[摘要] 目的 探討枸櫞酸鐵銨(FAC)和脂多糖(LPS)對原代培養(yǎng)的星形膠質細胞脂質運載蛋白-2(LCN2)表達的影響及可能的機制。
方法 實驗分為對照組、FAC組、LPS組、FAC+LPS組、MG132+LPS組,對照組用細胞培養(yǎng)液處理,FAC組和LPS組分別用FAC和LPS處理24 h,FAC+LPS組先用FAC預處理4 h后再用LPS處理24 h,MG132+LPS組先用MG132預處理4 h后再用LPS處理24 h。應用蛋白質免疫印跡(Western blot)方法檢測細胞內核因子κB(NF-κB)和LCN2的表達。
結果 與對照組相比,單獨FAC處理不影響細胞內磷酸化的核因子κB(P-NF-κB)及LCN2的蛋白表達水平(F=11.76、68.18,q=0.469、0.655,P>0.05),LPS處理能夠上調P-NF-κB及LCN2蛋白的表達(q=5.859、16.170,P<0.01);與LPS組相比,FAC預處理對LPS誘導的P-NF-κB及LCN2蛋白表達上調沒有影響(q=1.516、1.151,P>0.05),而MG132預處理則能夠顯著抑制LPS誘導的P-NF-κB及LCN2蛋白表達上調(q=4.939、15.710,P<0.05)。
結論 細胞內高鐵對LPS誘導的P-NF-κB和LCN2蛋白表達上調無明顯影響,MG132能夠下調LPS誘導的P-NF-κB和LCN2蛋白表達上調,蛋白酶體、NF-κB通路可能參與了LPS誘導的LCN2表達上調的抑制作用。
[關鍵詞] 星形細胞;NF-κB;脂籠蛋白質類;鐵;脂多糖類
[中圖分類號] R338.2
[文獻標志碼] A
[文章編號] 2096-5532(2021)05-0633-04
doi:10.11712/jms.2096-5532.2021.57.103
[開放科學(資源服務)標識碼(OSID)]
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210510.1103.001.html;2021-05-10 17:36:51
EFFECT OF FERRIC AMMONIUM CITRATE AND LIPOPOLYSACCHARIDE ON THE EXPRESSION OF LIPOCALIN-2 IN PRIMARY CULTURED ASTROCYTES AND ITS MECHANISM
TANG Shuo, XU Huamin, XIE Junxia
(Department of Phy-siology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the effect of ferric ammonium citrate (FAC) and lipopolysaccharide (LPS) on the expression of lipocalin-2 (LCN2) in primary cultured astrocytes and its possible mechanism.
Methods Astrocytes were divided into control group, FAC group, LPS group, FAC+LPS group, and MG132+LPS group. The astrocytes in the control group were treated with cell culture media, those in the FAC group and the LPS group were treated with FAC or LPS for 24 h, those in the FAC+LPS group were given FAC pretreatment for 4 h followed by LPS treatment for 24 h, and those in the MG132+LPS group were given MG132 pretreatment for 4 h followed by LPS treatment for 24 h. Western blot was used to measure the protein expression of phosphorylated nuclear factor-kappa B (P-NF-κB) and LCN2 in astrocytes.
Results Compared with the control group, FAC treatment alone did not affect the protein expression levels of P-NF-κB and LCN2 in astrocytes (F=11.76,68.18;q=0.469,0.655;Pgt;0.05), and LPS treatment significantly upregulated the protein expression of P-NF-κB and LCN2 (q=5.859,16.170;Plt;0.01). Compared with the LPS group, FAC pretreatment had no significant effect on the upregulated protein expression of P-NF-κB and LCN2 induced by LPS (q=1.516,1.151;Pgt;0.05), and MG132 pretreatment significantly inhibited the upregulated protein expression of P-NF-κB and LCN2 induced by LPS (q=4.939,15.710;Plt;0.05).
Conclusion High iron state in astrocytes has no significant effect on the upregulated protein expression of P-NF-κB and LCN2 induced by LPS, and MG132 can downregulate the upregulated protein expression of P-NF-κB and LCN2 induced by LPS. Proteasome and the NF-κB pathway may be involved in inhibition of the upregulated protein expression of LCN2 induced by PLS.
