• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric Transformation of Timed Weighted Marked Graphs: Applications in Optimal Resource Allocation

    2021-04-14 06:55:06ZhouHeMemberIEEEZiyueMaMemberIEEEZhiwuLiFellowIEEEandAlessandroGiuaFellowIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Zhou He, Member, IEEE, Ziyue Ma, Member, IEEE, Zhiwu Li, Fellow, IEEE, and Alessandro Giua, Fellow, IEEE

    Abstract—Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications in the control and performance analysis of flexible manufacturing systems. Due to the existence of multiplicities (i.e., weights) on edges, the performance analysis and resource optimization of such graphs represent a challenging problem. In this paper, we develop an approach to transform a timed weighted marked graph whose initial marking is not given, into an equivalent parametric timed marked graph where the edges have unitary weights. In order to explore an optimal resource allocation policy for a system, an analytical method is developed for the resource optimization of timed weighted marked graphs by studying an equivalent net.Finally, we apply the proposed method to a flexible manufacturing system and compare the results with a previous heuristic approach. Simulation analysis shows that the developed approach is superior to the heuristic approach.

    I. INTRODUCTION

    MANY artificial systems that consist of a limited quantity of resources shared by different tasks can be classified as resource allocation systems [1]; among them include flexible manufacturing systems, traffic transportation systems,and logistics systems [2]-[7]. Performance of flexible manufacturing systems is usually affected by timing specifications and resource allocation. For the sake of improving productivity and saving cost considerations, the resources of a flexible manufacturing system must be well allocated. The resource optimization of manufacturing systems with operation delay, assembly, disassembly, and batch processing, is a challenging problem for manufacturing engineers.

    Timed Petri nets (TPNs) are a model of discrete event systems that are widely applied to control, performance evaluation, and fault diagnosis in timed systems, e.g., flexible manufacturing systems [8]-[11]. As an important subclass of TPNs, timed marked graphs (TMGs) are suitable to model and analyze synchronization appearing in discrete event systems[12], [13].

    The performance of a system modeled with TMGs was usually characterized by the cycle time. When the initial marking of a TMG is given, a linear programming is developed to estimate the cycle time [14]. The properties of cyclic TMGs were explored in [15] and it was shown that the evolution of cyclic TMGs is periodic. Therefore, it is possible to estimate the cycle time by analyzing its periodical behaviors. In addition, the linear algebraic approaches can also be applied to model and analyze the dynamic behavior of TMGs [16], [17].

    To make a trade-off between the throughput of manufacturing systems and the resource cost, two main resource optimization problems were investigated in the literature: marking optimization [18] and cycle time optimization [19], [20]. The marking optimization problem finds a minimal cost marking such that the system's cycle time does not fall short of a predefined upper bound and the cycle time optimization problem investigated in [20] explores a minimal cycle time marking such that the cost of the machines/resources does not exceed an upper bound.Deadlock control of flexible manufacturing systems is another important problem that has been extensively investigated in a class of Petri nets (PNs) [21]-[23].

    For modelling, analyzing, and controlling flexible manufacturing systems with batch processing, a possible method is to use timed weighted marked graphs (TWMGs)[24]. TWMGs have been proven to be adequate for performance evaluation and resource optimization of jobshops, kanban systems, and flexible manufacturing systems that are decision free [14], [15]. In such nets, each place has a unique output transition and a unique input transition but the weights on edges may be greater than one, to represent multiple edges. The behaviors and properties of TWMGs were investigated in [25]. Due to the existence of multiplicities(weights) on edges, the analysis of TWMGs is a challenging problem. When the initial marking of a TWMG is given, its cycle time could be analyzed by converting to an equivalent TMG [26], [27] using the well-known linear programming approach in [14]. However, when the initial marking becomes a decision variable to be determined for an optimization problem, the approaches developed in [26], [27] cannot be directly used. Heuristic methods were developed in [28], [29]for the marking optimization problem of TWMGs to obtain a sub-optimal solution.

    By transforming a TWMG whose initial marking is unknown into a finite number of equivalent TMG classes, an optimal initial marking can be obtained by solving a mixed integer linear programming problem for each equivalent TMG class [30], [31]. However, these approaches have high computational cost since the number of equivalent TMG classes increases exponentially w.r.t. the number of places of the original TWMG. In practice it is inefficient to solve a resource optimization problem by exploring all the equivalent TMGs1Although several techniques that may help to speed up the approaches in[30], [31] are developed, these procedures are still subject to high computational complexity..

