李丹妮,高文萱,張克強(qiáng),孔德望,王思淇,杜連柱
分層接種對(duì)豬糞厭氧干發(fā)酵產(chǎn)氣性能及微生物群落結(jié)構(gòu)的影響
李丹妮1,高文萱1,張克強(qiáng)1,孔德望2,王思淇1,杜連柱1※
(1. 農(nóng)業(yè)農(nóng)村部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;2.杭州能源環(huán)境工程有限公司,杭州 310020)
為避免厭氧干發(fā)酵酸抑制,提高產(chǎn)氣效率,以豬糞和玉米秸稈為發(fā)酵原料,采用中溫批式試驗(yàn),在總固體(Total Solid, TS)為20%、接種比為25%的條件下研究分層接種和混合接種對(duì)豬糞干發(fā)酵厭氧消化性能的影響。結(jié)果表明:2種接種方式下的發(fā)酵體系內(nèi)揮發(fā)性脂肪酸(Volatile Fatty Acids,VFAs)均發(fā)生明顯積累,其中,分層接種在第15天的TVFAs質(zhì)量濃度達(dá)到33.0 mg/g,之后明顯降低,至發(fā)酵結(jié)束時(shí)VFAs消耗殆盡?;旌辖臃N從第15天至發(fā)酵結(jié)束,TVFAs質(zhì)量濃度維持在29.2~38.5 mg/g高水平范圍內(nèi)。分層接種的累積揮發(fā)性固體甲烷產(chǎn)率為211.5 mL/g。高通量測(cè)序結(jié)果顯示,氫營(yíng)養(yǎng)型產(chǎn)甲烷途徑在2種接種方式下均占主導(dǎo),但分層接種增加了發(fā)酵體系中微生物的豐富度和多樣性,且群落結(jié)構(gòu)更加穩(wěn)定。進(jìn)一步分析表明,乙酸和pH值是影響厭氧干發(fā)酵中微生態(tài)結(jié)構(gòu)的主要環(huán)境因子。該研究結(jié)果為解除畜禽養(yǎng)殖廢棄物酸抑制、提高產(chǎn)氣效率提供理論依據(jù)與有益借鑒。
發(fā)酵;糞;微生物群落;分層接種;混合接種
近年來(lái),中國(guó)的沼氣產(chǎn)業(yè)發(fā)展迅速,已經(jīng)成為最大的生物質(zhì)能源產(chǎn)業(yè)之一[1],隨著畜禽養(yǎng)殖向集約化、規(guī)?;l(fā)展方式轉(zhuǎn)變,沼氣發(fā)酵成為消納養(yǎng)殖廢棄物應(yīng)用最廣泛的有效措施之一[2]。厭氧干發(fā)酵具有有機(jī)負(fù)荷高、能耗低、消化殘余物易處理等優(yōu)勢(shì),逐漸引起重視,有望成為畜禽養(yǎng)殖糞污、農(nóng)作物秸稈等農(nóng)業(yè)廢棄物資源化處理和利用的主流工藝[3]。
盡管厭氧干發(fā)酵具有諸多優(yōu)點(diǎn),但VFAs(Volatile Fatty Acids)等發(fā)酵中間產(chǎn)物的抑制作用,常常導(dǎo)致發(fā)酵啟動(dòng)慢、周期長(zhǎng)、產(chǎn)氣效率低。為解決以上問(wèn)題,學(xué)者們開(kāi)展了大量的試驗(yàn)研究。田夢(mèng)等[4]通過(guò)豬糞和香蕉秸稈混合發(fā)酵,在TS(Total Solid)為20%條件下,累積甲烷產(chǎn)率達(dá)138.0 mL/g,較秸稈單獨(dú)發(fā)酵提高了3.1倍。江皓等[5]在通過(guò)雞糞和秸稈混合發(fā)酵的同時(shí)通過(guò)沼液回流改善發(fā)酵性能,結(jié)果顯示累積甲烷產(chǎn)率為184.3 mL/g,較不回流組提高了1.4倍。豬糞中添加生物炭也能夠緩解豬糞厭氧干發(fā)酵的酸抑制,提高甲烷產(chǎn)率,其中添加20%生物炭發(fā)酵組的累積VS甲烷產(chǎn)率較不添加組提高了2.0倍[6]。于佳動(dòng)等[7]研究發(fā)現(xiàn),在發(fā)酵初期通過(guò)微曝氣可使丙酸累積量較非曝氣組下降了82.6%,甲烷質(zhì)量分?jǐn)?shù)提高了41.8%。接種物對(duì)中間代謝產(chǎn)物的耐受能力、厭氧發(fā)酵啟動(dòng)時(shí)間具有重要影響,研究主要集中在預(yù)混合接種方式(接種物與底物混勻后發(fā)酵)下接種物馴化和接種比等方面[8-10],而對(duì)厭氧干發(fā)酵不同接種方式的探索及微生物群落結(jié)構(gòu)的動(dòng)態(tài)變化規(guī)律與代謝產(chǎn)物(如VFAs)的關(guān)聯(lián)性尚待深入研究。
