• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles

    2021-04-14 06:55:00WeiHeSeniorMemberIEEEXinxingMuLiangZhangandYaoZou
    IEEE/CAA Journal of Automatica Sinica 2021年1期

    Wei He, Senior Member, IEEE, Xinxing Mu, Liang Zhang, and Yao Zou

    Abstract—This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles (FWMAVs) in the longitudinal plane. First of all, the kinematics and dynamics of the FWMAV are established, wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination. To achieve autonomous tracking, an adaptive control scheme is proposed under the hierarchical framework. Specifically, a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force, and a pitch command is extracted from the designed position controller. Next, an adaptive attitude controller is designed to track the extracted pitch command, where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque. Finally, the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers, respectively. In terms of Lyapunov’s direct method, it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin. Simulations are carried out to verify the effectiveness of the proposed control scheme.

    I. INTRODUCTION

    BIOMIMETIC robots are popular research subjects in many fields of robotics [1]-[3]. In recent decades,flapping-wing micro aerial vehicles (FWMAVs), as a type of innovative flying robots, have received considerable attention in the aviation community [4], [5]. Characterized by good agility, ability for concealment and high flight efficiency, they have extensive potential applications in military and civil fields including disaster investigation, intelligence collection,anti-terrorism reconnaissance and so forth [6], [7]. The research of the FWMAVs is comprehensive and integrates multiple disciplines, e.g., control, computer science,mechanics and informatics, etc.

    Researchers have made great efforts in developing FWMAVs over the past few years [8], [9]. By imitating different creatures, FWMAVs are generally categorized into insect-scale micro aerial vehicles (MAVs) and bird-scale micro aerial vehicles (MAVs). Currently, typical representatives of the insect-scale FWMAVs are the “Robobee” [4] and“nano hummingbird” [10 ]. Wood’s team from Harvard University invents an insect-scale FWMAV “Robobee” by using high-performance piezoelectric actuators, and such an FWMAV is capable of hovering at a fixed height [4].However, “Robobee” cannot be powered sufficiently for longduration maneuvers by the limitation of load capacity.AeroVironment, Inc. develops an insect-scale FWMAV “nano hummingbird” [10], which can finish some specific tasks. e.g.,vertical take-off and landing, hovering, free flight forward and backward. For the bird-like FWMAVs, researchers first built a bat-like “Bat Bot2” by imitating the limb structure and flight mode of a bat [11]. To facilitate the flight, “Bat Bot2” adopts a boundary control method to make its wings flutter in accordance with the desired trajectory. Festo designs a lightweighted bird-like FWMAV “Smartbird” by taking a streamlined shape and wing twist into account, which is able to fly stably by remote control [12]. He’s team from the University of Science and Technology Beijing developed a bird-like FWMAV “USTBird” driven by 2 servo motors,which changes course by asymmetric flapping of its wings.Although these FWMAVs show good flight performance,having an autonomous flight mode is not taken into account.

    To achieve autonomous flight, it is crucial to determine the driving behaviors of the FWMAVs. For the insect-scale MAVs, a flapping frequency is set to around 20-600 Hz for providing sufficient thrust to allow them to hover [13]. To adjust their flight attitude, they are generally steered by fluttering the wings asymmetrically [14]. The flapping frequency of most bird-like MAVs is below 10 Hz for level flight. Their lift mainly results from the aerodynamic force generated by the forward flight speed, and in the meantime,their flight orientation is altered by adjusting both the flapping and tail wings [15]. For dynamic analysis and modeling, the power curves associated with different flight modes and speeds of several certain species have been extracted in [16],[17]. Meantime, some relevant analysis has been given therein. In addition, the leading-edge vortex effect on the tail wing in the aerodynamic performance has been formulated in[18]. Besides, the external disturbances have an important influence on the performances of FWMAVs and is considered in practice [19], [20]. In this paper, we focus on the modeling of bird-like FWMAVs, which is characterized by nonlinearity,parametric coupling, and uncertainty.