    To this end, this paper proposes a method to convert a TWMG whose initial marking is unknown to an equivalent parametric TMG system that fully describes the finite family of TMGs equivalent to the original TWMG. Using this transformation, a resource optimization problem for the original TWMG can be reduced to an optimization problem for the equivalent parametric TMG, which, as shown later, can be solved more efficiently. Particularly, this approach is used to handle the marking optimization of TWMGs by solving a mixed integer quadratically constrained programming problem for the equivalent parametric TMG system. To the best of our knowledge, the existing results for the marking optimization problem of TWMGs are all based on heuristic strategies.

    The main contributions of this work are as follows:

    1) We develop an approach to transform a TWMG, whose initial marking is not given, into an equivalent parametric TMG system that fully describes the finite family of TMGs equivalent to the original TWMG.

    2) We propose a mixed integer quadratically constrained programming problem for the marking optimization problem of TWMGs.

    3) We test the proposed approach on different cases and compare its performance with a previous heuristic approach.

    This paper is organized in six sections. The basics of PNs is given in Section II. A method developed in [26] to transform a TWMG whose initial marking is given into an equivalent TMG is introduced in Section III. In Section IV, an approach to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system is presented. In Section V,an analytical approach for the resource optimization problem is developed based on the equivalent parametric TMG system.In Section VI, we give the conclusions.

    II. BACKGROUND

    A. Petri Nets

    A Petri net (PN) is a four-tuple N=(P,T,Pre,Post), where P={p1,...,pn} is a set of n places, T ={t1,...,tm} is a set ofm transitions with P∪T ≠? and P∩T =?, Pre:P×T →N and Post:P×T →Nare the pre-incidence and post-incidence

    Fig. 1. A place pi with an input transition t in(p) and an output transitiontout(p).

    B. Cycle Time of TWMGs

    There mainly exist three ways of introducing the timing parameters in PN models, i.e., a delay can be associated with transitions, places, or arcs [32]. In this paper, we consider TPNs, in which each transition is associated with a deterministic firing delay. A timed PN is a pair (N,δ), where Nis a PN, and δ :T →N is a firing delay function that assigns to each transition a non-negative integer [30]. The single server semantic is considered in this paper, which means that at each time an enabled transition cannot fire more than once.More details can be found in [32].

    For a TWMG system 〈N,M〉, the cycle time is defined as the average period to fire one time the minimal T-semiflow as soon as possible, denoted by χ(M). In [14], a linear programming was developed to obtain a cycle time lower bound as follows:

    where β ∈R+is the throughput (inverse of the cycle time, i.e.,β=1/χ(M)) and α ∈ Rmare the decision variables. Note that LPP (1) provides an exact value for the cycle time of a TMG system 〈N,M〉. In addition, by simulating the dynamic behavior of a TWMG system [29], the cycle time can also be obtained.

    III. TRANSFORMATION OF A TWMG SYSTEM

    For a TWMG system, an analytical approach to evaluate the cycle time is to transform it into an equivalent TMG system that has the same cycle time. In [26], Munier proposed a method to convert a TWMG system 〈 N,M〉 (with n places and m transitions) to an equivalent TMG system 〈N?, M?〉 (withn? places and m? transitions) whose cycle time is identical. This procedure is shown in Algorithm 1.

    As discussed in [30], for a TWMG system the structure of its equivalent TMG depends on the initial marking. In addition, the number of equivalent TMG systems of a TWMG, whose initial marking is not given, increases exponentially with the size of place set, which makes the resource optimization problem where the initial marking is unknown quite difficult to solve2The solutions developed in [30] and [31] for the cycle time optimization have high computational cost since they require one to solve a mixed integer linear programming for each possible equivalent TMG system..

    Example 1: Consider a TWMG N in Fig. 2 whose minimal T-semiflow is x = (2, 1)T. We assume that the initial marking is M=(2,0)T. According to Algorithm 1, an equivalent TMG system 〈 N?, M?〉 is obtained as follows.

    Fig. 2. A TWMG N considered in Examples 1, 2 and 3.

    Fig. 3. The equivalent subsystem 〈 N?t, M?t〉 of transitions.

