• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-Time Convergence Disturbance Rejection Control for a Flexible Timoshenko Manipulator

    2021-04-14 06:55:04ZhijiaZhaoMemberIEEEandZhijieLiuMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Zhijia Zhao, Member, IEEE and Zhijie Liu, Member, IEEE

    Abstract—This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances. To suppress the shear deformation and elastic oscillation, position the manipulator in a desired angle, and ensure the finitetime convergence of disturbances, we develop three disturbance observers (DOs) and boundary controllers. Under the derived DOs-based control schemes, the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time. In the end, numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.

    I. INTRODUCTION

    MANIPULATORS are generally applied in a variety of different fields, such as industry, national defense,agriculture, and healthcare [1]-[3]. Flexible manipulators described by partial differential equations (PDEs) have recently received more attention than rigid ones modelled as ordinary differential equations (ODEs) due to their advantages of lower energy consumption, light weight, large operating space, and high-speed operation [4], [5]. Facing the complex and various environments, vibration and deformation generally exist in flexible manipulators, giving rise to system performance deterioration or even production accuracy decline [6]. Thus, the development of efficient control methods for suppressing the oscillation in flexible manipulators is of great interest.

    To dampen vibration and improve performance of flexible manipulator systems, several researchers have concentrated on exploring diverse control techniques, such as mode order reduction (MOR) method [7]-[9] and boundary control [10].By applying the MOR method, an infinite-dimensional system is turned into a finite-dimensional system [11]-[13]. It may weaken the characteristics and cause spillover effects, thus affecting the stability and robustness of the system. Boundary control has been perceived as an effective and practical solution, owing to the circumvention of the spillover effect generated from the MOR method [14]-[20]. Over the past 20 years, advances in the study of boundary controller design for weakening the vibrational offset of flexible manipulators have been significantly made. For example, in [10], disturbance observers (DOs) and boundary controllers were constructed to stabilize the oscillation and eliminate the disturbances in flexible manipulators. In [21], the vibration and angle of flexible manipulators were restrained and positioned by devising a hyperbolic function-based boundary control law. In[22], the nonlinear coupled oscillation of a flexible manipulator in 3-dimensional (3D) space was weakened by exploiting boundary controllers. A boundary barrier-based control was employed for flexible manipulators to achieve the vibration abatement and ensure no violation of output constraints in [23]. In [24], vibration damping and angle positioning in flexible manipulators were accomplished by proposing an iterative learning control strategy. In [25],exploiting the developed boundary control and the Lyapunov stability theory, the angle positioning, vibration abatement,and closed-loop stability of two-link flexible manipulators were realized. In [26], flexible manipulator systems were globally stabilized by using boundary feedback control schemes, and an adaptive inverse technique was employed for tackling the backlash nonlinearity. In the aforementioned literatures, only the elastic oscillation of the flexible link was taken into account, and the shear deformation was neglected to simplify the system analysis. The nonlinear coupling of angle position, shear deformation, and elastic deflection may pose increased challenges for the design and analysis. In recent years, significant development of boundary control for flexible Timoshenko manipulators has been achieved in[27]-[30]. In [27], [28], cooperative control methodologies were devised to guarantee the exponential stabilization of flexible Timoshenko manipulators. In [29], an antisaturation boundary control was established for vibration elimination and saturation removing of Timoshenko manipulators. The literature of [30] constructed an adaptive barrier-based controller and a “disturbance-like” term to dampen the oscillation and eliminate the output constraint and backlash nonlinearity for uncertain Timoshenko manipulators.