    Many intelligent methods have been developed and applied in various fields [21]-[24], and many control approaches are applied in the FWMAVs to achieve autonomous flight[25]-[27]. In [25], a DelFly Explorer equipped with a 0.98 gram autopilot unit and a 4.0 gram onboard stereo vision system is established, and a stereo vision algorithm is developed to achieve autonomous obstacle avoidance. In [28],the location of the trailing edges at the wing roots is adjusted to generate control torques through an angular rate feedback control scheme for the insect-scale tailless FWMAV, which achieves stable vertical flight and hovering. In [26], the authors propose a hybrid control policy which combines model-based nonlinear control with model-free reinforcement learning. The model-free reinforcement learning policy is trained to accomplish fast evasive maneuvers on the hummingbird robot. In [27], neural network based control strategies with full state and output feedback are developed for the attitude and position tracking of the FWMAV. In particular, a model-based nonlinear controller based on hybrid control strategy is proposed therein to guarantee the stability of the closed-loop FWMAV system.

    Although multiple mathematical models and control strategies have been proposed for the FWMAVs, most of them just consider aerodynamic force and torque as control inputs and do not establish their aerodynamic relationship with respect to actual physical actuators. Therefore, it is important to use these control strategies in practice for reliable flight. In this paper, we develop a bird-like FWMAV, which has 2 degrees of freedom (DOFs) of flapping frequency and tail wing inclination to achieve automatous trajectory tracking on the vertical plane. It is important to formulate the relationship of the aerodynamic force and torque with respect to flapping frequency and tail wing inclination for real applications.Moreover, we also consider the airflow effect of flapping wings in the aerodynamics of the tail wing in the modeling of the FWMAVs. Based on the established model, a neural network control scheme is proposed under the hierarchical framework such that trajectory tracking of the FWMAV on the longitudinal plane is achieved. Specifically, a position controller with control input saturation in [29] is synthesized,and the frequency of flapping wings and a pitch command are extracted from the synthesized position controller. Further, an attitude controller is synthesized by introducing a radial basis function neural network for the pitch to track commands,where the neural network is used to eliminate the aerodynamic effect caused by the airflow of flapping wings. Finally, the tail wing inclination is extracted from the synthesized attitude controller. With Lyapunov’s direct method, it is shown that tracking errors driven by the proposed control scheme are bounded and ultimately converge to a neighborhood around the origin. The main contributions of this paper are enumerated as follows:

    1) This paper formulates the aerodynamic force and torque generated by the actual flapping frequency of flapping wings and tail wing inclination when constructing the system model of the FWMAV. Moreover, a hierarchical framework is introduced to exploit the cascaded structure of the established model for control scheme development.

    2) This paper considers the unknown aerodynamic perturbation of flapping wings on the torque generated by the tail wing. A radial basis function neural network is introduced to estimate and compensate for this perturbation and for improving tracking accuracy.

    3) This paper designs a bounded position controller with hyperbolic tangent functions to guarantee a bounded aerodynamic force. Also, this design effectively alleviates the coupling between the closed-loop position and attitude error systems, and thus facilitates the stability analysis greatly.

    The remaining sections of this paper are organized as follows. Section II states the model and control objective of the FWMAV. Section III presents the main results of this paper including the control scheme development and the stability analysis. Section IV performs simulations to validate and highlight the performance of the proposed control scheme. Finally, Section V makes conclusions and draws future works.

    II. PROBLEM STATEMENTS

    A. System Models

    Generally, an FWMAV is modeled in three reference frames (shown in Fig. 1) as follows:

    Inertia frame: Si= oixiyizig , origin oiis fixed at a point on the ground, axes xiand zipoint to the north and east, and axis yiis determined by the right hand rule.

    Track frame: St= otxtytztg, origin otis located at the center of mass (c.m.) of the fuselage, axis xtis along the velocity direction, axis ztis perpendicular to the plane containing axis xtand pointing to the right, and axis ytis determined by the right hand rule.

    Body frame: Sb= obxbybzbg, origin obcoincides with ot,axis xbpoints towards the head, axis zbis perpendicular to the plane of symmetry containing axis xband points to the right,and axis ybis determined by the right hand rule.

