[摘要] 目的 探討能譜CT技術診斷椎間盤骨化與鈣化的臨床應用價值。
方法 回顧性分析因椎管內硬膜外硬質占位性病變行手術治療并取得病灶病理結果病人43例臨床資料,其中23例根據術后病理結果分為椎間盤鈣化病人4例,椎間盤/后縱韌帶骨化病人19例,術前均給予常規(guī)CT、MRI檢查,加做能譜CT對病灶進行鑒別診斷,獲得能譜曲線。并隨機選取同期主動脈(15例)、冠狀動脈(11例)、肝臟(7例)、腦(12例)鈣化灶形成病人進行能譜CT鈣化灶掃描分析,繪制能譜曲線,比較椎間盤鈣化與骨化的原子序數直方圖、鈣-水基圖像鈣密度散點圖等。
結果 椎間盤鈣化灶與骨化灶病理差異主要是鈣的沉積方式,其中鈣化灶主要是無定型沉積方式,骨化灶為定型沉積。主動脈、冠狀動脈、腦、肝臟的鈣化灶70" keV處關注視野窗顯示視野(DFOV)能譜均值相比較,差異有顯著意義(F=116.1,Plt;0.05),其中肝臟鈣化灶DFOV能譜低于其他部位鈣化灶。骨化組與鈣化組8%像素處鈣原子序數分布密度中位數分別為251.0、59.5 mg/cm3,兩組比較差異具有統(tǒng)計學意義(Z=2.70,Plt;0.01);骨化組總體鈣鹽平均密度擬合曲線斜率(0.87)較鈣化組(1.31)低,但骨化組鈣鹽平均密度分布高于鈣化組(Z=1.90,Plt;0.05)。
結論 能譜CT可辨別病灶鈣化合物種類,原子序數直方圖可判定鈣絕對含量值及鈣分布規(guī)律,鈣-水基圖像散點圖可明確鈣定型沉積方式,在椎管致壓物不能明確質地情況下,可以為脊柱手術提供有效參考。
[關鍵詞] 椎間盤;鈣質沉著癥;骨化,異位性;體層攝影術,X線計算機;光譜分析;診斷
[中圖分類號] R814.4
[文獻標志碼] A
[文章編號] 2096-5532(2021)05-0685-06
doi:10.11712/jms.2096-5532.2021.57.178
[開放科學(資源服務)標識碼(OSID)]
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.R.20211103.1039.001.html;2021-11-04 12:18:16
SPECTRAL COMPUTED TOMOGRAPHY DIFFERENTIATION OF CALCIFICATION AND OSSIFICATION OF INTERVERTEBRAL DISC
ZHONG Xin, CONG Wenbin, ZHONG Yanguo, ZHANG Guoqing, XIANG Hongfei, DUAN Feng
(School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the clinical value of spectral computed tomography (CT) in the diagnosis of ossification and calcification of intervertebral disc.
Methods A retrospective analysis was performed for the clinical data of 43 patients with intraspinal epidural hard space-occupying lesions who underwent surgical treatment and obtained pathological results of lesions, and according to the postoperative pathological results, they were divided into intervertebral disc calcification group with 4 patients and intervertebral disc/posterior longitudinal ligament ossification group with 19 patients. Routine CT and MRI examinations were performed before surgery, and spectral CT was performed for lesions to make a differential diagnosis and obtain the spectral curve. Spectral CT was performed for calcified lesions in 15 patients with aortic calcification, 11 patients with coronary artery calcification, 7 patients with liver calcification, and 12 patients with brain calcification, and spectral curves were plotted. Ato-
mic number histogram and scatter plots of calcium density based on calcium-water images were compared between calcification and ossification of intervertebral disc.
Results The pattern of calcium deposition was the main pathological difference between calcified and ossified lesions of intervertebral disc; amorphous deposition was mainly observed in calcified lesions, while formed deposition was mainly observed in ossified lesions. There was a significant difference in mean display field of view (DFOV) value at 70 keV between the calcified lesions in the aorta, coronary artery, brain, and liver (F=116.1,Plt;0.05), and the calcified lesions in the liver showed a significantly lower DFOV value than those in the other positions. The median density of calcium atomic number distribution at 8% pixel was 251.0 mg/cm3 in the ossification group and 59.5 mg/cm3 in the calcification group, with a significant difference between the two groups (Z=2.70,Plt;0.01). Compared with the calcification group, the ossification group had a lower slope of the fitting curve of average calcium density (0.87 vs 1.31) and a significantly higher mean calcium density distribution (Z=1.90,Plt;0.05).