    Unknown disturbances are extensively found in various engineering control systems, the existence of which has great side effects on the control performance of practical engineering systems [31], [32]. Consequently, disturbance rejection has become one of the key control objectives during the design process. Due to the significance of disturbance attenuation, many disturbance rejection control methods have been proposed to handle the undesirable effects caused by unknown disturbances in recent years [31], [33]-[36]. The authors in [31] explored disturbance estimation approaches including linear and nonlinear DOs for industrial control systems. In [33], a nonlinearity estimator-based robust control was devised to stabilize nonlinear systems influenced by nonlinear uncertainties, control gain uncertainty, and external disturbances. In [34], an adaptive neural control with DOs was constructed for the flapping wing aerial vehicle to address the attitude and position control and neutralize the adverse influence of disturbances. In [35], by treating wind effects as unknown disturbances, a nonlinear DO-based control (DOBC)with neural approximations was developed for hypersonic flight vehicles. In [36], a disturbance interval estimation-based antidisturbance control scheme was employed to approximate the time-varying boundaries for disturbances. It is noteworthy that the above-mentioned approaches were only effective for ODE systems and are invalid for PDE systems. Recently,wide concern has been aroused in the DOBC for flexible manipulator systems [37], [38]. In [37], the authors proposed a boundary DOBC for estimating the first-order time differentiation of disturbances. In [38], the modeling and DOBC design were addressed for flexible Timoshenko manipulators possessing extraneous disturbances. However,the DOBC design presented in [37], [38] was confined to eliminating the oscillation and tracking the boundary disturbances and their first-order time differentiations in flexible manipulator systems. To the best of our knowledge,although great progress has been made in DOBC boundary control for flexible manipulators, little research has been reported on the development of finite-time convergence disturbance rejection control for simultaneously suppressing the vibration and handling external disturbances for flexible Timoshenko manipulators, which motivates this research.

    In this study, we intend to present a finite-time convergence disturbance rejection control design for stabilizing and controlling a flexible Timoshenko manipulator subject to extraneous disturbances. The main contributions are: 1) Three DOs and boundary controllers are constructed to suppress the shear deformation and elastic oscillation, position the manipulator in a desired angle, and guarantee the finite-time convergence of disturbances; 2) The derived finite-time convergence DOs can make disturbance estimation errors converge to zero in a finite time; and 3) The proposed control schemes ensure the uniformly bounded stability in the controlled system without simplification of infinitedimensional system dynamics.

    The rest of this paper is organized as follows. The dynamics of the Timoshenko manipulator system are presented in Section II. The design of finite-time convergence disturbance rejection control scheme is presented in Section III. Numerical examples are simulated and discussed in Section IV. The conclusion is finally drawn in Section V.

    II. PROBLEM STATEMENT

    A vibrating flexible Timoshenko manipulator system is illustrated in Fig. 1. Let t and q be independent time and space variables, ω(q,t) describes the elastic deflection of the manipulator with length s, inertia per unit length Iρ, mass of unit length ρ, cross-sectional area A, and bending stiffness EI,χ(q,t), θ(t), and θdrepresent the rotation of the manipulator's cross-section, the hub's angle position, and a desired angle position, respectively, the displacement z(q,t) is formulated as z(q,t)=qθ(t)+ω(q,t), γ1(t) denotes the control input torque on the hub with inertia Ih, u(t) and γ2(t) represent the control input and control torque acting on the tip payload with inertia Jand mass M, respectively, and di(t), i=1,2,3 represent external disturbances.

    Fig. 1. Flexible Timoshenko manipulator.

    Remark 1: For simplification, we define notations as(?)=(?)(q,t) , (?)′=?(?)/?q, (?˙)=?(?)/?t,(?)′′=?2(?)/?q2, and ( ?¨)=?2(?)/?t2.

    The dynamics of the Timoshenko manipulator system under consideration in this study is given as [39]

    III. CONTROL DESIGN

    A. Preliminaries

    We first put forward the following lemmas and assumptions:

    Lemma 1 [40]-[42]: Let ν1(q,t),ν2(q,t)∈R with(q,t)∈[0,s]×[0,+∞) . The following inequality is derived for ψ >0:

    B. Disturbance Observers Design

    C. Boundary Control

    Then, the following boundary controllers are designed as

    IV. SIMULATIONS

    Case 1: d1(t)=d2(t)=(sin(10πt)+cos(3πt))/4 andd3(t)=cos(3πt).

    Case 2: d1(t)=d2(t)=(sin(0.1πt)+cos(0.2πt))/4 andd3(t)=0.1cos(0.3t).