[KEY WORDS] astrocytes; NF-kappa B; lipocalins; iron; lipopolysaccharides
帕金森?。≒D)作為一種常見的神經退行性疾病,主要以黑質(SN)多巴胺(DA)能神經元的缺失以及嗜酸性路易小體(LBs)的形成為特點[1]。盡管PD的主要發(fā)病機制尚未完全闡明,但包括神經炎癥在內的多種因素均可能參與了PD的發(fā)病。導致神經退行性變的神經炎癥活動主要由固有免疫細胞(如活化的小膠質細胞和星形膠質細胞)介導,這些細胞能夠產生活性氧中間體、一氧化氮和炎性細胞因子等[2-5]。因此,闡明神經炎癥機制和調控神經膠質細胞激活對于保護PD病人SN區(qū)DA能神經元至關重要。SN鐵沉積是PD病人和PD動物模型的重要特征[6-7]。脂質運載蛋白-2(LCN2)是一種先天性免疫蛋白,在生理和炎癥條件下作為重要的鐵調節(jié)蛋白發(fā)揮作用[8]。脂多糖(LPS)能夠與脂多糖結合蛋白(LBP)結合,由CD14分子介導LPS向細胞內傳遞,導致核因子κB(NF-κB)激活,誘導炎性細胞因子表達[9]。MG132是蛋白酶體抑制劑,同時還可以抑制蛋白酶體介導的NF-κB活化[10-11]。研究發(fā)現,LCN2基因的啟動子含有NF-κB及增強子結合蛋白(C/EBP)的結合位點,提示其表達可能受到NF-κB的調控[12]。然而,蛋白酶體、NF-κB通路是否參與LPS誘導的LCN2表達尚不清楚。因此,本研究觀察了鐵負載試劑枸櫞酸鐵銨(FAC)和LPS以及MG132誘導的原代星形膠質細胞中磷酸化的核轉錄因子(P-NF-κB)和LCN2表達的變化?,F將結果報告如下。
1 材料與方法
1.1 實驗材料
DMEM/F12培養(yǎng)液購自美國Hyclone公司,青霉素和鏈霉素雙抗購于碧云天公司,多聚賴氨酸、LPS、FAC均購于美國Sigma公司,MG132購于美國Selleck公司,聚偏二氟乙烯(PVDF)膜購于美國Millipore公司,BCA蛋白濃度測定試劑盒、分離/濃縮膠緩沖液、RIPA裂解液購于中國康為世紀公司,兔源β-actin抗體購于博奧森公司,LCN2抗體購于美國Ramp;D公司,P-NF-κB和NF-κB購于美國CST公司。
1.2 細胞培養(yǎng)及實驗分組
將新生24 h的Wistar大鼠乳鼠脫頸處死,取中腦,除去腦膜和血管,用槍頭吹打形成單細胞懸液。將懸液置于大離心管中,在4 ℃下以1 000 r/min離心5 min,棄上清,重懸于含有體積分數0.10胎牛血清、100 kU/L青霉素和100 mg/L鏈霉素的DMEMD/F12細胞培養(yǎng)液中,吹打混勻。將細胞接種到培養(yǎng)瓶中,置37 ℃、含體積分數0.05 CO2的無菌細胞培養(yǎng)箱中培養(yǎng)48 h。2 d后,更換新鮮培養(yǎng)液以除去未貼壁細胞,將貼壁細胞繼續(xù)培養(yǎng)10 d,每3 d更換一次新鮮培養(yǎng)液。當細胞鋪滿瓶底90%以上時,將培養(yǎng)瓶置于恒溫(37 ℃)搖床上,以200 r/min的轉速搖17~20 h,以去除小膠質細胞和少突膠質細胞,清洗細胞,再用胰蛋白酶消化細胞,收集細胞接種于6孔板,進行后續(xù)的實驗。將細胞分為對照組(A組)、FAC組(B組)、LPS組(C組)、FAC+LPS組(D組)和MG132+LPS組(E組),對照組用細胞培養(yǎng)液培養(yǎng),FAC組和LPS組分別用FAC和LPS處理24 h,FAC+LPS組先用FAC預處理4 h后再用LPS處理24 h,MG132+LPS組先用MG132預處理4 h后再用LPS處理24 h。
1.3 蛋白質免疫印跡(Western blot)方法檢測P-NF-κB和LCN2蛋白表達
細胞處理結束以后,吸除培養(yǎng)液,每孔加入100 μL裂解液,冰上靜置30 min,用刮子將細胞刮下來,置于提前準備好的1.5 mL的EP管中,在4 ℃下以12 000 r/min離心30 min。吸取80 μL的細胞上清置于新的EP管中,用BCA試劑盒測定蛋白濃度,按照每孔20 μg蛋白計算上樣體積,電泳(80 V、1 h,120 V、1 h),然后將蛋白濕轉到PVDF膜上(30 mA、90 min)。使用50 g/L奶粉封閉2 h,加入β-actin一抗(1∶10 000)、LCN2一抗(1∶1 000)、P-NF-κB一抗(1∶1 000)、NF-κB一抗(1∶1 000),置4 ℃恒溫搖床上過夜,16 h后,用TBST洗膜3次,每次10 min。分別加入山羊抗兔(1∶10 000)、兔抗山羊(1∶10 000)的二抗,室溫下置搖床上1 h,用TBST洗膜3次,每次10 min;使用化學發(fā)光液進行顯影。
1.4 統(tǒng)計學分析