Conclusion Spectral CT can identify the types of calcium compounds in lesions. Atomic number histogram can be used to determine the absolute content of calcium and the distribution of calcium, and scatter plots based on calcium-water images can be used to determine the pattern of calcium deposition. Therefore, spectral CT can provide an effective reference for spinal surgery if the thing causing vertebral canal pressure cannot bedefined in texture.
[KEY WORDS] intervertebral disc; calcinosis; ossification, heterotopic; tomography, X-ray computed;" spectrum analysis; diagnosis
能譜CT主要是利用物質在不同X射線能量下所產生的不同的吸收譜來分析物質構成、結構、成分比例等[1],近年來已被廣泛應用于臨床病灶性質分析[2-3]。椎間盤鈣化為一種罕見的鈣鹽異常沉積于軟骨組織的退行性病變[4],病理表現為鈣鹽羥基磷灰石結晶(Ca10(PO4)6(OH)2)的無定型沉積[5]。由于術前常規(guī)CT對鈣鹽沉積物的鑒別不敏感,臨床鑒別診斷困難,而能譜CT可為鈣化診斷提供充分的依據。本研究對病灶的單能量CT能譜曲線、鈣分布直方圖、物質密度散點圖進行分析,了解鈣鹽沉積病灶的硬度特征性質,探討能譜CT技術診斷椎間盤骨化與鈣化的臨床應用價值。
1 資料和方法
1.1 一般資料
2017年6月—2020年2月,選取于青島大學附屬醫(yī)院及首都醫(yī)科大學附屬宣武醫(yī)院、昌樂縣人民醫(yī)院,因椎管內硬膜外硬質占位性病變行手術治療病人43例,其中男20例,女23例;年齡46~62歲,平均(53.8±7.4)歲。依照術后病理診斷結果分為鈣化組4例,骨化組19例(20例CT檢查病人無病理結果)。另隨機選取同期不同部位鈣化灶病變病人45例,男23例,女22例;年齡51~75歲,平均(62.7±12.1)歲。其中鈣化灶位于主動脈15例,冠狀動脈11例,肝7例,腦12例。入選標準:①常規(guī)影像主觀診斷為“硬質”的椎管內、硬膜外,椎間盤、椎體或后縱韌帶來源的占位性病變,主觀上需要接受手術病人;②均接受手術治療,僅對病灶進行干預或取得病灶標本送病理檢查者;③病人病史資料完備,術前均行常規(guī)影像檢查(X線、CT或MRI)以及能譜CT檢查;④影像診斷為“鈣化灶”病人均未并發(fā)其他疾病且當事人接受、同意能譜CT檢查要求;⑤所獲得的影像資料均可進行影像分析。排除標準:①合并有慢性心、腦、腎等影響肌肉代謝的急慢性疾病;②影像原始資料不全者;③并發(fā)腫瘤、炎癥、創(chuàng)傷等病人;④責任病變位置不唯一和不明確者;⑤其他影響影像定量分析的因素。本文研究均經病人和家屬知情同意,并獲醫(yī)院倫理委員會審批通過。
1.2 研究方法
術前進行常規(guī)CT掃描確定病灶位置,能譜CT掃描獲得病灶能譜曲線,比較鈣化組與骨化組關注視野窗顯示視野(DFOV)處測量所得能譜曲線70 keV處能譜值(圖1)、40~110 keV能譜曲線斜率;繪制原子序數直方圖,比較兩組病灶8%像素處原子序數分布密度;繪制鈣-水基圖像鈣密度散點圖,獲得擬合的曲線,并計算曲線近似斜率,分析散點群分布特點。40~110 keV能譜曲線斜率值計算公式:斜率=(Hu40 keV-Hu110 keV)/40 [1]。
術后對病灶標本行病理學檢查,觀察組織形態(tài)學特征與特點。所有檢測均為掃描主病變單元的常規(guī)診療過程,數據盲法處理,自動生成單能值(keV)-CT值(Hu)能譜衰減曲線,進行DFOV 70 keV處能譜值分析(圖2)。
