential complexity. Due to this reason, various MIP methods are proposed for various subclasses of PNs. This work proposes an innovative MIP method to compute an emptiable minimal siphon (EMS) for a subclass of PNs named S4PR. In particular, many particular structural characteristics of EMS in S4PR are formalized as constraints,which greatly reduces the solution space. Experimental results show that the proposed MIP method has higher computational efficiency. Furthermore, the proposed method allows one to determine the liveness of an ordinary S4PR.

    I. INTRODUCTION

    PETRI nets (PNs) are an extensively used tool of mathematics for dealing with the presence of deadlock states in various discrete event systems, such as workflow systems [1]-[3], business systems, railway networks [4] and flexible manufacturing systems [5], [6]. A siphon is a structural object of PNs. Its token count is closely associated with the presence of deadlocks [7]. For example, a deadlock may arise in ordinary PNs when there is a siphon being emptied, i.e., when its token count is zero. Consequently,many deadlock resolution strategies [8]-[24] are developed based on siphon control. They all require a step called siphon computation. It in turn decides the computational complexity of such deadlock resolution strategies. Due to this reason,researchers study the ways to perform efficient siphon computation.

    Many studies focus on the complete enumeration of siphons in a PN. Some methods can be utilized for general nets, such as problem partitioning methods [25], [26], graph theory [27],[28], sign matrix methods [29], genetic algorithms [30], [31],binary decision diagrams [32] and INA-based methods [33].The other ones are proposed for specific subclasses of PNs[16], [34]-[39] which have higher computational efficiency than methods applicable to general nets. These proposed methods have greatly improved the computational efficiency of complete siphon enumeration. However, they are of exponential complexity with respect to the net size. This is because at worst, the number of siphons in a PN grows exponentially in terms of the net size. Therefore, deadlock resolution strategies calling for complete siphon enumeration have high computational complexity.

    Can we find deadlock control strategies with no complete siphon enumeration? Chu and Xie [40] introduce a mixedinteger programming (MIP) method for detecting the existence of deadlocks in PNs. In more detail, they propose an MIP problem where one maximal emptied siphon is derived if its solution is found. More significantly, no siphon is emptiable in the case no solution is found. This important result can thus be utilized to determine the deadlock-freedom or liveness of a PN. The MIP method is computationally efficient even when applied to large-scale nets since it does not require the reachability analysis and thus avoids the problem of state explosion. Based on it, Huang et al. [41]develop a liveness-enforcing policy in an iterative way for a subclass of PNs called “ systems of simple sequential processes with resources (S3PR)”. The basic idea is that, at every iteration, it uses an MIP method to compute a maximal emptied siphon, then extracts a minimal siphon from the obtained maximal emptied siphon, and finally makes the extracted minimal siphon controlled. Such a policy successfully avoids the complete enumeration of siphons and thereby has much higher computational efficiency than those requiring complete siphon enumeration. The minimal siphon extraction from a maximal emptiable siphon is also studied in[10] and [42]. In addition, after the work by Chu and Xie [40],a variety of revised MIP methods are proposed in the literature for the purpose of checking/ensuring liveness or deadlockfreedom of concerned subclasses of PNs, e.g., [43]-[46].

    We observe that the constraints in the existing MIP formulations like those in [40] represent properties of siphons in general nets only. In other words, although some revised MIP methods are proposed for specific subclasses of PNs, the particular properties or structural characteristics of emptiable siphons in specific nets are not taken into consideration, which actually may contribute to lowering the computational time.For example, in our previous work [47], we propose an improved MIP method for S3PR to compute an emptiable minimal siphon (EMS), where the structural characteristics of EMS in S3PR are utilized to construct constraints. We can see that the more non-redundant constraints we add, the smaller the solution space is and thus the higher the computational efficiency is. Experimental results in [47] validate that the improved MIP method outperforms greatly the MIP method in[40] in terms of computational efficiency, which is more evident for large-size nets.

    Inspired by the work [47], we seek to determine if such a strategy can be extended for a more general net than S3PR.This work addresses this issue by dealing with S4PR.Specifically, we propose a novel MIP method to compute an EMS in S4PR where the particular structural characteristics of EMS in such nets are formalized as constraints for the first time. Compared with the existing MIP formulations applicable to S4PR, the solution space of the proposed MIP problem is narrowed down since more non-redundant constraints are added. Experimental results in the paper show that the proposed method is of higher computational efficiency than existing ones in the literature.