    When the manipulator system is simulated in Case 1, the responses are presented in Figs. 2-12. In Case 2, the responses of the manipulator system are portrayed in Figs. 13-21. Figs. 2 and 3 display the spatiotemporal response of the vibrating manipulator system in the free case, namely,u(t)=γ1(t)=γ2(t)=0. Under the action of the presented schemes with the setting of design parameters as: k1=45, k2=20, k3=250,k4=1, k5=6 , κ1=κ4=κ7=1, κ2=κ6=κ8=18, κ3=κ6=κ9=10, a1=b1=c1=5, and a2=b2=c2=7, Figs. 4, 5, 13,and 14 depict the 3D representation of the manipulator system in Cases 1 and 2. Figs. 6 and 15 show the time history of the angle position in Cases 1 and 2. The DE errors in Cases 1 and 2 are described in Figs. 7-9 and 16-18. The responses of the presented control u(t) and control torques γ1(t) and γ2(t) in Cases 1 and 2 are respectively portrayed in Figs 10-12 and 19-21.

    Fig. 2. Deflection of flexible link without control.

    Fig. 3. Rotation of flexible link without control.

    To further validate the performance of the derived controllers and DOs, we also provide a simulation with the nonlinear DOBC (40)-(48) formulated as

    Fig. 4. Deflection of flexible link with proposed control in Case 1.

    Fig. 5. Rotation of flexible link with proposed control in Case 1.

    Fig. 6. Angle position of flexible link with proposed control in Case 1.

    Fig. 7. Disturbance estimation error d ~1(t) in Case 1.

    Fig. 8. Disturbance estimation error d ~2(t) in Case 1.

    Fig. 9. Disturbance estimation error d ~3(t) in Case 1.

    Fig. 10. Control input force u (t) in Case 1.

    Fig. 11. Control input torque γ 1(t) in Case 1.

    Fig. 12. Control input torque γ 2(t) in Case 1.

    Fig. 13. Deflection of flexible link with proposed control in Case 2.

    Fig. 14. Rotation of flexible link with proposed control in Case 2.

    Fig. 15. Angle position of flexible link with proposed control in Case 2.

    Fig. 16. Disturbance estimation error d ~1(t) in Case 2.

    Fig. 17. Disturbance estimation error d ~2(t) in Case 2.

    Fig. 18. Disturbance estimation error d ~3(t) in Case 2.

    Fig. 19. Control input force u (t) in Case 2.

    Fig. 20. Control input torque γ 1(t) in Case 2.

    The simulation results Figs. 2-30 show that the devised control can effectively dampen the manipulator's vibration and shear deformation and put the manipulator in the expected angle, achieving a better control performance than the DOBC(40)-(48); and the DE errors under the derived control can converge to zero in a finite time while the DE errors under the DOBC (40)-(48) fluctuate around the equilibrium position. In brief, we draw conclusions that the obtained control can better stabilize the manipulator system as well as ensure the finite time convergence of the DE errors no matter whether high or low frequency disturbances are acted on the system.

    Fig. 21. Control input torque γ 2(t) in Case 2.

    Fig. 22. Deflection of flexible link with DOBC (40)-(48) in Case 1.

    Fig. 23. Rotation of flexible link with DOBC (40)-(48) in Case 1.

    Fig. 24. Angle position of flexible link with DOBC (40)-(48) in Case 1.

    Fig. 25. Disturbance estimation error d ~1(t) with DOBC (40)-(48) in Case 1.Fig. 28. Control input force u (t) with DOBC (40)-(48) in Case 1.

    Fig. 26. Disturbance estimation error d ~2(t) with DOBC (40)-(48) in Case 1.Fig. 29. Control input torque γ 1(t) with DOBC (40)-(48) in Case 1.

    Fig. 27. Disturbance estimation error d ~3(t) with DOBC (40)-(48) in Case 1.Fig. 30. Control input torque γ 2(t) with DOBC (40)-(48) in Case 1.