    Fig. 1. Reference frames of a typical FWMAV.

    For the convenience of modeling, some reasonable assumptions are made as follows:

    Assumption 1: The aerodynamic force of the tail wing and the torque generated by the drag of the tail wing are so small that it is negligible.

    Assumption 2: The increments of thrust and lift are proportional to the flapping frequency.

    Remark 1: Studies in [18], [30] indicate that the bird’s tail has nearly no effect on lift and drag. By considering the short arm with respect to c.m., the torque generated by the drag of the tail wing can be negligible. However, the lift generated by the tail wing still contributes to the pitch torque arising from its long arm with respect to c.m.. Generally, the aerodynamic force of the FWMAV is related to the flapping frequency[31]-[33]. There exists almost a linear relationship between the flapping frequency and the average of lift, and the thrust is almost proportional to the flapping frequency [34]. In this paper, the FWMAV’s tail is designed with a biological tail structure, therefore, Assumptions 1 and 2 are reasonable.

    Under Assumptions 1 and 2, and according to Newton’s second law, the longitudinal motion of the FWMAV can be formulated as follows [35], [36]:

    In addition, the aerodynamic force of the tail wing, which isperpendicular to the body axis on the plane of symmetry of the tail wing, is expressed as this paper, the aerodynamic perturbation δis assumed to be unavailable and is approximated by a neural network.

    TABLE I MODEL PARAMETER DEFINITIONS

    Fig. 2. Aerodynamic force analysis diagram.

    B. Control Objective

    In this paper, we focus on the solution to the trajectory tracking control problem of the FWMAV on the longitudinal plane. In particular, given a reference trajectory pd=[xd,yd]T,we intend to design flapping frequency f and tail wing inclination θtvia an adaptive control scheme such that limt!1jp(t)-pd(t)k ≤? , where ? >0 is a sufficiently small constant. Since the FWMAV system (1) is of a cascaded structure consisting of an outer position loop and an inner attitude loop (see Fig. 3 for illustration), the control scheme design is under a hierarchical framework such that the position and attitude loops are studied in sequence. Also, note from (7) that, the pitch torque τ is subject to an unknown aerodynamic perturbation δ. We introduce a neural network technique to approximate and compensate for these perturbations which improves tracking accuracy [39]-[41].

    Fig. 3. Cascaded structure of the FWMAV system.

    III. MAIN RESULTS

    In this section, an adaptive control scheme under the hierarchical framework is developed to solve the concerned tracking control problem of the FWMAV. In particular, a position controller with input saturations is synthesized for position tracking to pd. Then, the flapping frequency f and the pitch command θdare extracted from the synthesized position controller. Next, the attitude controller introducing the neural network adaptation is synthesized for attitude tracking to θd. Finally, the tail wing inclination θtis extracted from the synthesized attitude controller. Besides these, a detailed stability analysis is also performed.

    A. Position Controller Synthesis

    Define p1=p and p2= p˙. It follows from (1) that

    B. Attitude Controller Synthesis

    Define θ1=θ and θ2= θ˙. Based on (1) and (7), their dynamics are derived as

    Fig. 4. Block diagram of control scheme.

    C. Stability Analysis

    In this subsection, we focus on the stability analysis of the closed-loop system (12) and (18), which is examined to be of a cascaded structure. We carry out the analysis based on a hierarchical framework. In particular, we show that the attitude tracking error is bounded and ultimately converges to a small neighborhood of origin. Further, we show that the position tracking error is also bounded and ultimately converges to a small neighborhood of origin. Moreover, these neighborhoods can be tuned arbitrarily small by adjusting the control parameters. Before proceeding with the main results, a useful lemma is presented.

    The next theorem indicates that the ultimately bounded attitude tracking is achieved with the synthesized attitude

    IV. SIMULATIONS

    In this section, simulations are undertaken to validate the proposed control scheme. Consider an FWMAV with its physical parameters listed in Table II. It is commanded to track a reference trajectory in the following form:

    TABLE II PHYSICAL PARAMETERS

    Fig. 5. Position tracking by the PD and the proposed control and the estimation of perturbation torque Δδ.