    Algorithm 1 [26] Transformation of a TWMG System into an Equivalent TMG System Under Single Server Semantics Input: A TWMG system with a minimal T-semiflow〈N,M〉x=(x1,...,xm)T〈?N, ?M〉〈N,M〉Output: An equivalent TMG system whose cycle time is identical to〈?Nt, ?Mt〉ti ∈T xi t1it2i... txi i 1: (Equivalent subsystem of transitions) Replace each transition by transitions, , , , , with delay time ?δ(tj i)=δ(ti), j=1,...,xi. (2)xi q1i ... qxi i qai a=1,...,xi-1 tai ta+1i qxi i Add places , , , where ( ) is a place connecting to with unitary weights and is a place connecting to with unitary weights.txi i t1i■■■■■■■■■?M(qai)=0, i=1,...,m, a=1,...,xi-1 ?M(qxi i )=1.(3)〈?Np, ?Mp〉pi ∈P w(pi)>v(pi) ni=xin(pi) psi s=1,...,ni 2: (Equivalent subsystem of places: Case 1) Replace each place such that by places , where for:■■■■■■■■■■■■■■■?as·xout(pi)+bs=?M(pi)+w(pi)·(s-1)+1 bs ∈{1,...,xout(pi)}as ∈N.v(pi)(4)n(pi) tbsout(pi) as Place connects transition to transition and contains ps i tsi tokens, i.e.,■■■■■■■■■■■■■■■in(pi), or equivalently Post(psi,tsin(pi))=1 tout(psi)=tbsout(pi), or equivalently Pre(psi,tbsout(pi))=1 μ(ps tin(psi)=ts(5)i)= ?M(psi)=as.〈?Np, ?Mp〉pi ∈P w(pi)≤v(pi) ni=xout(pi) psi s=1,...,ni 3: (Equivalent subsystem of places: Case 2) Replace each place such that by places , where for:■■■■■■■■■■■■■■■?cs·xin(pi)+ds=?s·v(pi)-M(pi)w(pi)ds ∈{1,...,xin(pi)}cs ∈Z≤0.(6)psi tdsin(pi) tsout(pi)-cs Place connects transition to transition and contains tokens, i.e.,■■■■■■■■■■■■■■■tin(psi)=tds in(pi)or equivalently Post(psi,tds in(pi))=1 tout(psi)=tsout(pi) or equivalently Pre(psi,tsout(pi))=1 μ(psi)= ?M(psi)=-cs.(7)〈?N, ?M〉4: (Equivalent TMG system ) The TMG system is equivalent to the union of the subsystems of transitions and places, i.e.,〈?N, ?M〉=〈?Nt, ?Mt〉∪〈?Np, ?Mp〉. (8)

    Fig. 4. The equivalent subsystem 〈 N?p, M?p〉 of places.

    Finally, we obtain the equivalent TMG system 〈N?, M?〉 by combining the equivalent subsystems of transitions and places as shown in Fig. 5.

    IV. PARAMETRIC TRANSFORMATION OF TWMGS

    Since the equivalent structure of the TMG depends on the initial marking of the TWMG, the number of equivalent TMG systems of a TWMG whose initial marking is unknown could increase exponentially with the size of place set. Therefore, it is practically inefficient to solve a resource optimization problem by exploring all the equivalent TMG systems. This section proposes a method to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system. First, we discuss the logic constraints of the possible equivalent subsystems in Section IV-A. Then, some techniques are introduced to convert a TWMG to an equivalent parametric TMG in Section IV-B.

    Fig. 5. The equivalent TMG system of the TWMG N depicted in Fig. 2 with M=[2,0]T.

    A. Logic Constraints of the Equivalent Subsystems

    B. Parametric Transformation

    For each place p ∈P, the logic constraints of its possible equivalent subsystems are logic or constraints. In particular,all the constraints are equality constraints. In this subsection,some transformation rules to convert logic or constraints into linear constraints are adopted to synthesize all equivalent subsystems into one.

    Consider the following equality constraints:

    The work in [33]-[35] showed that the above equality constraints can be transformed into following linear constraints:

    V. APPLICATION TO THE RESOURCE OPTIMIZATION PROBLEM

    A. An Optimal Solution for Marking Optimization

    This section demonstrates that the transformation approach discussed in Section IV can be further used to handle the marking optimization of TWMGs [28], [29]. Then, an optimal solution based on mixed integer quadratically constrained programming is developed.

    The mathematical model of the marking optimization of a TWMG can be summarized as follows [29]:

    It is worth mentioning that a mixed integer quadratically constrained programming is a non-convex optimization problem and thus a local optimal solution, which is easy to find, cannot guarantee global optimality [36].

    This subsection is concluded with some discussion on its application to the cycle time optimization of TWMGs.Optimal approaches have been developed for TWMGs [30],[31]. However, theses approaches rely on solving mixed integer linear programming for a finite family of equivalent TMGs whose number could increase exponentially w.r.t. that of places. The transformation method proposed in this paper could also be used to the cycle time optimization of TWMGs with a similar technique as Proposition 2.