因此,本試驗(yàn)以豬糞和玉米秸稈為發(fā)酵底物,通過(guò)批式試驗(yàn)對(duì)比分層接種和混合接種方式下厭氧干發(fā)酵產(chǎn)氣性能,采用高通量測(cè)序技術(shù)分析2種接種方式下厭氧干發(fā)酵體系的微生物群落結(jié)構(gòu)及演替規(guī)律,同時(shí)利用生態(tài)因子綜合分析法,揭示微生物群落結(jié)構(gòu)與環(huán)境因子的內(nèi)在聯(lián)系,研究結(jié)果有望為解決厭氧干發(fā)酵酸抑制,改善產(chǎn)氣性能提供技術(shù)支撐與數(shù)據(jù)支持。
試驗(yàn)用豬糞和玉米秸稈取自天津市西青區(qū)某規(guī)?;B(yǎng)殖場(chǎng),日產(chǎn)鮮豬糞儲(chǔ)存于(4±1)℃冰箱中。玉米秸稈粉碎至1.0~3.0 mm,存放于干燥通風(fēng)處。接種物取自實(shí)驗(yàn)室前一批次厭氧干發(fā)酵后的剩余物。底物與接種物的理化指標(biāo)見(jiàn)表1。
試驗(yàn)裝置為自制立式厭氧發(fā)酵罐,有機(jī)玻璃材質(zhì),內(nèi)徑200 mm,高度750 mm,有效容積11 L。發(fā)酵罐側(cè)面的垂直方向設(shè)置多個(gè)取樣口,取樣口直徑15 mm,頂部設(shè)置取氣口和排氣口,其中排氣口連接集氣袋。
表1 底物和接種物的理化指標(biāo)
以豬糞和玉米秸稈為發(fā)酵底物(VS質(zhì)量比為1:1),接種比為25%(以VS計(jì))。按接種方式分為L(zhǎng)組和M組共2組處理。其中L組為分層接種,首先分別將接種物和底物均分3份(按質(zhì)量計(jì)),然后取1份接種物平鋪至反應(yīng)器底部,再將1份底物均勻鋪至接種物層上方(不攪拌),重復(fù)上述操作共3次,最后形成接種物層位于底物層下方共3層。M組為混合接種,將接種物和底物按比例混勻,稱質(zhì)量后填裝至反應(yīng)器。每組處理3個(gè)重復(fù),每個(gè)反應(yīng)器的總進(jìn)料質(zhì)量為10.2 kg,發(fā)酵體系TS為20%,裝料后向各發(fā)酵罐內(nèi)充入氮?dú)鈩?chuàng)造厭氧環(huán)境,室溫下發(fā)酵。
發(fā)酵產(chǎn)生的沼氣收集于20 L集氣袋中,每1~2 d測(cè)定沼氣產(chǎn)量及沼氣中CH4含量;每2~3 d從發(fā)酵罐側(cè)面上中下取樣口采集發(fā)酵樣品,用于測(cè)量pH值、溶解性化學(xué)需氧量(Solible Chemical Oxygen Demand,SCOD)、VFAs和氨氮的理化指標(biāo)。依據(jù)產(chǎn)氣情況及理化指標(biāo)的變化,在0 d(發(fā)酵前)、13 d(Ⅰ階段)、33 d(Ⅱ階段)、45 d(Ⅲ階段)和78 d(Ⅳ階段)取發(fā)酵樣品用于微生物群落結(jié)構(gòu)分析。
TS、VS含量采用標(biāo)準(zhǔn)方法測(cè)定[11]。C、N含量采用Vario EL cube 元素分析儀進(jìn)行測(cè)定。將所取上中下3個(gè)固態(tài)樣品等質(zhì)量混勻后用純凈水稀釋10倍,Mettler-toledo pH計(jì)測(cè)定pH值。
沼氣產(chǎn)量用濕式氣體流量計(jì)配蠕動(dòng)泵進(jìn)行測(cè)量。沼氣組分和固態(tài)樣品的TVFAs質(zhì)量濃度采用Thermo-trace-1300氣相色譜儀測(cè)定[6]。
發(fā)酵樣品DNA采用Fast DNAs Spin Kit(Mpbio,美國(guó))試劑盒提取,通過(guò)超微量分光光度計(jì)(Nano Drop 2000,Thermo Scientific,Wilmington,美國(guó))測(cè)定DNA濃度。根據(jù)DNA的濃度,以等質(zhì)量DNA混勻平行樣品、上中下層樣品[12],將混合樣品送生工生物工程(上海)股份有限公司進(jìn)行微生物分類測(cè)序(Miseq 2×300),測(cè)序類群為細(xì)菌和古菌,其中細(xì)菌擴(kuò)增引物為341F-805R,產(chǎn)甲烷古菌擴(kuò)增引物為349F-806R。
試驗(yàn)采用修正的Gompertz模型模擬兩種接種方式發(fā)酵過(guò)程中的累積VS甲烷產(chǎn)率[13],具體模型方程見(jiàn)式(1)。
式中為時(shí)刻對(duì)應(yīng)的累積VS甲烷產(chǎn)率,mL/g;max為最終累積VS甲烷產(chǎn)率,mL/g;max為最大VS產(chǎn)甲烷速率,mL/(g·d);為遲滯期,d;為時(shí)間,d;為2.718 3。根據(jù)模型擬合結(jié)果預(yù)測(cè)發(fā)酵過(guò)程中最大VS產(chǎn)甲烷速率max和遲滯期。