    V. CONCLUSIONS

    We have explored the vibration attenuation, angle orientation, and disturbance rejection issues for flexible Timoshenko manipulator systems subject to external disturbances in this study. Novel finite-time convergence disturbance rejection control schemes were developed for weakening external disturbances, achieving angle tracking,and restraining vibration and shear deformation. With the constructed controllers and DOs, the controlled system was demonstrated to be uniformly bounded and the finite time convergence of DE errors was guaranteed. Ultimately,simulation comparison results manifested the control performance of the suggested schemes. Future research directions include intelligent control approaches [58], [59] for manipulator systems.

    APPENDIX A PROOF OF PROPERTY 1

    Proof: Differentiating E1(t) and invoking (12) and (13), we have

    APPENDIX B PROOF OF LEMMA 4

    Employing Lemmas 1 and 2 on (66) yields

    APPENDIX C PROOF OF LEMMA 5

    APPENDIX D PROOF OF THEOREM 1

    日本 欧美在线| 免费电影在线观看免费观看| 香蕉久久夜色| 亚洲五月婷婷丁香| 婷婷六月久久综合丁香| 内射极品少妇av片p| 久久九九热精品免费| 麻豆国产97在线/欧美| 美女 人体艺术 gogo| 亚洲熟妇中文字幕五十中出| 悠悠久久av| 看免费av毛片| 国产成人a区在线观看| 国内精品久久久久久久电影| 搡老岳熟女国产| 18+在线观看网站| 午夜激情福利司机影院| 久久久国产精品麻豆| 欧美黑人欧美精品刺激| 国产免费男女视频| 一级黄片播放器| 亚洲午夜理论影院| 一级黄片播放器| 免费看十八禁软件| 88av欧美| 日韩中文字幕欧美一区二区| 色综合婷婷激情| 一级黄片播放器| 亚洲精品影视一区二区三区av| 波多野结衣高清作品| 色视频www国产| 亚洲国产精品成人综合色| 黄片小视频在线播放| 久久精品91蜜桃| 日韩欧美在线乱码| 精品久久久久久成人av| 久久精品91无色码中文字幕| 床上黄色一级片| 欧美日本亚洲视频在线播放| 国产免费男女视频| 黑人欧美特级aaaaaa片| 久久久久九九精品影院| or卡值多少钱| 少妇丰满av| 亚洲 欧美 日韩 在线 免费| 99久久精品一区二区三区| 久久午夜亚洲精品久久| 叶爱在线成人免费视频播放| 精品久久久久久久久久免费视频| 久久精品国产亚洲av香蕉五月| 国产单亲对白刺激| 国产高清有码在线观看视频| 亚洲18禁久久av| 很黄的视频免费| 欧美一区二区国产精品久久精品| 天堂√8在线中文| 中文亚洲av片在线观看爽| 在线观看66精品国产| 国产色婷婷99| 日本 欧美在线| 亚洲精品粉嫩美女一区| 国产真人三级小视频在线观看| 国产精品久久久久久久电影 | 免费无遮挡裸体视频| 中文字幕久久专区| 亚洲欧美精品综合久久99| 黄色视频,在线免费观看| 免费在线观看影片大全网站| 天天躁日日操中文字幕| 