    B. Illustrative Examples

    This section applies the proposed approach to the marking optimization of a flexible manufacturing system (FMS) and the obtained results are compared with a previous approach in[29] that is based on the heuristic strategy.

    Consider the TWMG of an FMS [28] depicted in Fig. 6. It consists of three machines U1, U2and U3and can manufacture two products, namely R1and R2. The production ratio for R1and R2is 60% and 40%, respectively. The manufacturing processes are as follows:R1:U1, U2, U3(denoted by transitions t1, t2, and t3, respectively) and R2: U2, U1(denoted by transitions t4and t5, respectively).Transitions t6, t7, t8, and t9are used to represent the cyclic manufacturing process.

    Fig. 6. The TWMG model of a flexible manufacturing system.

    In Table I, the proposed approach is compared with the heuristic approach developed in [29] that is implemented by the PN tool HYPENS [38]. All cases run on a computer running Windows 10 with CPU Intel Core i7 at 3.60 GHz and 8 GB RAM. Case 1 is the flexible manufacturing system discussed above, Case 2 is an example taken from Fig. 6 in[29], Case 3 is a flexible manufacturing system studied in[27], and Case 4 is a real assembly line studied in [39] that consists of 41 places and 25 transitions. For each case, the tested approach, the upper bound on the cycle time, the objective function, and the CPU time are shown. Note that the first proposed approach is tested by using LINGO without the global optimal solver option which means that the obtained solution cannot guarantee the optimality, and the second proposed approach is tested by using LINGO with the global optimal solver option. In Table I, “o.o.t” (out of time) means that the solution cannot be found within 12 hours.

    The results in Table I show that the locally optimal solutions obtained by the proposed approach (Loc. Opt.) and the heuristic approach in [29] for Cases 1 and 2 are also global optimal. The solution obtained by the heuristic approach in[29] is better than the locally optimal solution for Case 3,while only a locally optimal solution is found for Case 4. It should be noticed that the computational cost for finding an optimal solution is very high with the increase of the net size.Therefore, a locally optimal solution is also useful.

    TABLE I SIMULATIONS RESULTS OF THE APPROACH IN [29] AND THE PROPOSED APPROACH

    VI. CONCLUSIONS

    This work aims to present an approach to transform a TWMG whose initial marking is not given into an equivalent parametric TMG system where the arcs have unitary weights.Using this transformation, a resource optimization problem for the original TWMG can be reduced to an optimization problem for the equivalent parametric TMG, which can be solved more efficiently. Particularly, this approach is used to handle the marking optimization problem of TWMGs and a mixed integer quadratically constrained programming method is developed for the equivalent parametric TMG system. To the best of our knowledge, the existing results for the marking optimization problem of TWMGs are all based on heuristic strategies. Future work aims to extend the developed approach to a general model where shared resources (i.e., conflicts)exist.