甲烷產(chǎn)率反映了物料的生物可降解性和轉(zhuǎn)化率,是衡量當(dāng)前發(fā)酵條件下產(chǎn)甲烷能力的一個(gè)重要參數(shù)[14]。圖2為日VS甲烷產(chǎn)率和甲烷含量隨發(fā)酵時(shí)間變化情況,L組的產(chǎn)甲烷性能優(yōu)于M組。由圖2a可知,L組的日揮發(fā)性固體甲烷產(chǎn)率在發(fā)酵前期快速升高,至第11天時(shí)達(dá)到相對(duì)穩(wěn)定狀態(tài)(3.1 mL/g)。而M組日揮發(fā)性固體甲烷產(chǎn)率在第2天達(dá)到1.0 mL/g后明顯降低,之后呈現(xiàn)緩慢升高趨勢(shì),在發(fā)酵的第74天達(dá)到0.7 mL/g。相較于L組,M組的甲烷產(chǎn)率較低且穩(wěn)定時(shí)間較短,這表明產(chǎn)氣受到嚴(yán)重抑制。在厭氧發(fā)酵過(guò)程中,產(chǎn)甲烷菌的繁殖周期(10~15 d)比水解菌(24~36 h)和產(chǎn)酸菌(80~90 h)的周期長(zhǎng)[15],混合接種方式下接種物與底物完全混合,產(chǎn)甲烷菌不能及時(shí)轉(zhuǎn)化利用體系內(nèi)的有機(jī)酸,因此更易受酸抑制的影響,進(jìn)而影響產(chǎn)氣效率。
沼氣中甲烷含量達(dá)到最高水平所經(jīng)歷的時(shí)間可以反映底物被產(chǎn)甲烷菌群利用的難易程度[16]。圖2中2試驗(yàn)組的最高甲烷質(zhì)量分?jǐn)?shù)均在59%附近,但經(jīng)歷的時(shí)間有明顯的差異。L組在第20天達(dá)到59.0%,而后甲烷質(zhì)量分?jǐn)?shù)在54.0%~66.0%范圍內(nèi)波動(dòng)。而M組的甲烷質(zhì)量分?jǐn)?shù)在前58 d低于34.9%,至發(fā)酵結(jié)束(第78天)時(shí)M組的甲烷質(zhì)量分?jǐn)?shù)為58.1%,較L組延遲了58 d。該差異表明分層接種能夠促進(jìn)微生物對(duì)發(fā)酵底物的碳素利用程度,從而提高甲烷產(chǎn)率。
表2為不同接種方式下采用修正的Gompertz模型對(duì)累積VS甲烷產(chǎn)率的擬合結(jié)果。從表可知,L組和M組的2分別為0.998和0.991,表明擬合度較好。L組的遲滯期為10.9 d,較M組遲滯期減少了86.3%,這表明分層接種不僅可實(shí)現(xiàn)豬糞厭氧干發(fā)酵的快速啟動(dòng),還能夠有效減少發(fā)酵時(shí)間[17]。在產(chǎn)甲烷速率方面,L組的最大揮發(fā)性固體產(chǎn)甲烷速率和實(shí)際累積揮發(fā)性固體甲烷產(chǎn)率分別為3.8和211.5 mL/g,分別是M組的2.5倍和6.1倍。其中,累積揮發(fā)性固體甲烷產(chǎn)率高于齊利格娃等的研究結(jié)果[18](198.1 mL/g)。本試驗(yàn)為常溫發(fā)酵,且接種比僅為25%,低于上述研究[18]中40%的接種比,由此可見(jiàn),分層接種即使在較低的接種比下,仍能縮短厭氧干發(fā)酵的遲滯期,提高甲烷產(chǎn)率。
表2 修正的Gompertz方程參數(shù)
VFAs是發(fā)酵體系中C源的主要存在形式,也是甲烷形成的前體物質(zhì),其質(zhì)量濃度變化動(dòng)態(tài)反映了原料水解酸化與消耗程度[19]。如圖3所示反應(yīng)初期,發(fā)酵底物中易降解的大分子有機(jī)物,比如蛋白質(zhì)和脂類等,在水解產(chǎn)酸菌作用下不斷降解,體系中的VFAs質(zhì)量濃度不斷升高。L組在第15天達(dá)到第一個(gè)TVFAs質(zhì)量濃度峰值(33.0 mg/g)后明顯降低,在51 d后趨于平穩(wěn),至結(jié)束時(shí)(第78天)體系內(nèi)的VFAs基本被消耗完。而M組在第15天時(shí)TVFAs質(zhì)量濃度為29.2 mg/g,此后不斷升高并在29.2~38.5 mg/g范圍內(nèi)波動(dòng)。通常,發(fā)酵體系內(nèi)VFAs濃度超過(guò)10 000 mg/L時(shí),會(huì)導(dǎo)致體系內(nèi)pH值降低,當(dāng)pH值低于5.5時(shí),產(chǎn)甲烷菌的活性將完全受抑制[20]。本試驗(yàn)中,L組和M組的TVFAs質(zhì)量濃度分別在發(fā)酵的4~36和4~78 d超過(guò)文獻(xiàn)中的抑制濃度(10 000 mg/L),但L組產(chǎn)甲烷過(guò)程未受明顯抑制。這是因?yàn)椋謱咏臃N方式使局部產(chǎn)甲烷微生物占絕對(duì)優(yōu)勢(shì),分層處的接種物可迅速消耗底物層產(chǎn)生的VFAs。