    Fig. 6. Control inputs of the PD and the proposed control.

    Fig. 7. Attitude tracking by the PD and the proposed control and the tracking errors.

    Fig. 8. Position tracking errors by the PD and proposed control.

    TABLE III PERFORMANCE COMPARISON

    V. CONCLUSION

    In this paper, the trajectory tracking problem of FWMAVs is studied on the longitudinal plane. The system model is established by formulating the aerodynamic force and torque generated by flapping wings and the tail wing. A neural network based control scheme is proposed in terms of a hierarchical framework. In particular, a saturated position controller is developed for position tracking, which guarantees a bounded aerodynamic force. Then, the flapping frequency of flapping wings and a pitch command are extracted from the position controller. Subsequently, an adaptive attitude controller is designed for the pitch to track the command controller, and a radial basis function neural network is implemented to approximate the aerodynamic perturbation torque. It is demonstrated that the tracking errors are bounded and ultimately converge to a small neighborhood around origin.

    In the future, we will extend the proposed tracking control scheme for longitudinal motion to a general three-dimensional case with both longitudinal and lateral motions. Also, we will apply the proposed control scheme to a practical FWMAV platform for verification.

    亚洲国产av新网站| 亚洲综合色惰| 男女边吃奶边做爰视频| 国产精品嫩草影院av在线观看| 亚洲国产欧美日韩在线播放 | 在线观看免费日韩欧美大片 | 女性被躁到高潮视频| 久久久久久久久久久丰满| 日韩成人伦理影院| 免费高清在线观看视频在线观看| 欧美少妇被猛烈插入视频| 老司机影院成人| av在线app专区| 国产成人freesex在线| 日日啪夜夜撸| 搡老乐熟女国产| 国产精品一区www在线观看| 久久久国产欧美日韩av| 国产黄片美女视频| 国产一区二区在线观看av| av国产精品久久久久影院| 丰满饥渴人妻一区二区三| 久久国产精品男人的天堂亚洲 | 国产av码专区亚洲av| 亚洲成人一二三区av| 国产综合精华液| 777米奇影视久久| 国产高清国产精品国产三级| 色视频在线一区二区三区| 亚洲成人手机| 色婷婷久久久亚洲欧美| 日本黄色片子视频| 精品亚洲成a人片在线观看| 久久久欧美国产精品| 国产熟女欧美一区二区| 精品久久久久久久久亚洲| 高清av免费在线| 久久午夜综合久久蜜桃| 久久精品夜色国产| 