    国产免费福利视频在线观看| 亚洲专区国产一区二区| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三区四区五区乱码| 亚洲精品自拍成人| 啪啪无遮挡十八禁网站| 中亚洲国语对白在线视频| 精品久久久久久久毛片微露脸| 五月开心婷婷网| 捣出白浆h1v1| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久久成人av| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩亚洲国产一区二区在线观看 | 精品视频人人做人人爽| 一本久久精品| 脱女人内裤的视频| 青青草视频在线视频观看| 久久久久久久久免费视频了| 国产日韩一区二区三区精品不卡| 正在播放国产对白刺激| 国产高清国产精品国产三级| 国产亚洲午夜精品一区二区久久| 亚洲国产中文字幕在线视频| 国产一区二区在线观看av| 日本vs欧美在线观看视频| 午夜老司机福利片| 操出白浆在线播放| 三级毛片av免费| 首页视频小说图片口味搜索| 色94色欧美一区二区| 亚洲久久久国产精品| 国产三级黄色录像| 天堂动漫精品| avwww免费| 国产精品久久久人人做人人爽| 国产一区有黄有色的免费视频| 黑人巨大精品欧美一区二区蜜桃| 日韩制服丝袜自拍偷拍| 丝袜喷水一区| 国产高清激情床上av| 精品一品国产午夜福利视频| 成年动漫av网址| 少妇被粗大的猛进出69影院| 1024香蕉在线观看| 亚洲,欧美精品.| 日本精品一区二区三区蜜桃| 1024香蕉在线观看| 成年人免费黄色播放视频| 高清视频免费观看一区二区| 亚洲精品久久成人aⅴ小说| 久久精品aⅴ一区二区三区四区| 日韩欧美一区视频在线观看| 国产又色又爽无遮挡免费看| 两个人免费观看高清视频| 精品视频人人做人人爽| 人妻 亚洲 视频| 久久久精品免费免费高清| 亚洲av美国av| 午夜福利,免费看| 亚洲精品美女久久久久99蜜臀| 欧美黄色片欧美黄色片| 亚洲美女黄片视频| 欧美 日韩 精品 国产| 一级a爱视频在线免费观看| 黄色a级毛片大全视频| 国产精品久久电影中文字幕 | 丝袜在线中文字幕| 在线观看www视频免费| 老司机靠b影院| 亚洲成人免费电影在线观看| 亚洲国产成人一精品久久久| 国产在线一区二区三区精| 免费黄频网站在线观看国产| 日本欧美视频一区| 免费黄频网站在线观看国产| 男女无遮挡免费网站观看| 另类亚洲欧美激情| 日韩欧美三级三区| 人妻一区二区av| 久久久水蜜桃国产精品网| 精品久久久久久久毛片微露脸| 久久人妻福利社区极品人妻图片| cao死你这个sao货| 亚洲精华国产精华精| 成年人黄色毛片网站| 国产一区二区三区综合在线观看| 亚洲五月婷婷丁香| 国产极品粉嫩免费观看在线| 欧美日韩视频精品一区| 老司机亚洲免费影院| 国产一区二区 视频在线| 国产精品亚洲av一区麻豆| www.精华液| 中文字幕最新亚洲高清| 久久午夜综合久久蜜桃| 91老司机精品| 王馨瑶露胸无遮挡在线观看| 亚洲自偷自拍图片 自拍| 老司机在亚洲福利影院| 国产一区二区三区视频了| 91字幕亚洲| 99re在线观看精品视频| 他把我摸到了高潮在线观看 | 欧美中文综合在线视频| 亚洲avbb在线观看| 高清在线国产一区| 免费av中文字幕在线| 国产一区二区 视频在线| 亚洲成人手机| 757午夜福利合集在线观看| 中文亚洲av片在线观看爽 | av天堂在线播放| 国产又爽黄色视频| 精品人妻在线不人妻| 亚洲久久久国产精品| 黄色视频,在线免费观看| 国产精品久久久久久人妻精品电影 | 国产熟女午夜一区二区三区| 中文字幕人妻熟女乱码| 免费不卡黄色视频| 欧美中文综合在线视频| av国产精品久久久久影院| 在线观看舔阴道视频| 欧美黄色淫秽网站| 99热国产这里只有精品6| 亚洲综合色网址| 国产精品一区二区免费欧美| 免费久久久久久久精品成人欧美视频| 青青草视频在线视频观看| 大片免费播放器 马上看| 777久久人妻少妇嫩草av网站| 国产日韩欧美视频二区| 欧美亚洲日本最大视频资源| 日韩制服丝袜自拍偷拍| 久久狼人影院| 亚洲精品粉嫩美女一区| videosex国产| 亚洲av欧美aⅴ国产| 三级毛片av免费| 欧美另类亚洲清纯唯美| 老司机福利观看| 人人澡人人妻人| 黑人操中国人逼视频| 高清欧美精品videossex| 国产精品熟女久久久久浪| 91精品国产国语对白视频| 亚洲色图av天堂| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美一区二区三区在线观看 | 成人18禁高潮啪啪吃奶动态图| 久久久精品国产亚洲av高清涩受| 91麻豆av在线| 免费一级毛片在线播放高清视频 | 亚洲国产欧美日韩在线播放| 乱人伦中国视频| 国产精品国产av在线观看| 黄色视频,在线免费观看| 