乙酸、丙酸和丁酸是VFAs中3種典型的揮發(fā)性脂肪酸,其質(zhì)量濃度變化情況見(jiàn)圖3。由圖3a可知,L組的乙酸和丁酸的變化趨勢(shì)與TVFAs相似,在第15天達(dá)到質(zhì)量濃度峰值(6.9和12.0 mg/g)后不斷降低,表明分層接種能夠促進(jìn)乙酸和丁酸的分解轉(zhuǎn)化,降低其質(zhì)量濃度。在發(fā)酵的4~45 d,L組的丙酸質(zhì)量濃度維持在3.3~6.1 mg/g,其后迅速降低,至發(fā)酵結(jié)束時(shí)基本轉(zhuǎn)化完全(0.2 mg/g)。M組的丙酸質(zhì)量濃度在10 d后一直維持在4.6~7.3 mg/g,表明發(fā)生了較嚴(yán)重的丙酸積累。在厭氧發(fā)酵中,丙酸轉(zhuǎn)化速率慢,易發(fā)生積累,最適濃度范圍為800~3 000 mg/L,超過(guò)此范圍不利于產(chǎn)甲烷菌降解利用[21]。本試驗(yàn)中,L組和M組的丙酸質(zhì)量濃度分別在發(fā)酵的4~45 和10~78 d超出文獻(xiàn)中報(bào)道的抑制濃度(3 000 mg/L),但只有M組產(chǎn)氣受到明顯抑制(圖2b)。這可能是因?yàn)?,分層接種方式在加快有機(jī)物水解酸化進(jìn)程的同時(shí),能夠提高體系內(nèi)產(chǎn)甲烷菌的丙酸耐受濃度,在高丙酸質(zhì)量濃度下依然可正常產(chǎn)氣。這進(jìn)一步表明在本研究中酸抑制的主體可能是乙酸,而并非更高質(zhì)量濃度的丙酸,即使丙酸對(duì)產(chǎn)甲烷菌更具毒性,也解釋了L組在高丙酸濃度、低乙酸濃度下情況下產(chǎn)氣效率較好(圖2a)。
2.3.1 微生物群落多樣性
不同接種方式下細(xì)菌和古菌的豐富度及多樣性指數(shù)如表3所示。由Chao和ACE指數(shù)可知,2組發(fā)酵體系中細(xì)菌群落的豐富度隨著發(fā)酵的進(jìn)行均呈先增加后減少的趨勢(shì)。L組的古菌群落豐富度呈增加的趨勢(shì),這可能是由于分層接種發(fā)酵體系內(nèi),接種物(種子體區(qū))和底物(底物區(qū))接觸處提供了較多的營(yíng)養(yǎng)物質(zhì),使得分層處微生物生長(zhǎng)速率較快,進(jìn)而促進(jìn)了該組細(xì)菌和古菌的豐富度提高[12]。M組由于體系內(nèi)酸積累嚴(yán)重,細(xì)菌在前期(I~I(xiàn)I階段)的生長(zhǎng)活動(dòng)受到抑制,豐富度較少,后期(III~I(xiàn)V階段)隨著微生物逐漸適應(yīng)體系內(nèi)的環(huán)境,豐富度逐漸升高,這也是圖3a中M組的TVFAs質(zhì)量濃度處于較高水平的原因。而M組的古菌豐富度在整個(gè)發(fā)酵過(guò)程中變化不明顯,值得注意的是在I~I(xiàn)II階段內(nèi)古菌的豐富度有小幅度上升,這是由于酸化期能夠促進(jìn)古菌的豐富度提高[22]。Shannon指數(shù)反映的是群落多樣性??傮w來(lái)看,兩組的細(xì)菌多樣性均呈升高的趨勢(shì),其中L組的細(xì)菌多樣性較高。L組的古菌多樣性與細(xì)菌呈現(xiàn)相同的變化趨勢(shì)。在厭氧發(fā)酵體系中,微生物群落多樣性越高,產(chǎn)沼氣性能越好。本試驗(yàn)中分層接種方式增加了細(xì)菌的多樣性,使群落的復(fù)雜程度整體升高,加快有機(jī)物水解酸化的進(jìn)程。由此可得,分層接種能提高發(fā)酵體系內(nèi)微生物的豐富度和多樣性,促進(jìn)水解酸化速率,為提高甲烷產(chǎn)率創(chuàng)造有利條件,這也與圖2a的結(jié)果一致。
表3 細(xì)菌和古菌的豐富度和多樣性指數(shù)
注:0表示的L組與M組第0天的發(fā)酵樣品,CK。羅馬數(shù)字代表發(fā)酵階段。下同。
Note: 0 represents the fermentation samples of group L and group M on the day 0, CK, the Roman number behind capital is digestion stage. The same as below.