国产免费一级a男人的天堂| 国产探花在线观看一区二区| 国产单亲对白刺激| 在线观看舔阴道视频| a级一级毛片免费在线观看| 午夜精品一区二区三区免费看| 久9热在线精品视频| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 精品99又大又爽又粗少妇毛片 | 国产一区二区亚洲精品在线观看| 久久人人精品亚洲av| 又粗又爽又猛毛片免费看| 麻豆久久精品国产亚洲av| 日本黄大片高清| 国产老妇女一区| 亚洲av日韩精品久久久久久密| 国产成人系列免费观看| 日韩欧美 国产精品| 成年女人看的毛片在线观看| 国产亚洲精品久久久久久毛片| 日本熟妇午夜| 免费av观看视频| 成人av在线播放网站| 麻豆国产97在线/欧美| 亚洲av成人av| 高清日韩中文字幕在线| 日本 av在线| 国产主播在线观看一区二区| 午夜a级毛片| 亚洲美女视频黄频| 国产一区二区在线观看日韩 | 99精品欧美一区二区三区四区| 精品电影一区二区在线| 夜夜躁狠狠躁天天躁| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 观看免费一级毛片| 熟女少妇亚洲综合色aaa.| 热99re8久久精品国产| 18禁美女被吸乳视频| 国产精品精品国产色婷婷| 久久精品影院6| 日本精品一区二区三区蜜桃| 美女免费视频网站| 亚洲 欧美 日韩 在线 免费| 欧美不卡视频在线免费观看| 在线播放无遮挡| 亚洲欧美日韩高清在线视频| 1000部很黄的大片| 久久精品亚洲精品国产色婷小说| 九色国产91popny在线| 国产v大片淫在线免费观看| 国产一区在线观看成人免费| 日韩精品中文字幕看吧| 欧美高清成人免费视频www| 啦啦啦韩国在线观看视频| 一本精品99久久精品77| 精品欧美国产一区二区三| 少妇裸体淫交视频免费看高清| 欧美日韩中文字幕国产精品一区二区三区| 丰满人妻一区二区三区视频av | 精品免费久久久久久久清纯| 色噜噜av男人的天堂激情| av欧美777| 18禁国产床啪视频网站| 国产免费男女视频| 免费人成在线观看视频色| 两个人看的免费小视频| 国产精品一区二区免费欧美| 欧美大码av| 亚洲国产精品久久男人天堂| 亚洲av电影不卡..在线观看| 精品99又大又爽又粗少妇毛片 | 一进一出抽搐gif免费好疼| 日本黄色视频三级网站网址| 成人av一区二区三区在线看| 国产免费一级a男人的天堂| 91字幕亚洲| 99国产极品粉嫩在线观看| 午夜福利18| 日韩 欧美 亚洲 中文字幕| 男女做爰动态图高潮gif福利片| 国内揄拍国产精品人妻在线| 亚洲激情在线av| 亚洲18禁久久av| 亚洲av日韩精品久久久久久密| 久久6这里有精品| www.www免费av| 啪啪无遮挡十八禁网站| 男女之事视频高清在线观看| 欧美黄色片欧美黄色片| 欧美黄色片欧美黄色片| АⅤ资源中文在线天堂| 欧美日韩中文字幕国产精品一区二区三区| a级毛片a级免费在线| or卡值多少钱| 51午夜福利影视在线观看| 欧美zozozo另类| 亚洲aⅴ乱码一区二区在线播放| 女人十人毛片免费观看3o分钟| 18美女黄网站色大片免费观看| a在线观看视频网站| 在线观看日韩欧美| 黄色片一级片一级黄色片| 成人鲁丝片一二三区免费| 欧美丝袜亚洲另类 | 国产探花极品一区二区| 啦啦啦观看免费观看视频高清| 一区二区三区国产精品乱码| 久久精品亚洲精品国产色婷小说| 99久久九九国产精品国产免费| 亚洲中文字幕日韩| 两个人的视频大全免费| 免费看a级黄色片| 九九久久精品国产亚洲av麻豆| 亚洲精品色激情综合| 免费人成视频x8x8入口观看| 午夜老司机福利剧场| 亚洲最大成人手机在线| 国产成人av教育| 中出人妻视频一区二区| 精品久久久久久久久久久久久| 久久久久久久亚洲中文字幕 | 色综合亚洲欧美另类图片| 97超视频在线观看视频| 有码 亚洲区| 听说在线观看完整版免费高清| 最近最新中文字幕大全免费视频| 国产精品 国内视频| 久久性视频一级片| 一级作爱视频免费观看| 成年免费大片在线观看| 亚洲国产中文字幕在线视频| 国产色爽女视频免费观看| 久久精品国产综合久久久| 免费看光身美女| 成年女人看的毛片在线观看| 