最近最新免费中文字幕在线| 最黄视频免费看| 欧美成人免费av一区二区三区 | 如日韩欧美国产精品一区二区三区| 亚洲免费av在线视频| svipshipincom国产片| 久久久久久久久免费视频了| 亚洲欧美一区二区三区久久| 日本黄色视频三级网站网址 | 亚洲专区国产一区二区| 午夜视频精品福利| 国产精品久久久av美女十八| 99re6热这里在线精品视频| 51午夜福利影视在线观看| 国产av又大| av片东京热男人的天堂| 一级片'在线观看视频| 男女高潮啪啪啪动态图| 香蕉久久夜色| 天堂俺去俺来也www色官网| 国产成人系列免费观看| 男女床上黄色一级片免费看| 精品免费久久久久久久清纯 | 免费人妻精品一区二区三区视频| 日本vs欧美在线观看视频| av一本久久久久| 黑人操中国人逼视频| 日韩一区二区三区影片| 新久久久久国产一级毛片| 天堂动漫精品| 亚洲精华国产精华精| 国产单亲对白刺激| 91九色精品人成在线观看| 新久久久久国产一级毛片| 99精品欧美一区二区三区四区| 在线看a的网站| 久久这里只有精品19| 久久久久精品国产欧美久久久| 欧美精品啪啪一区二区三区| 999久久久精品免费观看国产| 日韩精品免费视频一区二区三区| 国产精品一区二区在线观看99| 中国美女看黄片| 成年女人毛片免费观看观看9 | 国产av又大| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲久久久国产精品| 亚洲av国产av综合av卡| 大码成人一级视频| 日韩免费高清中文字幕av| 男人舔女人的私密视频| 亚洲成av片中文字幕在线观看| 日韩人妻精品一区2区三区| 国产精品久久电影中文字幕 | 婷婷丁香在线五月| 国产av国产精品国产| 亚洲精品成人av观看孕妇| 国产精品久久久av美女十八| 成人亚洲精品一区在线观看| 久久午夜亚洲精品久久| 午夜成年电影在线免费观看| 成年人午夜在线观看视频| 老熟女久久久| 视频区欧美日本亚洲| 欧美乱妇无乱码| 国产成人啪精品午夜网站| 我要看黄色一级片免费的| 国产精品影院久久| 欧美另类亚洲清纯唯美| 色播在线永久视频| 悠悠久久av| 久久精品国产亚洲av香蕉五月 | 成人亚洲精品一区在线观看| 免费观看av网站的网址| 在线观看免费午夜福利视频| 欧美久久黑人一区二区| 国产精品免费视频内射| 美女午夜性视频免费| 精品久久久久久久毛片微露脸| 久9热在线精品视频| 久久人妻av系列| 手机成人av网站| 久久久国产欧美日韩av| 欧美日韩中文字幕国产精品一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 捣出白浆h1v1| 欧美精品一区二区免费开放| 国产精品欧美亚洲77777| 咕卡用的链子| 亚洲专区中文字幕在线| 亚洲熟妇熟女久久| tocl精华| 丰满迷人的少妇在线观看| 欧美日韩精品网址| 日韩 欧美 亚洲 中文字幕| 国产有黄有色有爽视频| 亚洲国产av影院在线观看| 日日摸夜夜添夜夜添小说| 每晚都被弄得嗷嗷叫到高潮| 精品少妇黑人巨大在线播放| 亚洲五月婷婷丁香| 两个人看的免费小视频| 精品少妇一区二区三区视频日本电影| 久久亚洲精品不卡| 69av精品久久久久久 | 日韩成人在线观看一区二区三区| 一个人免费在线观看的高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久99热这里只频精品6学生| 国产无遮挡羞羞视频在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲一区二区三区欧美精品| 久久久国产一区二区| 高清欧美精品videossex| 国产精品久久久av美女十八| 久久中文字幕一级| 国产一区二区在线观看av| 天天躁日日躁夜夜躁夜夜| 亚洲av成人不卡在线观看播放网| 亚洲精品粉嫩美女一区| 在线观看免费午夜福利视频| 国产成人免费无遮挡视频| 国产精品久久久久久精品古装| 亚洲精品美女久久久久99蜜臀| 久久精品亚洲av国产电影网| 国产在线精品亚洲第一网站| 不卡一级毛片| 岛国毛片在线播放| 国产欧美日韩综合在线一区二区| 窝窝影院91人妻| 中文字幕制服av| 精品久久久久久久毛片微露脸| 女人精品久久久久毛片| 色播在线永久视频| 国产精品影院久久| 少妇裸体淫交视频免费看高清 | 免费不卡黄色视频| 亚洲av片天天在线观看| 午夜免费成人在线视频| 久久国产精品大桥未久av| 欧美日韩一级在线毛片| 亚洲中文日韩欧美视频| 日韩欧美国产一区二区入口| 久久人妻福利社区极品人妻图片| 人妻久久中文字幕网| 欧美精品啪啪一区二区三区| 另类亚洲欧美激情| 桃红色精品国产亚洲av| 91老司机精品| 91字幕亚洲| 性色av乱码一区二区三区2| 日本撒尿小便嘘嘘汇集6| 99国产精品一区二区三区| 午夜福利欧美成人| 18在线观看网站| 