2.3.2 微生物群落結(jié)構(gòu)變化
發(fā)酵過(guò)程中微生物群落結(jié)構(gòu)變化見(jiàn)圖4。在門分類水平上,發(fā)酵系統(tǒng)中細(xì)菌主要以厚壁菌門(56.2%~91.5%)和擬桿菌門(1.0%~20.6%)為主(圖4a)。2組的相對(duì)豐度在0~I(xiàn)I階段內(nèi)較高且變化不明顯(82.6%~92.0%),主要因?yàn)槭怯袡C(jī)物厭氧發(fā)酵水解酸化階段的主要菌群,對(duì)不利環(huán)境的耐受能力較強(qiáng)[23]。隨著發(fā)酵的進(jìn)行相對(duì)豐度逐漸減少,L組和M組的相對(duì)豐度從86.6%(階段0)分別降低至56.2%和73.5%(階段IV),則是因?yàn)榘l(fā)酵后期水解酸化作用減弱所致。試驗(yàn)中M組在I~I(xiàn)I階段內(nèi)乙酸濃度整體處于較高的質(zhì)量濃度(7.5~9.0 mg/g),對(duì)應(yīng)的相對(duì)豐度91.5%~92%,表明高豐度期與高水平的乙酸質(zhì)量濃度相對(duì)應(yīng),這與蔣滔等[20]在玉米秸稈厭氧發(fā)酵中的結(jié)果相似。是富氮底物厭氧發(fā)酵的關(guān)鍵菌,能夠加速分解畜禽糞便中不易降解的有機(jī)物[24],在兩種接種方式的發(fā)酵系統(tǒng)中,相對(duì)豐度隨發(fā)酵的進(jìn)行呈上升的趨勢(shì)。與細(xì)菌相比,產(chǎn)甲烷古菌在門水平上群落結(jié)構(gòu)較單一,廣古菌門占絕對(duì)優(yōu)勢(shì),相對(duì)豐度在86.3%~99.5%范圍內(nèi)變化(圖4b)。
在屬分類水平上的細(xì)菌群落結(jié)構(gòu)如圖4c所示,主要由狹義梭菌屬(25.5%~55.4%)、熒光甲烷球菌屬(2.4%~15.0%)和未分類的細(xì)菌(1.8%~22.7%)等構(gòu)成。是一類典型的纖維素分解菌,能夠促進(jìn)體系內(nèi)有機(jī)酸的生成[25]。2組的相對(duì)豐度呈先增加后降低的趨勢(shì),其中L組下降幅度更大(從階段0:41.0%減少至階段IV:25.5%)。的相對(duì)豐度在兩試驗(yàn)組呈現(xiàn)不同的變化趨勢(shì),M組的相對(duì)豐度隨著發(fā)酵進(jìn)行從3.1%(階段0)逐漸上升到12.7%(階段IV),而在L組中則呈現(xiàn)先增加后減少的變化過(guò)程。隨著發(fā)酵的進(jìn)行,L組菌屬相對(duì)豐度逐漸增加,階段IV達(dá)到22.7%,而且明顯高于M組(8.2%),值得后續(xù)深入研究。
2種接種方式的發(fā)酵系統(tǒng)中古菌在屬水平(圖4d)上的差異較明顯,甲烷微菌屬(21.5%~60.1%)甲烷絲菌屬(12.7%~38.3%)和甲烷球形菌屬(2.0%~23.2%)為優(yōu)勢(shì)菌群。L組的相對(duì)豐度隨著發(fā)酵時(shí)間增加呈先增加后減少的趨勢(shì),而M組相反。Hinsby等[26]研究發(fā)現(xiàn)當(dāng)相對(duì)豐度增加時(shí),能夠促進(jìn)厭氧干發(fā)酵產(chǎn)甲烷過(guò)程,結(jié)合圖2可知,相對(duì)豐度與日VS甲烷產(chǎn)率呈正相關(guān)的關(guān)系。兩發(fā)酵組的相對(duì)豐度隨發(fā)酵時(shí)間增加均呈先增加后減少的趨勢(shì),與相對(duì)豐度變化相一致,這是由于可將體系內(nèi)乙酸轉(zhuǎn)化為甲烷[27]。結(jié)合圖3可知,階段I~I(xiàn)I對(duì)應(yīng)的TVFAs質(zhì)量濃度處于較高水平范圍內(nèi)(L組:17.4~33.0 mg/g;M組:27.0~32.3 mg/g),此時(shí)對(duì)應(yīng)的相對(duì)豐度處于較高的占比(L組:17.6%~23.2%;M組:37.1%~38.3%),表明的相對(duì)豐度與TVFAs質(zhì)量濃度呈正相關(guān)。L組和M組的相對(duì)豐度從20.7%(階段0)分別降低至2.0%和5.6%(階段IV),表明隨著發(fā)酵時(shí)間的延長(zhǎng)的相對(duì)豐度逐漸降低。甲烷八疊球菌屬是已知的唯一能夠利用所有產(chǎn)甲烷途徑的產(chǎn)甲烷菌,Zhi等[28]研究發(fā)現(xiàn)與甲烷產(chǎn)量有密切關(guān)系。L組的相對(duì)豐度在整個(gè)發(fā)酵過(guò)程中處于較高的占比,其中階段II的相對(duì)豐度最高(15.5%),與第33 d的日VS甲烷產(chǎn)率3.2 mL/g相對(duì)應(yīng);而M組的相對(duì)豐度在整個(gè)發(fā)酵過(guò)程中處于較低的范圍(0.7%~5.7%),這與該組的累積VS甲烷產(chǎn)率(表2)較低相一致。