日韩精品青青久久久久久| 久久国产乱子伦精品免费另类| av欧美777| 变态另类丝袜制服| 国产精品女同一区二区软件 | 午夜日韩欧美国产| 麻豆成人av在线观看| 国产免费一级a男人的天堂| 免费看a级黄色片| 国产不卡一卡二| 精品乱码久久久久久99久播| 国产三级黄色录像| 日韩av在线大香蕉| 禁无遮挡网站| 国产成人av教育| 亚洲不卡免费看| 日韩大尺度精品在线看网址| 一级毛片高清免费大全| 一本综合久久免费| av福利片在线观看| 91久久精品电影网| 一区福利在线观看| 国内毛片毛片毛片毛片毛片| 十八禁人妻一区二区| 日韩有码中文字幕| 国产v大片淫在线免费观看| 精品久久久久久久久久久久久| 可以在线观看毛片的网站| 国产毛片a区久久久久| 波野结衣二区三区在线 | 午夜免费成人在线视频| 婷婷六月久久综合丁香| 国产亚洲欧美在线一区二区| 男女之事视频高清在线观看| 中亚洲国语对白在线视频| 国产精品美女特级片免费视频播放器| 欧美丝袜亚洲另类 | 无遮挡黄片免费观看| 免费高清视频大片| 69人妻影院| 18禁黄网站禁片午夜丰满| 高清在线国产一区| 国产熟女xx| 欧美日韩黄片免| 久久精品国产自在天天线| 国产一区二区激情短视频| 欧美黑人巨大hd| x7x7x7水蜜桃| 观看免费一级毛片| 亚洲欧美日韩东京热| 精品国产亚洲在线| 国产野战对白在线观看| 国产欧美日韩一区二区三| 亚洲狠狠婷婷综合久久图片| 禁无遮挡网站| 国产v大片淫在线免费观看| 久久久精品大字幕| 搞女人的毛片| 国产一区二区三区视频了| 亚洲国产精品sss在线观看| 亚洲精品美女久久久久99蜜臀| 噜噜噜噜噜久久久久久91| 精品久久久久久久末码| 别揉我奶头~嗯~啊~动态视频| 法律面前人人平等表现在哪些方面| 国产伦精品一区二区三区四那| 免费无遮挡裸体视频| 男人舔奶头视频| 99热只有精品国产| 欧美日韩乱码在线| 国产高清视频在线播放一区| 99精品久久久久人妻精品| 国产主播在线观看一区二区| 18禁黄网站禁片免费观看直播| 91麻豆精品激情在线观看国产| 免费观看人在逋| 国产真实乱freesex| 精品福利观看| 亚洲中文字幕日韩| 成人三级黄色视频| 哪里可以看免费的av片| 狠狠狠狠99中文字幕| 1024手机看黄色片| 法律面前人人平等表现在哪些方面| 欧美日本视频| 成人国产综合亚洲| 麻豆成人av在线观看| 免费看a级黄色片| 九色成人免费人妻av| 久久精品91无色码中文字幕| 国产精品亚洲av一区麻豆| 亚洲欧美日韩高清在线视频| 欧美区成人在线视频| 久久精品国产自在天天线| 国产亚洲欧美在线一区二区| 国产亚洲精品久久久com| 日本三级黄在线观看| 国产探花极品一区二区| 日本五十路高清| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 少妇的丰满在线观看| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| 五月玫瑰六月丁香| 18美女黄网站色大片免费观看| 色av中文字幕| 亚洲成av人片在线播放无| 日韩欧美 国产精品| 久久久久久久久大av| 女人十人毛片免费观看3o分钟| 少妇人妻精品综合一区二区 | 午夜亚洲福利在线播放| 夜夜躁狠狠躁天天躁| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久人人人人人| 国产精品,欧美在线| 色播亚洲综合网| 欧美中文日本在线观看视频| 可以在线观看毛片的网站| 九九在线视频观看精品| 五月伊人婷婷丁香| 国产精品 国内视频| www.