一级毛片女人18水好多| 国产野战对白在线观看| 欧美日韩亚洲综合一区二区三区_| 性少妇av在线| 女性被躁到高潮视频| 80岁老熟妇乱子伦牲交| 国产av又大| 在线观看舔阴道视频| h视频一区二区三区| 高清毛片免费观看视频网站 | 搡老岳熟女国产| 国产免费福利视频在线观看| 正在播放国产对白刺激| 建设人人有责人人尽责人人享有的| 日本黄色日本黄色录像| tocl精华| 香蕉久久夜色| 国产高清激情床上av| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 丝袜喷水一区| 亚洲av国产av综合av卡| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲| 日韩大码丰满熟妇| 国产免费视频播放在线视频| 免费看a级黄色片| 精品福利永久在线观看| 亚洲情色 制服丝袜| 久久精品国产a三级三级三级| 狠狠婷婷综合久久久久久88av| 一级片'在线观看视频| 黄色成人免费大全| 欧美日韩一级在线毛片| 人人妻人人添人人爽欧美一区卜| 女人高潮潮喷娇喘18禁视频| 国产免费福利视频在线观看| 欧美久久黑人一区二区| 国产亚洲精品第一综合不卡| 满18在线观看网站| 亚洲avbb在线观看| 动漫黄色视频在线观看| 国产男女超爽视频在线观看| 2018国产大陆天天弄谢| 激情视频va一区二区三区| 天天添夜夜摸| 国产成人啪精品午夜网站| 激情视频va一区二区三区| 国产免费现黄频在线看| 亚洲国产中文字幕在线视频| 黄色 视频免费看| 国产成人精品在线电影| 午夜久久久在线观看| 精品一区二区三区视频在线观看免费 | 国产一卡二卡三卡精品| 精品国产乱码久久久久久小说| 亚洲va日本ⅴa欧美va伊人久久| 亚洲视频免费观看视频| bbb黄色大片| 五月天丁香电影| 久久中文看片网| 国产成人一区二区三区免费视频网站| 成人永久免费在线观看视频 | 久久精品国产99精品国产亚洲性色 | 国产欧美日韩一区二区精品| 无限看片的www在线观看| 欧美午夜高清在线| 视频区图区小说| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 国产精品秋霞免费鲁丝片| 咕卡用的链子| 考比视频在线观看| 啪啪无遮挡十八禁网站| 怎么达到女性高潮| 女人高潮潮喷娇喘18禁视频| 国产福利在线免费观看视频| 国产日韩一区二区三区精品不卡| 国产深夜福利视频在线观看| 国产福利在线免费观看视频| 麻豆国产av国片精品| 日本av手机在线免费观看| 亚洲av成人不卡在线观看播放网| 久久99一区二区三区| 黄色怎么调成土黄色| 国产野战对白在线观看| 十八禁人妻一区二区| 天天躁日日躁夜夜躁夜夜| 国产一卡二卡三卡精品| 精品久久久久久电影网| 侵犯人妻中文字幕一二三四区| 久久久水蜜桃国产精品网| 亚洲成a人片在线一区二区| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| 菩萨蛮人人尽说江南好唐韦庄| 高清欧美精品videossex| 国产精品二区激情视频| 女人精品久久久久毛片| 亚洲成人免费电影在线观看| 欧美激情高清一区二区三区| 成人影院久久| 在线观看人妻少妇| 嫁个100分男人电影在线观看| 天天躁日日躁夜夜躁夜夜| 欧美午夜高清在线| 国产麻豆69| 亚洲精品成人av观看孕妇| 99精国产麻豆久久婷婷| 最新美女视频免费是黄的| 亚洲av成人不卡在线观看播放网| 电影成人av| 午夜福利视频精品| 亚洲,欧美精品.| 人妻久久中文字幕网| 男人舔女人的私密视频| 国产一区二区激情短视频| 久久ye,这里只有精品| 欧美亚洲日本最大视频资源| 丝袜在线中文字幕| 高清视频免费观看一区二区| 成人国产av品久久久| 精品一品国产午夜福利视频| 日本wwww免费看| 国产亚洲一区二区精品| 黄频高清免费视频| 国产精品电影一区二区三区 | 久久av网站| 亚洲成国产人片在线观看| 纯流量卡能插随身wifi吗| 男女边摸边吃奶| 久久精品亚洲精品国产色婷小说| 亚洲精品一二三| 十分钟在线观看高清视频www| 欧美日韩亚洲高清精品| 天天操日日干夜夜撸| 午夜福利视频精品| 日韩欧美一区二区三区在线观看 | 亚洲国产精品一区二区三区在线| 啦啦啦中文免费视频观看日本| 日韩精品免费视频一区二区三区| aaaaa片日本免费| 999精品在线视频| 日韩大码丰满熟妇| 老司机亚洲免费影院| 露出奶头的视频| 天堂8中文在线网| 另类亚洲欧美激情| 精品久久蜜臀av无| 好男人电影高清在线观看| 日韩大码丰满熟妇| 在线 av 中文字幕| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看 | 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 