應用Graphpad Prism軟件進行統(tǒng)計學分析。計量資料以±s表示,多組比較采用單因素方差分析(One-Way ANOVA),然后用Turkey法進行組間兩兩比較。以P<0.05為差異有統(tǒng)計學意義。
2 結" 果
2.1 FAC和LPS誘導的原代星形膠質細胞中P-NF-κB蛋白表達的變化
各組P-NF-κB蛋白表達水平比較差異具有統(tǒng)計學意義(F=11.76,P<0.01)。FAC處理后,細胞中P-NF-κB蛋白表達與對照組比較無明顯變化(q=0.469,P>0.05);LPS處理后,P-NF-κB蛋白表達水平升高,與對照組相比差異具有統(tǒng)計學意義(q=5.859,P<0.01);FAC+LPS處理后,P-NF-κB蛋白表達水平與LPS組相比較差異無顯著性(q=1.516,P>0.05),與對照組和FAC組相比差異具有統(tǒng)計學意義(q=7.376、6.907,P<0.01);MG132+LPS處理后,P-NF-κB蛋白表達與LPS組相比明顯下降,差異具有統(tǒng)計學意義(q=4.939,P<0.05)。見表1。
2.2 FAC和LPS誘導的原代星形膠質細胞LCN2蛋白表達的變化
各組LCN2蛋白表達水平比較差異具有統(tǒng)計學意義(F=68.18,P<0.01)。FAC處理后,細胞中LCN2蛋白表達與對照組比較無明顯變化(q=0.655,P>0.05);LPS處理后,LCN2蛋白表達升高,與對照組相比差異具有統(tǒng)計學意義(q=16.170,P<0.01);FAC+LPS處理后,LCN2蛋白表達水平與LPS組相比差異無顯著性(q=1.512,P>0.05),與對照組和FAC組相比差異具有統(tǒng)計學意義(q=14.650、13.990,P<0.01);MG132+LPS處理后,LCN2蛋白表達與LPS組相比明顯下降,差異具有統(tǒng)計學意義(q=15.710,P<0.01)。見表1。
3 討" 論
PD是第二大常見的神經退行性疾病,以中腦SN的DA能神經元選擇性死亡為特征[1]。研究已經證明,PD發(fā)病與年齡老化、環(huán)境因素、遺傳因素、氧化應激和自由基形成等有關,近年來越來越多的證據表明,神經炎癥和鐵在PD的進展中起關鍵作用[13-15]。目前的研究表明,PD病人的SN中鐵選擇性升高,并且鐵的積累程度與PD的疾病嚴重程度相關[15-17]。在動物模型中,將不同濃度的FeCl3(分別含1、5和50 μg的Fe3+)單側注射到成年大鼠的SN中,兩種較低劑量的鐵對DA水平和大鼠的行為反應沒有影響,但是注射50 μg的Fe3+會導致DA能神經元的顯著降低[18-19]。有文獻報道,LPS的全身注射可促進小鼠的小膠質細胞和星形膠質細胞活化并增高促炎細胞因子水平[20]。PD病人的尸檢結果顯示,其DA能神經元大量喪失,小膠質細胞活化,一氧化氮、腫瘤壞死因子、白細胞介素和其他促炎細胞因子水平增高[21-22]。
有文獻報道,在PD病人大腦中觀察到LCN2表達的顯著上調,并且SN和紋狀體中的LCN2表達上調要明顯高于海馬和大腦皮質,LCN2水平增高將加重神經毒性和神經炎癥,導致DA能神經元的破壞和異常運動行為[23]。還有研究顯示,與野生型小鼠相比,在LCN2-/-小鼠中,顱內出血(ICH)引起較低的鐵蛋白上調、小膠質細胞活化、腦腫脹、腦萎縮和神經功能缺損,FeCl2引起的病變程度以及腦腫脹和血-腦脊液屏障(BBB)破壞的程度也較輕,表明LCN2在ICH后增強腦損傷和鐵毒性中起作用[24]。有文獻報道,LCN2-/-小鼠的腦梗死體積、神經系統(tǒng)評分、BBB通透性、神經膠質激活和炎性遞質表達等均明顯低于野生型小鼠[25]。大量的研究表明,LCN2在中樞神經系統(tǒng)中起著重要作用,但是目前對LCN2的產生機制卻知之甚少。本文研究結果顯示,高鐵狀態(tài)對P-NF-κB和LCN2蛋白的表達沒有影響,LPS則可促進P-NF-κB和LCN2的表達,用MG132預處理可以下調LPS對P-NF-κB和LCN2的誘導作用。提示MG132可能是通過抑制NF-κB途徑而起到抑制LCN2表達的作用,LPS可能通過P-NF-κB上調星形膠質細胞LCN2的表達,參與PD神經炎癥的進展。
[參考文獻]
[1]HUANG B X, LIU J X, MENG T, et al. Polydatin prevents lipopolysaccharide (LPS)-induced Parkinson’s disease via re-
gulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis[J]." Frontiers in Immunology, 2018,9:2527.