1.3 能譜CT掃描方法
應用醫(yī)用能譜CT即128層雙能CT(GE,Milwaukee, Wisconsin, USA)進行掃描。掃描參數如下:管電流200 mA,層厚和重建間隔均為5 mm,DFOV=20 cm2,間距為0.531∶1,像素間距為0.430 mm;螺旋式瞬時開關140~80 kVp。DFOV測量3次計算平均值,圖像重建和分析使用AW 4.7高級工作站進行(AW 4.7,GE Healthcare,USA),圖像儲存及調閱均通過PACS系統(tǒng)進行。
1.4 統(tǒng)計學處理
應用SPSS 16.0 統(tǒng)計軟件包進行分析。符合正態(tài)分布的計量資料數據采用±s表示,多組數據比較采用方差分析(ANOVA),兩兩比較應用LSD-t檢驗;非正態(tài)分布計量資料以M(IQR)表示,數據間比較應用Mann-Whitney U檢驗。相關性采用Pearson相關分析。以P<0.05表示差異有顯著性。
2 結" 果
2.1 椎間盤(后縱韌帶、椎體后緣)骨化與鈣化病理特點比較
病理觀察顯示,骨化灶在鈣化軟骨/骨細胞區(qū)域基礎上向遠處延伸,骨化灶均勻而呈現“梁式結構”,內面不含骨細胞,骨化灶內無裂隙亦無結締組織填充,骨化灶致密而與周圍組織界限明顯(圖3a)。鈣化灶聚集在纖維環(huán)邊緣,裂隙寬而其間缺乏膠原與結締組織,鈣化灶結構松散且獨立于正常纖維軟骨細胞巢,與病灶內散在的軟骨細胞巢呈“同心環(huán)形”排列(圖3b)。
2.2 不同病灶70 keV處關注視野窗DFOV能譜均值比較
主動脈、冠狀動脈、腦、肝臟鈣化灶70 keV處能譜值分別為(364.7±1.6)、(364.2±1.3)、(365.6±3.2)和(322.6±13.4)Hu,各組比較差異具有顯著性(F=116.1,Plt;0.05),其中肝臟鈣化灶70 keV處能譜值低于其他各組(Plt;0.05),主動脈、冠狀動脈、腦鈣化灶70 keV處能譜值差異無顯著性(Pgt;0.05)。除肝臟外鈣化灶的形成方式基本一致,由于椎間盤鈣化組病例較少,視為不符合正態(tài)分布,故以其他組織鈣化灶70 keV處能譜值與骨化灶進行比較。結果顯示,椎間盤鈣化灶70 keV處的能譜值((213.2±6.3)Hu)低于骨化灶((357.3±5.4)Hu),差異有顯著性(t=87.02,Plt;0.05)。
2.3 椎間盤骨化組與鈣化組70 keV條件8%像素處原子序數分布密度比較
椎間盤骨化組與鈣化組70 keV條件下的鈣含量密度分布圖(即有效原子序數直方圖,圖4a、b)顯示,鈣化灶大部分體素含鈣量在60~100 mg/cm3之間(中位數59.5 mg/cm3),而骨化灶大部分體素含鈣量在180~280 mg/cm3之間(中位數251.0 mg/cm3),鈣化灶體素含鈣量的平均分布也明顯低于骨化灶(Z=2.70,Plt;0.01)。此外,具有骨結構的骨化灶原子序數分布較為均衡,鈣化灶原子序數分布接近于偏態(tài)分布,提示骨化灶結構較鈣化灶整齊且分布更為規(guī)則有序(圖4c)。
2.4 椎間盤骨化組與鈣化組總體鈣鹽平均密度散點圖及水密度-鈣密度回歸關系比較
對椎間盤骨化灶及鈣化灶的DFOV分別進行鈣-水基圖像生成分析,得到兩種病灶鈣鹽平均密度散點圖(圖5a、b),并對所得散點(水密度-鈣密度)進行曲線擬合,結果顯示,骨化灶散點分布符合Y=0.87X-858.5線性關系(r2=0.89);鈣化灶散點分布符合Y=1.31X-1 348.0線性關系(r2=0.88),兩組均呈現正相關關系??傮w鈣鹽平均密度擬合曲線斜率骨化組為0.87、鈣化組為1.31。散點圖密度分布分析顯示,骨化組鈣鹽平均密度分布高于鈣化組(Z=1.90,Plt;0.05)。見圖5c、d。
3 討" 論
能譜CT技術主要有單能量成像技術、能譜曲線、物質分離、有效原子序數測定等[6],對骨科術后置入金屬的偽影干擾問題解決具有較大的優(yōu)勢[7]。目前研究證實,利用能譜CT定量測量鈣(水)密度值,獲得骨小梁中鈣的含量可以間接評估骨密度,此方法與骨密度測量的“金標準”有較好的一致性[8],但是在骨科退變性疾病診斷中還沒有得到較好的應用。在臨床中經常會遇到常規(guī)CT無法鑒別的病變[9],其中椎間盤鈣化與骨化的鑒別是長久以來的難點所在[10]。