一本一本久久a久久精品综合妖精| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品免费免费高清| 中文字幕人妻熟女乱码| 亚洲熟女毛片儿| 久久久久久久久久久久大奶| 人人妻人人添人人爽欧美一区卜| videos熟女内射| bbb黄色大片| 欧美日韩亚洲高清精品| 91国产中文字幕| 欧美性长视频在线观看| 国产精品自产拍在线观看55亚洲 | 青青草视频在线视频观看| 男女无遮挡免费网站观看| 国产97色在线日韩免费| 美女视频免费永久观看网站| 国产精品久久久久久人妻精品电影 | 12—13女人毛片做爰片一| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 国产免费现黄频在线看| 黄色a级毛片大全视频| 午夜福利一区二区在线看| 国产男女内射视频| 国产深夜福利视频在线观看| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 免费女性裸体啪啪无遮挡网站| 黑人操中国人逼视频| 国产午夜精品久久久久久| 欧美久久黑人一区二区| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网| 一区在线观看完整版| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 热99国产精品久久久久久7| 大陆偷拍与自拍| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 色尼玛亚洲综合影院| 国产精品麻豆人妻色哟哟久久| 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| tocl精华| 国产亚洲一区二区精品| 18在线观看网站| 欧美日韩av久久| 69av精品久久久久久 | 国产有黄有色有爽视频| 精品少妇内射三级| 亚洲中文av在线| 天堂8中文在线网| 欧美黑人欧美精品刺激| 国产日韩一区二区三区精品不卡| 日韩欧美一区二区三区在线观看 | 香蕉国产在线看| 不卡一级毛片| 久久精品亚洲av国产电影网| 国产日韩欧美视频二区| 久久久久国内视频| 午夜激情av网站| 电影成人av| 一二三四在线观看免费中文在| 在线看a的网站| 久久精品亚洲熟妇少妇任你| 国产伦人伦偷精品视频| 欧美日韩国产mv在线观看视频| 久久精品人人爽人人爽视色| 午夜福利视频精品| 欧美激情极品国产一区二区三区| 久久青草综合色| 精品人妻熟女毛片av久久网站| 国产精品一区二区免费欧美| 黄片小视频在线播放| 丰满迷人的少妇在线观看| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 热99久久久久精品小说推荐| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| 欧美日韩亚洲国产一区二区在线观看 | 国产精品美女特级片免费视频播放器 | 欧美乱妇无乱码| 亚洲色图综合在线观看| 自线自在国产av| 大型av网站在线播放| 脱女人内裤的视频| a级片在线免费高清观看视频| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 国产精品欧美亚洲77777| 他把我摸到了高潮在线观看 | 蜜桃在线观看..| 搡老乐熟女国产| 久久av网站| 脱女人内裤的视频| 亚洲精品国产精品久久久不卡| 热re99久久国产66热| 人人妻人人澡人人爽人人夜夜| 丁香六月欧美| 极品教师在线免费播放| 欧美人与性动交α欧美软件| 亚洲七黄色美女视频| 一边摸一边抽搐一进一出视频| 久久久久久久久久久久大奶| 国产日韩欧美视频二区| 欧美日韩成人在线一区二区| 国产精品久久久久久精品古装| 中文字幕人妻熟女乱码| www.自偷自拍.com| 无人区码免费观看不卡 | 国产欧美日韩一区二区精品| 纯流量卡能插随身wifi吗| 日本vs欧美在线观看视频| 午夜福利视频在线观看免费| 成人三级做爰电影| 99re在线观看精品视频| 男女高潮啪啪啪动态图| 亚洲精品一二三| 久久99热这里只频精品6学生| 久久国产精品大桥未久av| 757午夜福利合集在线观看| 中亚洲国语对白在线视频| 亚洲中文字幕日韩| 日韩有码中文字幕| 在线观看人妻少妇| 国产精品久久电影中文字幕 | 国产精品久久久久久精品古装| 午夜精品久久久久久毛片777| 久久人人97超碰香蕉20202| 国产成人免费观看mmmm| 一区福利在线观看| 久久热在线av| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲五月婷婷丁香| 三上悠亚av全集在线观看| 国产麻豆69| 国产不卡一卡二| 最近最新中文字幕大全电影3 | 一级毛片女人18水好多| 国产在线免费精品|