[2]MCGEER E G, KLEGERIS A, MCGEER P L. Inflammation, the complement system and the diseases of aging[J]." Neuro-
biology of Aging, 2005,26(1):94-97.
[3]HIRSCH E C, HUNOT S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection[J]? The Lancet Neurology, 2009,8(4):382-397.
[4]MENZA M, DOBKIN R D, MARIN H, et al. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease[J]." Psychosomatics, 2010,51(6):474-479.
[5]COOKSON M R. The biochemistry of Parkinson’s disease[J]." Annual Review of Biochemistry, 2005,74:29-52.
[6]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J]." The Lancet Neurology, 2014,13(10):1045-1060.
[7]HARE D J, ADLARD P A, DOBLE P A, et al. Metallobiology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neuroto-
xicity[J]." Metallomics, 2013,5(2):91-109.
[8]LEE S, LEE W H, LEE M S, et al. Regulation by lipocalin-2 of neuronal cell death, migration, and morphology[J]." Journal of Neuroscience Research, 2012,90(3):540-550.
[9]TSUKAMOTO H, TAKEUCHI S, KUBOTA K, et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKE-IRF3 axis activation[J]." The Journal of Biological Chemistry, 2018,293(26):10186-10201.
[10]CUAZ-PROLIN C, BILLIET L, BAUG E, et al. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice[J]." Arteriosclerosis, thrombosis, and vascular biology, 2008,28(2):272-277.
[11]KIM S J, PARK J H, KIM K H, et al. Effect of NF-κB decoy oligodeoxynucleotide on LPS/high-fat diet-induced atherosclerosis in an animal model[J]." Basic amp; Clinical Pharmacology amp; Toxicology, 2010,107(6):925-930.
[12]SHEN F, HU Z H, GOSWAMI J, et al. Identification of common transcriptional regulatory elements in interleukin-17 target genes[J]." The Journal of Biological Chemistry, 2006,281(34):24138-24148.
[13]GYONEVA S, SHAPIRO L, LAZO C, et al. Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson’s disease[J]." Neurobiology of Disease, 2014,67:191-202.
[14]DELEIDI M, GASSER T. The role of inflammation in spora-
dic and familial Parkinson’s disease[J]." Cellular and Molecular Life Sciences: CMLS, 2013,70(22):4259-4273.
[15]YOU L H, LI F, WANG L, et al. Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s disease[J]." Neuroscience, 2015,284:234-246.
[16]DEXTER D T, WELLS F R, LEE A J, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease[J]." Journal of Neurochemistry, 1989,52(6):1830-1836.
[17]VYMAZAL J, RIGHINI A, BROOKS R A, et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson
disease, and patients with multiple system atrophy: relation to iron content[J]." Radiology, 1999,211(2):489-495.
[18]MARTIN-BASTIDA A, LAO-KAIM N P, LOANE C, et al. Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility[J]." Euro-
pean Journal of Neurology, 2017,24(2):357-365.
[19]BEN-SHACHAR D, YOUDIM M B. Intranigral iron injection induces behavioral and biochemical “Parkinsonism” in rats[J]." Journal of Neurochemistry, 1991,57(6):2133-2135.
[20]HOOGLAND I C, HOUBOLT C, VAN WESTERLOO D J, et al. Systemic inflammation and microglial activation: syste-
matic review of animal experiments[J]." Journal of Neuroinflammation, 2015,12:114.
[21]MCGEER P L, ITAGAKI S, AKIYAMA H, et al. Rate of cell death in Parkinsonism indicates active neuropathological process[J]." Annals of Neurology, 1988,24(4):574-576.
[22]MOGI M, HARADA M, KONDO T, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients[J]." Neuroscience Letters, 1994,180(2):147-150.
[23]KIM B W, JEONG K H, KIM J H, et al. Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system[J]." The Journal of Neuroscience, 2016,36(20):5608-5622.
[24]NI W, ZHENG M Z, XI G H, et al. Role of lipocalin-2 in brain injury after intracerebral hemorrhage[J]." Journal of Ce-
rebral Blood Flow and Metabolism, 2015,35(9):1454-1461.
[25]JIN M, KIM J H, JANG E, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice[J]." Journal of Cerebral Blood Flow amp; Metabolism, 2014,34(8):1306-1314.
(本文編輯 馬偉平)