    We note that S4PR are generalized PNs, i.e., they may contain arcs whose weight is more than one. Thus, the absence of EMS in an S4PR is only a necessary condition to guarantee the deadlock-freedom of the S4PR [48]. However, it is clear to see that if there exists an EMS in an S4PR, it can be concluded that the S4PR suffers from deadlocks. In addition, given an S4PR that is ordinary, if there exists no EMS, it can be concluded that the net is not only deadlock-free but also live[45]. Consequently, the proposed MIP method, which can detect whether or not there exists an EMS in an S4PR, is capable of determining the liveness of ordinary S4PR and denying the deadlock-freedom for some generalized S4PR.Moreover, since the absence of EMS in an S4PR is a necessary condition for the net being deadlock-free, iterative deadlock control strategies for S4PR may be developed involving the computation and control of an EMS as an intermediate step. In other words, the proposed MIP method may be involved in developing iterative deadlock control strategies for S4PR.

    The other sections of this paper are organized as follows.Section II reviews basic notions of Petri nets and S4PR.Section III shows the structural characteristics of EMS in S4PR. A new MIP method is proposed in Section IV to detect an EMS in S4PR and determine the liveness of an ordinary S4PR. In Section V, we compare the computational efficiency of the proposed MIP with others. Section VI concludes this paper.

    II. PRELIMINARIES

    A. Petri Nets

    A P-vector is a column vector I: P →Z indexed by P. I is called a P-invariant if I ≠ 0 and IT·[N] = 0Thold. ||I|| = {p ∈ P|I(p) ≠ 0} is called the support of I. A P-invariant I is called a P-semiflow if every element of I is non-negative. A Psemiflow I is minimal if the greatest common divisor of its non-zero components is 1 and ||I|| is not a superset of the support of any other P-semiflow.

    ·S ?S·

    A nonempty set S ? P is a siphon if . A siphon is called minimal if it does not contain any other siphon. A minimal siphon that does not contain the support of any Psemiflow is called a strict minimal siphon (SMS). Given a marked Petri net (N, M0), an emptiable minimal siphon (EMS)is a minimal siphon in N that can be emptied (or unmarked) at a marking M ∈ R(N, M0).

    Given a marked Petri net (N, M0), a transition t ∈ T is live at M0if ?M ∈ R(N, M0), ?M' ∈ R(N, M) such that t is enabled at M'. (N, M0) is live if ?t ∈ T, t is live at M0.

    B. S4PR

    The S4PR studied in our paper is proposed by Tricas et al. in[48], [49], where they say that the name “S4PR” does not have any specific meaning.

    Definition 1 [48], [49]: An S4PR is a generalized connected self-loop free Petri net N = (P, T, F, W), where

    III. EMPTIABLE MINIMAL SIPHONS IN S4PR

    In this section, we explore properties of EMS in S4PR,which can be utilized later to accelerate the computation of its EMS.

    Fig. 1. A marked S4PR (N, M0).

    In simple words, a pure activity path with respect to a resource subset Ω is an elementary path where each place is an activity place and none of transitions is connected with resources from Ω except the starting and ending ones.

    Consider the S4PR N in Fig. 1. There is a resource subset Ω = {r1, r2}. π1= t7p8t8p9t9and π2= t6p7t7p8t8p9t9are clearly two elementary paths. By Definition 3, π1is a pure activity path in regard to Ω, while π2is not.

    Definition 4 [50]: Given a resource subset Ω, a transition t∈ T and an activity place p ∈ PAin an S4PR, p is said to be a restoring place of t with respect to Ω if t is accessible from p via a pure activity path with respect to Ω. P+(t, Ω) denotes the set of all restoring places of t with respect to Ω.

    Consider again the S4PR N in Fig. 1, a resource subset Ω ={r1, r2} and t9. It can be seen that t9is accessible from p9via a

    Fig. 2. The IRT net of N in Fig. 1 induced by Ω = {r1, r2, r3}.

    Proposition 3 [50]: Given an S4PR N and a resource subset Ω, the Ω-induced IRT net NΩis strongly connected if SΩis an SMS.

    For simplicity, we use NRto denote a PR-induced IRT net,i.e., the IRT net induced by the set of all resource places of an S4PR.

    Obviously, the IRT net induced by any resource subset Ω ?PRis a subnet of the PR-induced IRT net NR. Thus,straightforward from Proposition 3, we have the below result.