人人妻人人看人人澡| av网站免费在线观看视频| 五月玫瑰六月丁香| 曰老女人黄片| 在线观看免费视频网站a站| 一级毛片黄色毛片免费观看视频| 97超视频在线观看视频| 男人爽女人下面视频在线观看| 久久久久久久亚洲中文字幕| 天天操日日干夜夜撸| 在线观看三级黄色| 亚洲欧美一区二区三区国产| 亚洲性久久影院| 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| 亚洲怡红院男人天堂| 亚洲人成网站在线观看播放| 日韩成人伦理影院| 国产精品久久久久久久电影| 亚洲电影在线观看av| 极品人妻少妇av视频| 精品少妇内射三级| 久久久a久久爽久久v久久| 欧美区成人在线视频| 色婷婷av一区二区三区视频| 我要看黄色一级片免费的| 亚洲国产精品国产精品| 亚洲欧美一区二区三区黑人 | 午夜老司机福利剧场| 人妻人人澡人人爽人人| 男人爽女人下面视频在线观看| 久久99热6这里只有精品| 欧美成人午夜免费资源| 赤兔流量卡办理| 日韩av不卡免费在线播放| 97在线视频观看| 人妻少妇偷人精品九色| 亚洲国产精品999| 日本与韩国留学比较| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲网站| 不卡视频在线观看欧美| 日本wwww免费看| 嫩草影院入口| 国产色婷婷99| 中文欧美无线码| 丰满迷人的少妇在线观看| 建设人人有责人人尽责人人享有的| 久久亚洲国产成人精品v| 国产精品偷伦视频观看了| 色视频在线一区二区三区| 久久久久久久大尺度免费视频| 三级经典国产精品| 国产精品人妻久久久影院| 性色avwww在线观看| 九九爱精品视频在线观看| 91久久精品电影网| 在线看a的网站| 欧美精品一区二区免费开放| 在线播放无遮挡| 亚洲av成人精品一区久久| av线在线观看网站| 中文字幕久久专区| 麻豆成人av视频| 久久毛片免费看一区二区三区| 另类亚洲欧美激情| 国产伦在线观看视频一区| 永久网站在线| 26uuu在线亚洲综合色| 黑人猛操日本美女一级片| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| 91精品一卡2卡3卡4卡| 亚洲精品,欧美精品| 少妇人妻久久综合中文| 嫩草影院入口| 老女人水多毛片| 80岁老熟妇乱子伦牲交| 深夜a级毛片| 国精品久久久久久国模美| 欧美成人午夜免费资源| 两个人的视频大全免费| 天美传媒精品一区二区| 国产91av在线免费观看| 男的添女的下面高潮视频| 伦理电影免费视频| 纯流量卡能插随身wifi吗| 波野结衣二区三区在线| 亚洲内射少妇av| 99热全是精品| .国产精品久久| 丰满人妻一区二区三区视频av| 久久久久网色| 高清视频免费观看一区二区| 一级毛片 在线播放| 久久久久网色| 少妇高潮的动态图| 又粗又硬又长又爽又黄的视频| 熟女人妻精品中文字幕| 免费看光身美女| 日韩制服骚丝袜av| 老司机影院成人| 在线播放无遮挡| 欧美精品一区二区免费开放| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 在线 av 中文字幕| 少妇 在线观看| 五月伊人婷婷丁香| 国模一区二区三区四区视频| 男人添女人高潮全过程视频| 自拍偷自拍亚洲精品老妇| 久久 成人 亚洲| 久久久国产欧美日韩av| 午夜日本视频在线| 久久韩国三级中文字幕| 午夜影院在线不卡| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 熟女av电影| 久久久久精品久久久久真实原创| 日韩亚洲欧美综合| 欧美人与善性xxx| 精品国产一区二区久久| 国产 精品1| 伦精品一区二区三区| 精品国产一区二区久久| 99热全是精品| 国产熟女欧美一区二区| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 色视频在线一区二区三区| 国产日韩欧美亚洲二区| 成人黄色视频免费在线看| 国精品久久久久久国模美| 午夜影院在线不卡| 少妇丰满av| 久久久久网色| 亚洲成色77777| 精品久久国产蜜桃| 亚洲成人一二三区av| 99视频精品全部免费 在线| 日韩av免费高清视频| 美女视频免费永久观看网站| 永久网站在线| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 