在本研究中發(fā)現(xiàn),L組和M組中氫營(yíng)養(yǎng)型產(chǎn)甲烷菌(,,甲烷短桿菌屬,甲烷囊菌屬和第七產(chǎn)甲烷古菌屬)占比由78.4%(階段0)分別降低至68.9%和66.6%(階段IV),這表明2種接種方式下產(chǎn)甲烷途徑菌以氫營(yíng)養(yǎng)型為主,且分層接種發(fā)酵體系中群落結(jié)構(gòu)更加穩(wěn)定。Zhou等[29]研究發(fā)現(xiàn)在豬糞厭氧干發(fā)酵中,較乙酸營(yíng)養(yǎng)型產(chǎn)甲烷而言,氫營(yíng)養(yǎng)型產(chǎn)甲烷菌是主導(dǎo)的產(chǎn)甲烷途徑,具有較高的活性,這可能是導(dǎo)致L組產(chǎn)甲烷性能較好的主要原因。
2.3.3 微生物群落結(jié)構(gòu)的差異性分析
圖5為2種接種方式下的各發(fā)酵階段細(xì)菌和古菌樣品的物種豐度熱圖。對(duì)于細(xì)菌群落,在不同樣品中占絕對(duì)優(yōu)勢(shì)。而在古菌群落中,在L組(I和II階段)和M組(0,III和IV階段)占絕對(duì)優(yōu)勢(shì),在M組(I和II階段)占絕對(duì)優(yōu)勢(shì)。另外在熱圖中對(duì)樣本做了聚類分析可得,2組在階段I~I(xiàn)I和階段III~I(xiàn)V的細(xì)菌和古菌樣品中均表現(xiàn)出較好的相似度。
采用冗余分析分別對(duì)2種接種方式發(fā)酵體系的環(huán)境因子與微生物群落結(jié)構(gòu)進(jìn)行分析,結(jié)果見(jiàn)圖6。對(duì)于L組發(fā)酵體系(圖6a),Axis1軸和Axis2軸分別解釋了72.3%和17.3%的變異性,總體上微生物群落演變解釋度由大到小分別是乙酸、pH值、丙酸,影響分層接種微生態(tài)結(jié)構(gòu)的主要環(huán)境因子為乙酸,其對(duì)微生物群落結(jié)構(gòu)演替的解釋度為69.1%。物種與環(huán)境因子的相關(guān)性表明,、與乙酸、丙酸呈明顯正相關(guān),說(shuō)明和是該發(fā)酵體系內(nèi)參與水解、產(chǎn)酸和乙酸化的關(guān)鍵微生物。乙酸營(yíng)養(yǎng)型產(chǎn)甲烷菌、氫營(yíng)養(yǎng)產(chǎn)甲烷菌與乙酸質(zhì)量濃度呈正相關(guān)、與pH值呈負(fù)相關(guān),表明正常產(chǎn)氣下適當(dāng)范圍內(nèi)的乙酸和較低的pH值促進(jìn)了和生長(zhǎng)代謝。
在M組體系內(nèi)(圖6b),Axis1軸和Axis2軸分別解釋了65.1%和12.4%的變異性,總體上微生物群落演變解釋度由大到小分別是pH值、丙酸、乙酸,影響混合接種微生態(tài)結(jié)構(gòu)的主要環(huán)境因子為pH值,其對(duì)微生物群落結(jié)構(gòu)演替的解釋度為45.9%。M組產(chǎn)甲烷優(yōu)勢(shì)菌中只有與乙酸呈正相關(guān),但相關(guān)性系數(shù)為0.477 8低于L組(=0.919 9),表明即使在酸抑制情況下仍能發(fā)揮代謝乙酸產(chǎn)甲烷功能,但相對(duì)豐度較低。與乙酸、丙酸呈負(fù)相關(guān),表明對(duì)酸積累耐受能力較弱。
本文以豬糞和玉米秸稈為發(fā)酵底物,對(duì)比分層接種和混合接種方式下厭氧干發(fā)酵產(chǎn)氣性能,結(jié)合高通量測(cè)序技術(shù)分析發(fā)酵系統(tǒng)的微生物群落多樣性及演替規(guī)律,得出如下結(jié)論。
1)分層接種累積甲烷產(chǎn)率達(dá)到211.5 mL/g,較混合接種提高,遲滯期縮短至10.9 d。
2)混合接種發(fā)酵體系內(nèi)揮發(fā)性脂肪酸積累嚴(yán)重,揮發(fā)性脂肪酸質(zhì)量濃度維持在29.2~38.5 mg/g(15~78 d),抑制產(chǎn)甲烷作用。分層接種中即使揮發(fā)性脂肪酸發(fā)生積累,但表現(xiàn)出較高的轉(zhuǎn)化效率,對(duì)產(chǎn)甲烷過(guò)程未構(gòu)成抑制。
3)氫營(yíng)養(yǎng)型產(chǎn)甲烷途徑在厭氧干發(fā)酵中占主導(dǎo)(66.6%~78.4%),但分層接種能夠增加發(fā)酵體系內(nèi)的微生物的豐富度和多樣性。
4)與兩種菌相對(duì)豐度呈正相關(guān),的相對(duì)豐度提高加快了揮發(fā)性脂肪酸生成,為乙酸營(yíng)養(yǎng)型產(chǎn)甲烷菌,可進(jìn)一步促進(jìn)發(fā)酵體系內(nèi)底物分解轉(zhuǎn)化效率的提高。