    Proposition 4: Given an S4PR N, its PR-induced IRT net NR,and a place set S in N, if S is an SMS, then ?r ∈ S ∩ PR, ?r'∈ I(r) such that r' ∈ S and ?r'' ∈ O(r) such that r'' ∈ S.

    It is clear that any EMS in an S4PR is definitely an SMS.Hence, the structural characteristics of SMS in S4PR can be used to search EMS more efficiently. Following Propositions 2 and 4, we can see that if a place set S in an S4PR is an EMS,then 1) S consists of resource and activity places; and 2) ?r ∈S ∩ PR, ?r' ∈ I(r) such that r' ∈ S and ?r'' ∈ O(r) such that r''∈ S.

    IV. COMPUTATION OF EMS IN S4PR

    In this section, we construct a new mixed-integer programming (MIP) problem to compute an EMS in S4PR.We introduce a binary variable vp∈ {0, 1} for each place p to indicate whether p is contained in a siphon. Specifically, vp=1 indicates p ∈ S and otherwise not, where S is a siphon.Then, we can compute an EMS in S4PR by solving the following MIP problem, denoted as MIP*.

    MIP*:

    Theorem 1: Given S4PR (N, M0) and M ∈ R(N, M0), a solution to (1)-(11), if it exists, corresponds to an EMS.

    Proof: Let S be a set of places that corresponds to a solution to (1)-(11). By Proposition 8, S is a minimal siphon. Because of (11), it is clear that S is emptied at M. Since M ∈ R(N, M0),S is an EMS. ■

    Theorem 2: Given S4PR (N, M0) and M ∈ R(N, M0), there is a solution to (1)-(11) if there is an EMS that can be emptied at M.

    Proof: Let S be the EMS that can be emptied at M. By Proposition 5, S corresponds to a solution to constraints (2)-(10). Since S is emptied at M, S corresponds to a solution to constraint (11). Hence, the solution space meeting constraints(2)-(11) is not empty. Clearly, there is a solution to the objective function (1) and constraints (2)-(11). ■

    Theorem 3: Given an S4PR (N, M0), if a solution to MIP*exists, then it corresponds to a minimal siphon in N that can be emptied at a marking M where M = M0+ [N]Y, M ≥ 0, Y ≥ 0.

    Proof: Let S be a set of places that corresponds to a solution to MIP*. By Proposition 8, S is a minimal siphon. Because of(11) and (12), it is trivial to see that S is a minimal siphon that is emptiable at M = M0+ [N]Y, M ≥ 0, Y ≥ 0. ■

    Remark 1: We should point out that a solution to MIP* is not necessarily an EMS in S4PR. This is because we use the state equation (12) to restrict the marking space searched in MIP*, which, however, is not exactly the reachable marking set R(N, M0). To be more precise, R(N, M0) is only a subset of the marking set described by (12). Consequently, it could happen that the solution to MIP* corresponds to a minimal siphon that is emptied at some markings satisfying (12) but none of them is reachable in a given S4PR. Such a minimal siphon is clearly not an EMS. ■

    Based on the solution for MIP*, we propose a sufficient condition under which an ordinary S4PR is live.

    Theorem 4: Given an ordinary S4PR (N, M0), it is live if its MIP* has no solution.

    Proof: According to Proposition 6, there exists no EMS in(N, M0). It is proved in [45] that an ordinary S4PR is live if there is no EMS. Hence, (N, M0) is live. ■

    Remark 2: This work is a generalization of our previous work [47]. Specifically, an improved MIP for computing an EMS is proposed in [47] that is applicable to S3PR only, while in this work we propose MIP* that is applicable to S4PR.Since S4PR is a more general class of PNs than S3PR, MIP* is thereby also applicable to S3PR to compute an EMS. Actually,both the improved MIP in [47] and MIP* in this work are inspired by the idea of formulating the structural characteristics of EMS as constraints to narrow down the solution space. Due to the fact that the structural characteristics of EMS in S4PR are much more complex than those in S3PR, MIP* is more complex than the improved MIP in [47] in terms of constraints.

    V. COMPARISON ON COMPUTATIONAL EFFICIENCY

    In this section, we perform a computation experiment to compare the computational efficiency of the proposed MIP method (MIP*) and the MIP method in [40]. The computation is conducted on a 3.20 GHz Intel Core i5 computer with 6 GBRAM memory, and the software “Lingo12.0” is used as a tool to solve MIP problems.