一区二区av电影网| 三级国产精品片| 成人亚洲精品一区在线观看| 国产精品三级大全| 亚洲国产欧美日韩在线播放 | 精品少妇内射三级| 中文资源天堂在线| xxx大片免费视频| 人妻系列 视频| 欧美最新免费一区二区三区| 我要看日韩黄色一级片| 新久久久久国产一级毛片| 男女边摸边吃奶| 亚洲色图综合在线观看| 免费少妇av软件| 日本与韩国留学比较| 日韩欧美精品免费久久| a级片在线免费高清观看视频| 少妇丰满av| 精品一区二区三区视频在线| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 99久久人妻综合| 男女边摸边吃奶| 热re99久久国产66热| 久久狼人影院| 九九久久精品国产亚洲av麻豆| 下体分泌物呈黄色| .国产精品久久| 亚洲精品国产成人久久av| 99热这里只有精品一区| 欧美亚洲 丝袜 人妻 在线| 精品国产国语对白av| 人妻 亚洲 视频| 日韩伦理黄色片| 久久久久网色| 久久国产精品大桥未久av | 女人久久www免费人成看片| 欧美精品国产亚洲| 亚洲美女搞黄在线观看| 国产极品天堂在线| 成人无遮挡网站| 欧美老熟妇乱子伦牲交| 五月玫瑰六月丁香| 黑人巨大精品欧美一区二区蜜桃 | 欧美三级亚洲精品| 亚洲婷婷狠狠爱综合网| 中文字幕久久专区| 亚洲在久久综合| 久久99热6这里只有精品| 国产亚洲一区二区精品| 黄色视频在线播放观看不卡| 中文字幕免费在线视频6| av视频免费观看在线观看| 精品酒店卫生间| 国产精品一二三区在线看| 亚洲图色成人| 日本-黄色视频高清免费观看| 我的女老师完整版在线观看| 综合色丁香网| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻 视频| 热re99久久国产66热| 久久久久国产精品人妻一区二区| 在线亚洲精品国产二区图片欧美 | 午夜福利影视在线免费观看| videos熟女内射| 精品一品国产午夜福利视频| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 国产精品一二三区在线看| 午夜福利在线观看免费完整高清在| 久久精品久久精品一区二区三区| 欧美老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 伊人久久国产一区二区| 99热国产这里只有精品6| 少妇熟女欧美另类| 亚洲av欧美aⅴ国产| 成人无遮挡网站| 伊人久久精品亚洲午夜| 中国国产av一级| 国产成人精品一,二区| 久久久久精品久久久久真实原创| 在线观看www视频免费| 国产成人精品久久久久久| 国产av国产精品国产| 国产在线男女| √禁漫天堂资源中文www| 日日啪夜夜爽| 亚洲av成人精品一二三区| 人妻系列 视频| 永久免费av网站大全| 午夜老司机福利剧场| 国产在线免费精品| 人人妻人人添人人爽欧美一区卜| 日韩一区二区视频免费看| 99久久精品热视频| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一区久久| 亚洲va在线va天堂va国产| 麻豆乱淫一区二区| 99热这里只有是精品50| 一本大道久久a久久精品| 老女人水多毛片| 久久久亚洲精品成人影院| 大片免费播放器 马上看| 99re6热这里在线精品视频| 免费av中文字幕在线| 久久精品国产鲁丝片午夜精品| 91aial.com中文字幕在线观看| 下体分泌物呈黄色| 午夜福利网站1000一区二区三区| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 成人漫画全彩无遮挡| 午夜免费观看性视频| 十分钟在线观看高清视频www | 精品国产一区二区三区久久久樱花| 久久97久久精品| 中国美白少妇内射xxxbb| 一级a做视频免费观看| av黄色大香蕉| 看非洲黑人一级黄片| 简卡轻食公司| 国产成人精品一,二区| 久久精品国产鲁丝片午夜精品| 亚洲欧美一区二区三区黑人 | 日日摸夜夜添夜夜爱| 夜夜爽夜夜爽视频| 日韩中字成人| 国产亚洲精品久久久com| av在线app专区| 两个人的视频大全免费| 免费大片18禁| 97在线人人人人妻| 日韩av不卡免费在线播放| 啦啦啦视频在线资源免费观看| 国产一区有黄有色的免费视频| 亚洲精品自拍成人| 