[1]彭錦星,楊磊,鮑振博. 中國(guó)沼氣產(chǎn)業(yè)鏈現(xiàn)狀分析及對(duì)策[J]. 天津農(nóng)學(xué)院學(xué)報(bào),2016,23(2):53-56.
Peng Jinxing, Yang Lei, Bao Zhenbo. Analysis and countermeasure discussion on biogas industry chain in China[J]. Journal of Tianjin Agricultural University, 2016, 23(2): 53-56. (in Chinese with English abstract)
[2]Li K, Liu R H, Cui S H, et al. Anaerobic co-digestion of animal manures with corn stover or apple pulp for enhanced biogas production[J]. Renewable Energy, 2018, 118: 335-342.
[3]Fu Y R, Tao L, Mei Z L, et al. Dry anaerobic digestion technologies for agricultural straw and acceptability in China[J]. Sustainability, 2018, 10(12): 4588.
[4]田夢(mèng),劉曉玲,李十中,等. 香蕉秸稈與牲畜糞便固體聯(lián)合厭氧發(fā)酵產(chǎn)沼氣的特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(7):177-184.
Tian Meng, Liu Xiaoling, Li Shizhong, et al. Biogas production characteristics of solid-state anaerobic co-digestion of banana stalks and manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 177-184. (in Chinese with English abstract)
[5]江皓,沈怡,聶紅,等. 雞糞與玉米秸稈的干式厭氧發(fā)酵實(shí)驗(yàn)研究[J]. 可再生能源,2018,36(5):639-643.
Jiang Hao, Shen Yi, Nie Hong, et al. Study on dry anaerobic fermentation of chicken manure and corn straw[J].Renewable Energy Resources, 2018, 36(5): 639-643. (in Chinese with English abstract)
[6]李丹妮,張克強(qiáng),梁軍鋒,等. 三種添加劑對(duì)豬糞厭氧干發(fā)酵的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(8):1777-1785.
Li Danni, Zhang Keqiang, Liang Junfeng, et al.Solid-state anaerobic digestion of pig manure with three kinds of additives[J]. Journal of Agro-Environment Science, 2019, 38(8): 1777-1785. (in Chinese with English abstract)
[7]于佳動(dòng),劉新鑫,趙立欣,等. 基于微好氧同步預(yù)升溫的序批式厭氧干發(fā)酵特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):213-219.
Yu Jiadong, Liu Xinxin, Zhao Lixin, et al. Characteristics of sequencing batch dry anaerobic fermentation with microaerobic preheating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 213-219. (in Chinese with English abstract)
[8]朱繼英,鐘慧,陸玉,等. 接種物耐酸馴化對(duì)菌糠厭氧干發(fā)酵產(chǎn)氣的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):249-254.