熟女人妻精品国产| 又黄又爽又免费观看的视频| 人人妻,人人澡人人爽秒播| 深夜精品福利| 亚洲精品影视一区二区三区av| 蜜桃亚洲精品一区二区三区| 国产精品亚洲美女久久久| 欧美av亚洲av综合av国产av| 久久久精品欧美日韩精品| 午夜激情福利司机影院| 一区二区三区国产精品乱码| 此物有八面人人有两片| a级毛片a级免费在线| 在线免费观看不下载黄p国产 | 国产精品香港三级国产av潘金莲| 亚洲av第一区精品v没综合| 久久久国产成人精品二区| 香蕉久久夜色| 亚洲成人精品中文字幕电影| 18禁在线播放成人免费| 性欧美人与动物交配| 又黄又粗又硬又大视频| 欧美色欧美亚洲另类二区| 精品国内亚洲2022精品成人| 国产免费一级a男人的天堂| 老汉色av国产亚洲站长工具| tocl精华| 中文字幕久久专区| 亚洲精品亚洲一区二区| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 日韩亚洲欧美综合| 免费一级毛片在线播放高清视频| 在线观看av片永久免费下载| or卡值多少钱| 国产单亲对白刺激| 成人国产综合亚洲| 九九久久精品国产亚洲av麻豆| 成人无遮挡网站| 中文在线观看免费www的网站| 熟女电影av网| 岛国视频午夜一区免费看| 日韩亚洲欧美综合| 成人精品一区二区免费| 女人高潮潮喷娇喘18禁视频| 国产激情欧美一区二区| 久久国产精品影院| 草草在线视频免费看| 午夜福利在线观看吧| 欧美中文综合在线视频| 国产精品一区二区三区四区免费观看 | 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 久久亚洲精品不卡| 欧美成人a在线观看| 一本精品99久久精品77| 动漫黄色视频在线观看| 国产精品,欧美在线| 男插女下体视频免费在线播放| 99热这里只有是精品50| 老汉色∧v一级毛片| 长腿黑丝高跟| 成人性生交大片免费视频hd| 日日夜夜操网爽| 精品人妻偷拍中文字幕| 久久久精品欧美日韩精品| 午夜激情福利司机影院| 中文字幕av在线有码专区| 国产三级在线视频| 天美传媒精品一区二区| 一级黄片播放器| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区四那| 精品国产超薄肉色丝袜足j| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 免费av观看视频| 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 亚洲人成网站高清观看| 亚洲 国产 在线| 亚洲七黄色美女视频| 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产| 最近视频中文字幕2019在线8| 老司机福利观看| 日韩中文字幕欧美一区二区| 久久精品综合一区二区三区| 非洲黑人性xxxx精品又粗又长| 欧美日韩瑟瑟在线播放| 免费av毛片视频| 可以在线观看的亚洲视频| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区三| 亚洲人成电影免费在线| 韩国av一区二区三区四区| 一级a爱片免费观看的视频| 亚洲五月天丁香| 国产成人av激情在线播放| 此物有八面人人有两片| 日本a在线网址| 国产精品永久免费网站| 日韩欧美 国产精品| 制服丝袜大香蕉在线| 亚洲av电影不卡..在线观看| 亚洲av二区三区四区| 日韩欧美三级三区| 久久久久性生活片| 国产乱人伦免费视频| 亚洲av美国av| 狂野欧美白嫩少妇大欣赏| 国产精品国产高清国产av| 色噜噜av男人的天堂激情| 免费高清视频大片| 欧美中文日本在线观看视频| 久久香蕉精品热| av在线天堂中文字幕| 国产又黄又爽又无遮挡在线| 久久久久亚洲av毛片大全| 久久亚洲真实| 中文字幕av在线有码专区| 搡女人真爽免费视频火全软件 | 欧美性猛交黑人性爽| 亚洲不卡免费看| 亚洲专区中文字幕在线| 欧美黑人巨大hd| 免费一级毛片在线播放高清视频| 欧美bdsm另类| 国产成人aa在线观看| 国产黄片美女视频| or卡值多少钱| 国产 一区 欧美 日韩| 村上凉子中文字幕在线| 午夜免费激情av| 久久精品国产亚洲av涩爱 | 韩国av一区二区三区四区| www.