水蜜桃什么品种好| 男女啪啪激烈高潮av片| 久久久久国产精品人妻一区二区| 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 欧美精品人与动牲交sv欧美| 麻豆成人午夜福利视频| 两个人的视频大全免费| 丝袜脚勾引网站| 寂寞人妻少妇视频99o| 午夜福利影视在线免费观看| 亚洲第一区二区三区不卡| 99九九在线精品视频 | 亚洲四区av| 在线天堂最新版资源| 国模一区二区三区四区视频| 在线天堂最新版资源| 能在线免费看毛片的网站| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 国产毛片在线视频| 校园人妻丝袜中文字幕| 九草在线视频观看| 国产免费视频播放在线视频| 女性生殖器流出的白浆| 国产免费一区二区三区四区乱码| 色网站视频免费| 99九九在线精品视频 | 日韩 亚洲 欧美在线| 亚洲av欧美aⅴ国产| 久久久久精品性色| 日韩av不卡免费在线播放| 水蜜桃什么品种好| 日产精品乱码卡一卡2卡三| 亚洲精品成人av观看孕妇| 日韩人妻高清精品专区| 亚洲精品第二区| 日韩一本色道免费dvd| 狂野欧美激情性bbbbbb| 国产亚洲5aaaaa淫片| 免费在线观看成人毛片| 少妇人妻一区二区三区视频| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久亚洲| 欧美日韩亚洲高清精品| 成人国产麻豆网| 国产欧美日韩一区二区三区在线 | 91精品伊人久久大香线蕉| 岛国毛片在线播放| 午夜91福利影院| 国产av码专区亚洲av| 美女cb高潮喷水在线观看| 99视频精品全部免费 在线| 婷婷色综合www| 国产精品久久久久久久电影| 精品一区二区三区视频在线| 亚洲精品日韩在线中文字幕| 国产无遮挡羞羞视频在线观看| av播播在线观看一区| 最近2019中文字幕mv第一页| 久久久国产精品麻豆| 国产精品无大码| 国产一区二区在线观看日韩| 水蜜桃什么品种好| 十八禁网站网址无遮挡 | 久久精品久久久久久噜噜老黄| 草草在线视频免费看| 国产黄色视频一区二区在线观看| 国产黄片美女视频| 噜噜噜噜噜久久久久久91| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 啦啦啦在线观看免费高清www| 国产乱人偷精品视频| 日韩伦理黄色片| 青春草国产在线视频| 边亲边吃奶的免费视频| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看| 久久久久人妻精品一区果冻| tube8黄色片| 男人舔奶头视频| 性色avwww在线观看| 国产伦在线观看视频一区| 多毛熟女@视频| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 噜噜噜噜噜久久久久久91| 亚洲精品一区蜜桃| 只有这里有精品99| 国产美女午夜福利| 国产精品无大码| 久久久久久久国产电影| 最近最新中文字幕免费大全7| 99热这里只有是精品50| 男女国产视频网站| 久久鲁丝午夜福利片| 99久久综合免费| 亚洲电影在线观看av| 亚洲国产色片| 2022亚洲国产成人精品| 亚洲精品国产av蜜桃| 亚洲国产精品专区欧美| 亚洲第一av免费看| av天堂久久9| 国产一区二区三区综合在线观看 | 欧美日韩视频精品一区| 亚洲国产精品国产精品| 2018国产大陆天天弄谢| 人人妻人人爽人人添夜夜欢视频 | 日韩成人伦理影院| 91精品国产国语对白视频| av福利片在线观看| 亚洲国产色片| 国产精品无大码| 自线自在国产av| 久久久久视频综合| 人人妻人人看人人澡| 久久99热这里只频精品6学生| .国产精品久久| 一本一本综合久久| 最新的欧美精品一区二区| 极品教师在线视频| 国产精品国产三级国产av玫瑰| av黄色大香蕉| 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 久久久国产精品麻豆| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 又黄又爽又刺激的免费视频.