    TABLE I EXPERIMENTAL RESULTS OF MIP [40] AND MIP*

    In the experiment, six S4PR named p26t20, p36t30, p39t36,p58t56, p86t70, p392t262are considered, whose net sizes vary from 46 nodes to 654 nodes. Note that their concrete models are presented in [51] for the sake of saving space. Indeed, the first five nets are classical examples studied in the literature,while the sixth net is the largest net among them constructed in our previous work [47]. By applying MIP* and the MIP in[40] to them to compute an EMS, the required memory consumption, run-time and the number of iterations are exhibited in Table I. We can see that, with the increase of the net size, it is clear that MIP* consumes less computer memory and enjoys higher computational efficiency than the MIP in[40].

    VI. CONCLUSIONS AND FUTURE WORK

    This work proposes a novel MIP method to compute an EMS in S4PR. It innovatively explores and utilizes the structural characteristics of EMS in it to construct new constraints for its MIP formulation. In particular, the structural characteristics of SMS in S4PR are formalized as constraints since an EMS in S4PR is proved to be an SMS. In comparison with the existing MIP methods, we conclude that the new one has higher computational efficiency since its solution space is reduced. Furthermore, based on the proposed MIP method, we establish a sufficient condition for an ordinary S4PR to be live.Our future work includes: 1) Developing liveness-enforcing supervisors for S4PR based on the proposed MIP method; and 2) Extending the presented method to more generalized classes of Petri nets modeling various discrete event systems[52]-[62].