鈣化與骨化是不同原因所致組織鈣的異常沉積而導致的硬化,鈣化病理過程是鈣鹽在非骨樣基質上的無定型沉積,骨化則是鈣在骨樣基質上的定型沉積,兩種病理改變的過程及病灶硬化的程度不盡相同。成人特發(fā)性椎間盤鈣化多見于椎間盤“邊緣型”鈣化,經過一系列復雜的吸收過程形成鈣化結局[11]。本文病理檢查可見,鈣化灶聚集在纖維環(huán)邊緣,與病灶內散在的軟骨細胞巢呈“同心環(huán)形”排列。椎間盤邊緣骨化、椎體后緣骨化常見于退行性骨及軟骨病變,組織來源不同,但都是由于鈣鹽沉積于對應的組織中,骨細胞參與骨化灶形成,使得鈣鹽形成骨結構沉積,其病因及形成過程目前仍不清楚[12]。本研究病理觀察顯示,骨化灶在鈣化軟骨/骨細胞區(qū)域基礎上延伸,骨化灶均勻而呈現“梁式結構”,骨化灶致密而與周圍組織界限明顯。
在脊柱手術過程中,常見由椎間盤層面上突入椎管的贅生組織存在,這些以鈣鹽沉積為特征的病灶多為骨化和鈣化灶,輕者對脊髓功能無影響,重者影響神經功能,手術切除減壓成為該類病變治療的主要手段[13]。然而在選擇手術入路時,脊柱外科醫(yī)師通常會給予病灶處系統(tǒng)的X線、CT、MRI檢查以明確病灶性質,以便制定風險較小的神經減壓方式,但是常規(guī)CT無法準確反映病灶硬度及其性質[14],由此常造成預判失誤。
能譜CT是利用兩種物質對不同能量的X線具有不同且特異性強的吸收特點成像,與常規(guī)的單一能量CT成像比較,其最大優(yōu)勢就是可以用不同的物質衰減特征手段和方法來鑒別單純應用CT值難以區(qū)分的類似物質[15]。本文研究比較了鈣化灶及骨化灶能譜曲線,結果顯示鈣化灶曲線位于骨化灶曲線下方,說明鈣化灶與骨化灶能譜不同、物質性質不同;同時觀察到肝、腦、冠狀動脈、主動脈鈣化灶能譜曲線走勢均相似,說明病灶內物質種類相似,但病灶硬度性質不同;在70 keV條件下鈣化灶的物質平均CT值低于骨化灶,說明骨化灶致密程度要高于鈣化灶。本文研究還顯示,70 keV條件下,鈣化灶鈣含量的平均分布明顯低于骨化病灶;具有骨結構的骨化灶原子序數分布較為均衡,鈣化灶原子序數分布接近于偏態(tài)分布,骨化灶結構較鈣化灶整齊且分布更為規(guī)則有序,說明鈣化與骨化雖然成分組成類似但是其結構不同。本文對鈣-水基像散點圖分析顯示,鈣化灶鈣含量低于骨化灶,即骨化灶總體鈣鹽平均密度較高。根據能譜CT測定物質的原理,任何一種物質衰減可以用兩種“基物質”表達[16];本文鈣化灶斜率gt;骨化灶斜率,所得能譜曲線顯示鈣化灶比骨化灶能量衰減慢,即曲線較平緩,這解釋了常規(guī)多能量CT掃描兩種含鈣近似病灶所得CT值相近的原因,由此有理由將斜率值作為鈣鹽無定型沉積效率[17]。通過能譜CT對成分類似而結構不同病灶性質進行分析,可以更加清楚地顯示病灶結構與成分之間的關系,全面顯示病灶特性和功能狀態(tài),在判定其他病變如腫瘤、炎癥方面也具備較大優(yōu)勢[18]。但本研究也存在相對不足,由于椎間盤鈣化臨床發(fā)病率極低,常以個案報道出現,故較小的樣本量存在一定統(tǒng)計學偏倚,其結論還有待進一步的研究證實。
綜上所述,外科對鈣鹽沉積的鑒別重點在于估計其硬度,相同條件下與病灶硬度相關的幾個重要因素包括鈣鹽種類、鈣鹽絕對含量和鈣鹽沉積方式(排列、結構)。能譜CT可鑒別病灶性質,柱狀原子序數測定可估計鈣鹽絕對含量及排列結構情況,而鈣-水基圖像散點圖可顯示鈣鹽沉積方式信息,三者綜合可判定病灶情況,據此制定精準手術方案。
[參考文獻]
[1]COURSEY C A, NELSON R C, BOLL D T, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging[J]?" Radiographics: a Review Publication of the Radiological Society of North America, Inc, 2010,30(4):1037-1055.