| 国产极品粉嫩免费观看在线 | 免费观看av网站的网址| 亚洲人与动物交配视频| av免费观看日本| 国产精品蜜桃在线观看| 我的女老师完整版在线观看| 国产av一区二区精品久久| 在线观看美女被高潮喷水网站| 性高湖久久久久久久久免费观看| 99久国产av精品国产电影| 男女边摸边吃奶| 久热久热在线精品观看| 亚洲欧洲国产日韩| 精品久久久噜噜| 激情五月婷婷亚洲| 亚洲中文av在线| 国内精品宾馆在线| 欧美亚洲 丝袜 人妻 在线| 99热这里只有精品一区| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 午夜91福利影院| 久久久久久久久久久久大奶| 国产精品蜜桃在线观看| 777米奇影视久久| 国产伦理片在线播放av一区| videossex国产| 国内少妇人妻偷人精品xxx网站| 日本黄色片子视频| 少妇被粗大猛烈的视频| 国产在线一区二区三区精| 大片电影免费在线观看免费| 国产探花极品一区二区| 性色avwww在线观看| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品古装| 色婷婷av一区二区三区视频| 另类亚洲欧美激情| 嫩草影院入口| 久久免费观看电影| 熟妇人妻不卡中文字幕| 大片电影免费在线观看免费| 日本黄色日本黄色录像| 免费观看的影片在线观看| 免费高清在线观看视频在线观看| 老熟女久久久| 激情五月婷婷亚洲| 波野结衣二区三区在线| 51国产日韩欧美| 久久久久精品久久久久真实原创| 日韩精品免费视频一区二区三区 | 日韩伦理黄色片| 夜夜爽夜夜爽视频| 最近中文字幕高清免费大全6| 久久人妻熟女aⅴ| 久久精品久久久久久久性| 国产一区二区在线观看av| 成人午夜精彩视频在线观看| 热re99久久国产66热| 精品人妻偷拍中文字幕| 免费黄网站久久成人精品| 国产成人精品婷婷| 亚洲在久久综合| 国产亚洲精品久久久com| 国产精品成人在线| 又黄又爽又刺激的免费视频.| 欧美性感艳星| .国产精品久久| 久久久久国产精品人妻一区二区| 亚洲国产av新网站| 人人妻人人看人人澡| 亚洲高清免费不卡视频| 久久久亚洲精品成人影院| 九九爱精品视频在线观看| 九色成人免费人妻av| 岛国毛片在线播放| 黄色视频在线播放观看不卡| 草草在线视频免费看| 80岁老熟妇乱子伦牲交| 一区二区三区免费毛片| 午夜日本视频在线| 精品亚洲成a人片在线观看| 国产日韩一区二区三区精品不卡 | 日日啪夜夜撸| 精品亚洲成国产av| 99九九线精品视频在线观看视频| 亚洲电影在线观看av| 亚洲精品中文字幕在线视频 | 亚洲图色成人| av天堂久久9| 国产精品久久久久久久电影| 婷婷色av中文字幕| 久久人人爽人人爽人人片va| 亚洲中文av在线| 51国产日韩欧美| 少妇人妻久久综合中文| 尾随美女入室| 日韩免费高清中文字幕av| 黄片无遮挡物在线观看| 欧美一级a爱片免费观看看| 一区二区三区四区激情视频| 22中文网久久字幕| 亚洲国产精品国产精品| 丰满迷人的少妇在线观看| 欧美三级亚洲精品| 国产精品蜜桃在线观看| 国产精品欧美亚洲77777| 夫妻性生交免费视频一级片| 韩国高清视频一区二区三区| 七月丁香在线播放| 伦精品一区二区三区| 五月天丁香电影| 免费播放大片免费观看视频在线观看| 国产精品国产av在线观看| 一区二区三区乱码不卡18| 国产精品无大码| 久久狼人影院| 18禁在线无遮挡免费观看视频| 亚洲精品亚洲一区二区| 久久久国产欧美日韩av| 国产高清有码在线观看视频| 美女大奶头黄色视频| 高清在线视频一区二区三区| 在线观看美女被高潮喷水网站| 永久免费av网站大全| 国产深夜福利视频在线观看| 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 久久久久久人妻| 亚洲av电影在线观看一区二区三区| 午夜福利在线观看免费完整高清在| 女的被弄到高潮叫床怎么办| √禁漫天堂资源中文www| 国产av精品麻豆| 欧美丝袜亚洲另类| 国产男女内射视频| 99精国产麻豆久久婷婷| 嘟嘟电影网在线观看| 精品久久久久久久久av| 最近中文字幕2019免费版| 美女视频免费永久观看网站| 欧美国产精品一级二级三级 | 国产精品国产三级国产专区5o| 18禁裸乳无遮挡动漫免费视频| 黄色配什么色好看| 少妇人妻精品综合一区二区| 成人国产av品久久久| 永久免费av网站大全| 亚洲av在线观看美女高潮| 99九九线精品视频在线观看视频| 国产免费一级a男人的天堂| 欧美成人午夜免费资源| 免费大片18禁| 精品人妻偷拍中文字幕|