    久久久久久久亚洲中文字幕| 18禁在线播放成人免费| 亚洲激情五月婷婷啪啪| 色5月婷婷丁香| 亚洲美女搞黄在线观看| 熟妇人妻不卡中文字幕| 青春草国产在线视频| 欧美日韩av久久| 在线观看美女被高潮喷水网站| 99九九线精品视频在线观看视频| av在线观看视频网站免费| 久久这里有精品视频免费| 久久精品久久久久久久性| 91精品伊人久久大香线蕉| 人人澡人人妻人| 久久ye,这里只有精品| 亚洲综合色惰| 亚洲av成人精品一二三区| 精品熟女少妇av免费看| 日韩一区二区三区影片| 少妇猛男粗大的猛烈进出视频| 国产亚洲欧美精品永久| 菩萨蛮人人尽说江南好唐韦庄| 国产精品福利在线免费观看| a级一级毛片免费在线观看| 国产精品伦人一区二区| 日本av手机在线免费观看| 噜噜噜噜噜久久久久久91| 日本猛色少妇xxxxx猛交久久| 久久人人爽人人爽人人片va| 国产成人91sexporn| 又大又黄又爽视频免费| 观看av在线不卡| 夫妻性生交免费视频一级片| 黑人巨大精品欧美一区二区蜜桃 | 男男h啪啪无遮挡| 免费高清在线观看视频在线观看| 日韩一区二区视频免费看| 亚洲av不卡在线观看| 91在线精品国自产拍蜜月| 国产精品国产三级国产专区5o| 精品少妇内射三级| 美女福利国产在线| 日日爽夜夜爽网站| 一二三四中文在线观看免费高清| 久久人人爽人人爽人人片va| 欧美日韩视频精品一区| 亚洲国产精品一区二区三区在线| 美女脱内裤让男人舔精品视频| 午夜福利,免费看| 观看免费一级毛片| 国产淫片久久久久久久久| 国产av国产精品国产| 有码 亚洲区| 午夜福利网站1000一区二区三区| 国产乱人偷精品视频| 日日啪夜夜爽| 观看免费一级毛片| 在线免费观看不下载黄p国产| 日日摸夜夜添夜夜爱| 一级毛片电影观看| 成人18禁高潮啪啪吃奶动态图 | a级一级毛片免费在线观看| 精品人妻一区二区三区麻豆| 久久久久国产精品人妻一区二区| 嫩草影院入口| 91久久精品国产一区二区三区| 免费看日本二区| 国产精品三级大全| 22中文网久久字幕| 成年人免费黄色播放视频 | 国产色爽女视频免费观看| 免费在线观看成人毛片| av女优亚洲男人天堂| videossex国产| 女人精品久久久久毛片| 亚洲av欧美aⅴ国产| 久久狼人影院| av在线app专区| 婷婷色av中文字幕| 一区二区三区四区激情视频| 亚洲内射少妇av| 草草在线视频免费看| 亚洲精品日韩av片在线观看| 久久久亚洲精品成人影院| 日本免费在线观看一区| 午夜福利,免费看| av视频免费观看在线观看| 99热这里只有是精品50| 亚洲精品国产成人久久av| 国产成人精品久久久久久| 人人妻人人看人人澡| 国产视频内射| 国产亚洲91精品色在线| 国产精品.久久久| 日韩电影二区| 色视频www国产| 久久久久网色| 久久国内精品自在自线图片| av国产精品久久久久影院| 91在线精品国自产拍蜜月| 久久午夜综合久久蜜桃| 一本色道久久久久久精品综合| 亚洲av成人精品一二三区| 91午夜精品亚洲一区二区三区| 精品久久久噜噜| 老司机影院成人| 亚洲国产欧美在线一区| 免费观看av网站的网址| 99久久精品一区二区三区| 国产视频内射| 嫩草影院入口| 成人特级av手机在线观看| 国产 一区精品| 高清黄色对白视频在线免费看 | 人妻制服诱惑在线中文字幕| 久久精品国产a三级三级三级| 狂野欧美白嫩少妇大欣赏| 久久久久人妻精品一区果冻| 国产精品国产三级国产av玫瑰| 亚洲欧美成人综合另类久久久| 日韩制服骚丝袜av| 国产极品粉嫩免费观看在线 | 日韩三级伦理在线观看| 久久久久精品久久久久真实原创| 久久女婷五月综合色啪小说| 久久久欧美国产精品| 久久狼人影院| 日韩电影二区| 男人添女人高潮全过程视频| 色视频www国产| 狂野欧美白嫩少妇大欣赏| 久久精品夜色国产| 男人爽女人下面视频在线观看| 婷婷色综合www| 嫩草影院入口| av在线播放精品| 国产国拍精品亚洲av在线观看| 久久久久久久久久久久大奶| 成年美女黄网站色视频大全免费 | 十分钟在线观看高清视频www | 欧美 亚洲 国产 日韩一| 搡女人真爽免费视频火全软件| 肉色欧美久久久久久久蜜桃| 成人美女网站在线观看视频| 午夜老司机福利剧场| 九九久久精品国产亚洲av麻豆| 中文欧美无线码| 国产成人精品福利久久| 两个人免费观看高清视频 | 久久av网站| a级片在线免费高清观看视频| 