[2]ZHANG X R, DUAN H F, YU Y, et al. Differential diagnosis between benign and malignant pleural effusion with dua-
lenergy spectral CT[J]." PLoS One, 2018,13(4):e0193714.
[3]NICOLAOU S, LIANG T, MURPHY D T, et al. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system[J]." AJR American Journal of Roentgeno-
logy, 2012, 199(5 Suppl): S78-S86.
[4]DUGAILLY P M, BEYER B, SALEM W, et al. Morphometric changes of the cervical intervertebral foramen: a comparative analysis of pre-manipulative positioning and physiological axial rotation[J]." Musculoskeletal Science amp; Practice, 2018,34:97-102.
[5]MELROSE J, BURKHARDT D, TAYLOR T K F, et al. Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease[J]." European Spine Journal, 2009,18(4):479-489.
[6]COUPAL T M, MALLINSON P I, MCLAUGHLIN P, et al. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology[J]." Skeletal Radiology, 2014,43(5):567-575.
[7]SILVA A C, MORSE B G, HARA A K, et al. Dual-energy (spectral) CT: Applications in abdominal imaging[J]." Radiographics, 2011,31(4):1031-1046.
[8]DENG K, LI W, WANG J J, et al. The pilot study of dual-
energy CT gemstone spectral imaging on the image quality of hand tendons[J]." Clinical Imaging, 2013,37(5):930-933.
[9]MALGHEM J, LECOUVET F E, FRANOIS R, et al. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content[J]." Skeletal Radiology, 2005,34(2):80-86.
[10]ROBERTS S, EVANS H, TRIVEDI J, et al. Histology and pathology of the human intervertebral disc[J]." The Journal of Bone and Joint Surgery American Volume, 2006,88(Suppl 2):10-14.
[11]WALLACH C J, TENG A, WANG J C. Advances in imaging the traumatized cervical spine[J]." Seminars in Spine Surgery, 2007,19(4):222-228.
[12]SATO R, UCHIDA K, KOBAYASHI S, et al. Ossification of the posterior longitudinal ligament of the cervical spine: histopathological findings around the calcification and ossification front[J]." Journal of Neurosurgery Spine, 2007,7(2):174-183.
[13]A WALTER B, TORRE O M, ILLIEN-JUNGER S, et al. Form and function of the intervertebral disc: human organ culture and histological stain comparison study[J]." Global Spine Journal, 2014,4(1_suppl): s-34.
[14]PAOLINI S, CIAPPETTA P, GUIDUCCI A, et al. Foraminal deposition of calcium pyrophosphate dihydrate crystals in the thoracic spine: possible relationship with disc herniation and implications for surgical planning. Report of two cases[J]." Journal of Neurosurgery Spine, 2005,2(1):75-78.
[15]RIEDERER S J, MISTRETTA C A. Selective iodine imaging using K-edge energies in computerized X-ray tomography[J]." Medical Physics, 1977,4(6):474-481.
[16]PAUL J, TAN M M L, FARHANG M, et al. Dual-energy CT spectral and energy weighted data sets[J]." Academic Ra-
diology, 2013,20(9):1144-1151.
[17]WANG C K, TSAI J M, CHUANG M T, et al. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT[J]." Radiology, 2013,269(2):525-533.
[18]WEI J Y, ZHAO J H, ZHANG X L, et al. Analysis of dual energy spectral CT and pathological grading of clear cell renal cell carcinoma (ccRCC)[J]." PLoS One, 2018,13(5):e0195699.
(本文編輯 黃建鄉(xiāng))