色视频.com| 亚洲欧美激情综合另类| 女同久久另类99精品国产91| 国产亚洲欧美在线一区二区| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 久久久久国内视频| 久久精品国产综合久久久| 97超视频在线观看视频| 久久草成人影院| 免费人成视频x8x8入口观看| 免费人成在线观看视频色| 美女大奶头视频| 成人性生交大片免费视频hd| 色老头精品视频在线观看| 十八禁网站免费在线| 国产精品爽爽va在线观看网站| svipshipincom国产片| 日本五十路高清| 亚洲成av人片免费观看| 免费看光身美女| 国产一区二区激情短视频| svipshipincom国产片| 神马国产精品三级电影在线观看| 美女cb高潮喷水在线观看| 狠狠狠狠99中文字幕| 久久久久久久亚洲中文字幕 | 欧美又色又爽又黄视频| 18禁裸乳无遮挡免费网站照片| 无限看片的www在线观看| 少妇的逼好多水| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 桃红色精品国产亚洲av| 岛国在线观看网站| 噜噜噜噜噜久久久久久91| 天堂网av新在线| 久久这里只有精品中国| 桃色一区二区三区在线观看| 1000部很黄的大片| 久久精品91无色码中文字幕| 内射极品少妇av片p| 床上黄色一级片| 精品久久久久久久久久久久久| av中文乱码字幕在线| 久9热在线精品视频| 亚洲专区国产一区二区| 黄色视频,在线免费观看| 美女被艹到高潮喷水动态| 国产精品一及| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 久久九九热精品免费| av天堂中文字幕网| 性色av乱码一区二区三区2| 久久久久久久久中文| 亚洲内射少妇av| 成年免费大片在线观看| 日韩中文字幕欧美一区二区| 午夜福利欧美成人| 国产视频内射| 亚洲 国产 在线| 欧美乱妇无乱码| 熟女电影av网| 亚洲精品影视一区二区三区av| 久久精品亚洲精品国产色婷小说| 国产成人福利小说| 精品一区二区三区av网在线观看| 国产一区二区在线观看日韩 | 国产久久久一区二区三区| 91av网一区二区| 97超级碰碰碰精品色视频在线观看| 日韩中文字幕欧美一区二区| 母亲3免费完整高清在线观看| 久久精品亚洲精品国产色婷小说| a级毛片a级免费在线| 国内精品久久久久精免费| 久久欧美精品欧美久久欧美| 青草久久国产| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 麻豆一二三区av精品| 久久精品国产自在天天线| 男人和女人高潮做爰伦理| 好看av亚洲va欧美ⅴa在| 男女做爰动态图高潮gif福利片| 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 亚洲国产精品999在线| 精品久久久久久久末码| a级一级毛片免费在线观看| 哪里可以看免费的av片| 男女那种视频在线观看| 免费av毛片视频| 亚洲av不卡在线观看| 久久国产乱子伦精品免费另类| 亚洲欧美激情综合另类| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 每晚都被弄得嗷嗷叫到高潮| 久久性视频一级片| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 在线观看免费视频日本深夜| 国产精品久久视频播放| av福利片在线观看| 亚洲精品影视一区二区三区av| 免费无遮挡裸体视频| 免费搜索国产男女视频| 欧美不卡视频在线免费观看| 99国产精品一区二区蜜桃av| 激情在线观看视频在线高清| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产精品人妻aⅴ院| 俄罗斯特黄特色一大片| 韩国av一区二区三区四区| 偷拍熟女少妇极品色| 欧美+日韩+精品| 夜夜爽天天搞| 婷婷亚洲欧美| 欧美黑人巨大hd| 久久香蕉精品热| 国产亚洲av嫩草精品影院| 日韩中文字幕欧美一区二区| 免费观看的影片在线观看| 精品国产亚洲在线| 青草久久国产| 精品一区二区三区人妻视频| 午夜精品在线福利| 久久久久久人人人人人| 日韩有码中文字幕| 伊人久久大香线蕉亚洲五| x7x7x7水蜜桃| 国产成人系列免费观看| 一卡2卡三卡四卡精品乱码亚洲| 热99在线观看视频| 天堂影院成人在线观看| 亚洲18禁久久av| 丁香六月欧美| 99国产综合亚洲精品| 国产精品99久久久久久久久| av视频在线观看入口| 免费av不卡在线播放| 黄片大片在线免费观看| av在线蜜桃| 免费在线观看成人毛片|