中文字幕制服av| 国产亚洲一区二区精品| 91精品国产九色| 亚洲精品久久午夜乱码| 各种免费的搞黄视频| 午夜福利网站1000一区二区三区| 国产成人freesex在线| 一个人免费看片子| 亚洲欧美一区二区三区国产| 亚洲高清免费不卡视频| 一级毛片电影观看| 最新中文字幕久久久久| 国产永久视频网站| 精品酒店卫生间| 欧美成人午夜免费资源| 一级二级三级毛片免费看| 九九久久精品国产亚洲av麻豆| 免费观看av网站的网址| 日韩精品免费视频一区二区三区 | a级毛片免费高清观看在线播放| 一边亲一边摸免费视频| 日韩制服骚丝袜av| 中文欧美无线码| 永久网站在线| 久久久欧美国产精品| 在线观看免费视频网站a站| 亚洲三级黄色毛片| 一级毛片aaaaaa免费看小| 日韩精品免费视频一区二区三区 | 午夜免费鲁丝| 国产高清国产精品国产三级| 国产亚洲最大av| 在线观看国产h片| 搡老乐熟女国产| 国产亚洲午夜精品一区二区久久| 日本猛色少妇xxxxx猛交久久| 在线观看三级黄色| 免费播放大片免费观看视频在线观看| 最新的欧美精品一区二区| 你懂的网址亚洲精品在线观看| 久久女婷五月综合色啪小说| 女人久久www免费人成看片| 国产在线视频一区二区| 免费大片黄手机在线观看| 国产精品蜜桃在线观看| 美女cb高潮喷水在线观看| 亚洲成人手机| 日韩不卡一区二区三区视频在线| 国产av码专区亚洲av| 欧美高清成人免费视频www| av线在线观看网站| 欧美成人午夜免费资源| 在线亚洲精品国产二区图片欧美 | 蜜臀久久99精品久久宅男| 日韩av在线免费看完整版不卡| 日日啪夜夜撸| 人人妻人人澡人人看| 最新的欧美精品一区二区| 久久国产精品大桥未久av | 三级国产精品欧美在线观看| 欧美日本中文国产一区发布| 国产在线男女| 午夜影院在线不卡| 男人狂女人下面高潮的视频| 少妇熟女欧美另类| 国产片特级美女逼逼视频| 亚洲欧洲日产国产| 综合色丁香网| 一区二区三区四区激情视频| 综合色丁香网| 亚洲国产av新网站| 亚洲欧美精品自产自拍| 免费看光身美女| 久久毛片免费看一区二区三区| 一级爰片在线观看| 男人添女人高潮全过程视频| 一个人免费看片子| 久久国产精品男人的天堂亚洲 | 成人二区视频| 一级黄片播放器| 亚洲欧美日韩卡通动漫| 精品久久久精品久久久| 久久久久精品性色| 久久精品久久久久久久性| 蜜桃久久精品国产亚洲av| 久久国产精品男人的天堂亚洲 | 人妻系列 视频| 老司机亚洲免费影院| 男人和女人高潮做爰伦理| 国产 精品1| 亚洲精品456在线播放app| 狂野欧美白嫩少妇大欣赏| 亚洲国产欧美日韩在线播放 | 中国美白少妇内射xxxbb| 性高湖久久久久久久久免费观看| 一级毛片黄色毛片免费观看视频| 人妻夜夜爽99麻豆av| 日韩欧美 国产精品| 亚洲精品自拍成人| 国产一区二区三区av在线| 亚洲国产av新网站| 久久久亚洲精品成人影院| 久久久久久久久久久久大奶| av有码第一页| 极品少妇高潮喷水抽搐| 麻豆成人午夜福利视频| 国产精品久久久久成人av| 一区二区三区四区激情视频| 免费播放大片免费观看视频在线观看| 成人毛片60女人毛片免费| 91久久精品电影网| 免费人妻精品一区二区三区视频| 99热网站在线观看| 少妇人妻久久综合中文| 国产精品人妻久久久影院| 狂野欧美激情性xxxx在线观看| 9色porny在线观看| 99久久综合免费| 高清欧美精品videossex| 亚洲国产色片| 久久午夜综合久久蜜桃| 免费久久久久久久精品成人欧美视频 | 26uuu在线亚洲综合色| 日本色播在线视频| 人人妻人人澡人人看| 亚洲av男天堂| 亚洲伊人久久精品综合| 丰满人妻一区二区三区视频av| 国产精品人妻久久久影院| 久久久国产一区二区| 黄片无遮挡物在线观看| 国产一区二区在线观看日韩| xxx大片免费视频| 国产成人免费观看mmmm| 久久精品久久久久久噜噜老黄| 国产精品无大码| 七月丁香在线播放| 校园人妻丝袜中文字幕| 五月天丁香电影| 自线自在国产av| 日韩欧美一区视频在线观看 | 亚洲欧美精品专区久久| 99久久精品热视频| 国产精品福利在线免费观看| 亚洲精品日韩在线中文字幕| 美女主播在线视频| 欧美bdsm另类| 亚洲欧洲精品一区二区精品久久久 | a 毛片基地| 婷婷色av中文字幕| 亚洲三级黄色毛片| 久久av网站| 大陆偷拍与自拍| 在线观看免费日韩欧美大片 | 中文精品一卡2卡3卡4更新| 91在线精品国自产拍蜜月| 国产亚洲精品久久久com| 男男h啪啪无遮挡| 久久99蜜桃精品久久| 天堂中文最新版在线下载| 亚洲经典国产精华液单| 少妇高潮的动态图| 黄色配什么色好看| 丝袜喷水一区| 成人亚洲精品一区在线观看| 尾随美女入室| 伦理电影大哥的女人| 亚洲av二区三区四区| 人妻夜夜爽99麻豆av| 亚洲欧洲国产日韩| 久久综合国产亚洲精品| 欧美 亚洲 国产 日韩一| 亚洲精品国产av蜜桃| 中文字幕久久专区| 少妇高潮的动态图| freevideosex欧美| 成人国产av品久久久| 亚洲美女视频黄频| 26uuu在线亚洲综合色| 爱豆传媒免费全集在线观看| 日本猛色少妇xxxxx猛交久久| 99九九线精品视频在线观看视频| 插阴视频在线观看视频| 狂野欧美激情性bbbbbb| 国产精品伦人一区二区| 免费黄频网站在线观看国产| 80岁老熟妇乱子伦牲交| 久久久久久久久久久免费av| 欧美区成人在线视频| 亚洲中文av在线| 久久人妻熟女aⅴ| 少妇丰满av| 久久午夜综合久久蜜桃| 简卡轻食公司| 观看免费一级毛片| 国产成人午夜福利电影在线观看| 日本-黄色视频高清免费观看| 搡女人真爽免费视频火全软件| 天堂8中文在线网| 国产免费一区二区三区四区乱码| 中文字幕精品免费在线观看视频 | 最新的欧美精品一区二区| 中国三级夫妇交换| 91久久精品国产一区二区三区| 2021少妇久久久久久久久久久| a级毛色黄片| 亚洲三级黄色毛片| 亚洲经典国产精华液单| 黄片无遮挡物在线观看| 精品久久久久久久久av| 插阴视频在线观看视频| 久久久久久人妻| 亚洲人成网站在线观看播放| 午夜福利在线观看免费完整高清在| 69精品国产乱码久久久| 激情五月婷婷亚洲| 成人18禁高潮啪啪吃奶动态图 | 看十八女毛片水多多多| 午夜日本视频在线| 最近最新中文字幕免费大全7| 一级毛片久久久久久久久女| 久久久久网色| 久久精品国产亚洲av天美| 日韩成人伦理影院| 亚洲精品日韩在线中文字幕| 大片电影免费在线观看免费| 最近中文字幕高清免费大全6| 国产黄色视频一区二区在线观看| videos熟女内射| 色网站视频免费| 日韩不卡一区二区三区视频在线| 日本vs欧美在线观看视频 | 在线 av 中文字幕| videos熟女内射| 免费av不卡在线播放| 男女边摸边吃奶| 亚州av有码| 成人18禁高潮啪啪吃奶动态图 | a级毛色黄片| 亚洲不卡免费看| 亚洲无线观看免费| 亚洲av日韩在线播放| 亚洲精品乱码久久久久久按摩| 亚洲国产av新网站| 日韩强制内射视频| 麻豆成人午夜福利视频| 精品亚洲成a人片在线观看| 伊人久久精品亚洲午夜| 只有这里有精品99| 国产精品女同一区二区软件| 免费黄色在线免费观看| 国产淫语在线视频| 日本黄色日本黄色录像| 日本免费在线观看一区| 大片电影免费在线观看免费| 一本久久精品| 插阴视频在线观看视频| 国产亚洲精品久久久com| 水蜜桃什么品种好| 下体分泌物呈黄色| 中文字幕人妻熟人妻熟丝袜美| 国产在线视频一区二区| 日韩人妻高清精品专区| 在线观看三级黄色| 免费观看的影片在线观看| 丁香六月天网| 九九在线视频观看精品| www.色视频.com| 精品卡一卡二卡四卡免费| 人妻系列 视频| 国产免费又黄又爽又色| 亚洲电影在线观看av| 亚洲av.av天堂| 免费观看的影片在线观看| 免费黄频网站在线观看国产| 久久女婷五月综合色啪小说| 国产极品天堂在线| 夫妻午夜视频| 国产中年淑女户外野战色| 赤兔流量卡办理| 黄色配什么色好看| 日韩不卡一区二区三区视频在线| 午夜免费鲁丝| 亚洲人与动物交配视频| h视频一区二区三区| 在线看a的网站| 丰满人妻一区二区三区视频av| 欧美少妇被猛烈插入视频| 国产精品嫩草影院av在线观看| 午夜精品国产一区二区电影| 少妇被粗大的猛进出69影院 | 免费看日本二区| 内射极品少妇av片p| 黄片无遮挡物在线观看| av国产精品久久久久影院| 妹子高潮喷水视频| 午夜免费男女啪啪视频观看| 色网站视频免费| 欧美日韩在线观看h| 男女边吃奶边做爰视频| 51国产日韩欧美| 中国美白少妇内射xxxbb| 国产女主播在线喷水免费视频网站| 亚洲熟女精品中文字幕| 色视频在线一区二区三区| 极品教师在线视频| 欧美老熟妇乱子伦牲交| 中文欧美无线码| 啦啦啦中文免费视频观看日本| 韩国高清视频一区二区三区| 欧美丝袜亚洲另类| 伊人久久精品亚洲午夜| 极品人妻少妇av视频| 少妇熟女欧美另类| 欧美区成人在线视频| 国产综合精华液| 日韩视频在线欧美| 精品国产乱码久久久久久小说| 男人和女人高潮做爰伦理| 国产在线视频一区二区| 少妇的逼好多水| 内地一区二区视频在线| 中文天堂在线官网| 啦啦啦视频在线资源免费观看| 久久婷婷青草| 日韩制服骚丝袜av| 国产日韩欧美视频二区| 精品国产露脸久久av麻豆| 久久久久人妻精品一区果冻| 新久久久久国产一级毛片| av免费观看日本| 欧美 亚洲 国产 日韩一| 不卡视频在线观看欧美| 亚洲av福利一区| 亚洲美女搞黄在线观看| 国产亚洲5aaaaa淫片| 六月丁香七月| 少妇精品久久久久久久| 久久国产乱子免费精品| videossex国产| 在线播放无遮挡| 我的女老师完整版在线观看| 51国产日韩欧美| 久久女婷五月综合色啪小说| 精品一区在线观看国产| 九九爱精品视频在线观看| 欧美精品人与动牲交sv欧美| 免费少妇av软件| 国产一区二区在线观看日韩| a 毛片基地| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 国产黄频视频在线观看| 女性被躁到高潮视频| 少妇高潮的动态图| 成人漫画全彩无遮挡| 久久精品国产鲁丝片午夜精品| av在线观看视频网站免费| 大香蕉97超碰在线| 不卡视频在线观看欧美| 九色成人免费人妻av| 在线观看人妻少妇| 国产熟女午夜一区二区三区 | 国产精品女同一区二区软件| 国产日韩欧美在线精品| 亚洲怡红院男人天堂| 欧美丝袜亚洲另类| 久久热精品热| 欧美 亚洲 国产 日韩一| 亚洲av二区三区四区| 黄色怎么调成土黄色| kizo精华| 啦啦啦在线观看免费高清www| 国产淫片久久久久久久久| 大香蕉久久网| 中文字幕av电影在线播放| 亚洲性久久影院| 久久综合国产亚洲精品| 99国产精品免费福利视频| 亚洲精品乱久久久久久| 国产日韩欧美视频二区| 日韩一本色道免费dvd| 91久久精品国产一区二区三区| 性色av一级| 亚洲av欧美aⅴ国产| 能在线免费看毛片的网站| 久久久久国产网址| 日韩强制内射视频| 在线观看免费视频网站a站| 一级毛片 在线播放| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 我要看黄色一级片免费的| 免费av不卡在线播放| 欧美日韩视频高清一区二区三区二| 99久久精品一区二区三区| 在线观看三级黄色| 91成人精品电影| 99久久精品热视频| 三上悠亚av全集在线观看 | 亚洲婷婷狠狠爱综合网| 在线精品无人区一区二区三| 亚洲欧洲精品一区二区精品久久久 | 久久久久国产精品人妻一区二区| 成人毛片60女人毛片免费| 春色校园在线视频观看| 色94色欧美一区二区| 国产高清国产精品国产三级| 亚洲国产毛片av蜜桃av| 少妇人妻 视频| 三级国产精品片| 久久99一区二区三区| 王馨瑶露胸无遮挡在线观看| 中国美白少妇内射xxxbb| 免费久久久久久久精品成人欧美视频 | 一区二区三区四区激情视频| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 黄色欧美视频在线观看| 日韩中字成人| 妹子高潮喷水视频| av在线观看视频网站免费| 狂野欧美激情性bbbbbb| 91久久精品电影网| 六月丁香七月| 黄色日韩在线| 六月丁香七月| 大陆偷拍与自拍| 精品国产国语对白av| 久久久久国产网址| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 日本wwww免费看| 日日啪夜夜爽| 一本色道久久久久久精品综合| 欧美精品高潮呻吟av久久| 亚州av有码| 久久久久久久亚洲中文字幕| 国产精品人妻久久久影院| 午夜影院在线不卡| 一级片'在线观看视频| 免费人成在线观看视频色| 国产欧美另类精品又又久久亚洲欧美| 伊人久久国产一区二区| 亚洲av成人精品一二三区| 丝袜在线中文字幕| 69精品国产乱码久久久| 亚洲国产欧美日韩在线播放 | 最后的刺客免费高清国语| 免费av不卡在线播放| videossex国产| 波野结衣二区三区在线| 黄色毛片三级朝国网站 | 精品一区在线观看国产| 少妇被粗大的猛进出69影院 | 能在线免费看毛片的网站| 成人亚洲欧美一区二区av| 性色avwww在线观看| 肉色欧美久久久久久久蜜桃| 亚洲四区av|