Zhu Jiying, Zhong Hui, Lu Yu, et al. Effects of acid-acclimated inoculum on solid-state anaerobic digestion of spent mushroom substrate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 249-254. (in Chinese with English abstract)
[9]陳智遠(yuǎn),田碩,譚婧,等. 接種量對(duì)醋渣干發(fā)酵的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2010,26(16):76-79.
Chen Zhiyuan, Tian Shuo, Tan Jing, et al. Effect of inoculum concentration on dry fermentation for vinegar residue[J]. Chinese Agricultural Science Bulletin, 2010, 26(16): 76-79. (in Chinese with English abstract)
[10]朱繼英,鐘慧,陸玉,等. 接種物耐酸馴化對(duì)菌糠厭氧干發(fā)酵產(chǎn)氣的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):249-254.
Zhu Jiying, Zhong Hui, Lu Yu, et al. Effects of acid-acclimated inoculum on solid-state anaerobic digestion of spent mushroom substrate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 249-254. (in Chinese with English abstract)
[11]國(guó)家環(huán)境保護(hù)總局. 水和廢水監(jiān)測(cè)分析方法[M]. 北京:中國(guó)環(huán)境科學(xué)出版社,2002.
[12]孔德望. 豬糞厭氧干發(fā)酵產(chǎn)氣性能與微生物群落結(jié)構(gòu)研究[D].沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2018.
Kong Dewang. Biogas Production and Microbial Community in Solid-state Anaerobic Digestion of Swine Manure[D].Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract)
[13]Zhang S T, Guo H G, Du L Z, et al. Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: Focused on high-solid state[J]. Bioresource Technology, 2015, 185: 171-177.
[14]勒系意,黃運(yùn)紅,任雨涵,等. 梯度有機(jī)負(fù)荷下農(nóng)業(yè)廢棄物厭氧發(fā)酵特性及微生物群落[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):239-247.
Le Xiyi, Huang Yunhong, Ren Yuhan, et al. Anaerobic digestion characteristics and microbial structure of agricultural wastes under gradient organic loadings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 239-247. (in Chinese with English abstract)
[15]Deublein D, Steinhauser A. Biogas from Waste and Renewable Resources[M]. Germany: Wiley-VCH Verlag GmbH& Co. KGaA, 2008.
[16]Cai Y, Wang J, Zhao Y, et al. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion[J]. Water Research, 2018, 140: 335-343.
[17]宋香育,張克強(qiáng),房芳,等. 工藝措施對(duì)豬糞秸稈混合厭氧干發(fā)酵產(chǎn)氣性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):233-239.
Song Xiangyu, Zhang Keqiang, Fang Fang, et al. Influences of different technological strategies on performance of anaerobic co-digestion of pig manure with straw in solid-state[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 233-239. (in Chinese with English abstract)
[18]齊利格娃,高文萱,杜連柱,等. 糞草比對(duì)豬糞與稻草干發(fā)酵產(chǎn)沼氣及古菌群落的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):232-238.
Qi Ligewa, Gao Wenxuan, Du Lianzhu, et al. Influence of pig manure and rice straw mass ratio on its biogas production and archaeal communities in dry anaerobic co-digestion system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 232-238. (in Chinese with English abstract)
[19]毛春蘭. 小麥秸稈與豬糞混合物料厭氧發(fā)酵特征及微生物調(diào)控機(jī)制研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2018.
Mao Chunlan. Anaerobic Co-digestion Characteristics and Microbial Regulatory Mechanism of Wheat Straw and Swine Manure[D]. Yangling: North West Agriculture and Forestry University, 2018. (in Chinese with English abstract)
[20]蔣滔,韋秀麗,肖璐,等. 玉米秸稈固態(tài)和液態(tài)厭氧發(fā)酵產(chǎn)氣性能與微生物種類比較研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):227-235.
Jiang Tao, Wei Xiuli, Xiao Lu, et al. Comparison of biogas production and microbial speciesof corn straw in solid-state anaerobic digestion (SS-AD) and liquid anaerobic digestion (L-AD)[J]. Transactions of the ChineseSociety of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 227-235. (in Chinese with English abstract)
[21]Felchner-Zwirello M, Winter J, Gallert C. Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer[J]. Applied Microbiology & Biotechnology, 2013, 97(20): 9193-9205.
[22]Wang H P, Li J W, Zhao Y Q, et al. Establishing practical strategies to run high loading corn stover anaerobic digestion: Methane production performance and microbial responses[J]. Bioresource Technology, 2020, 310, 123364.
[23]Rojas-Sossa J P, Zhong Y, Valenti F, et al. Effects of Ammonia Fiber EXpansion (AFEX) treated corn stover on anaerobic microbes and corresponding digestion performance[J]. Biomass and Bioenergy, 2019, 127: 1052-1063.
[24]Wang Y Y, Li G X, Chi M H, et al. Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion[J]. Bioresource Technology, 2018, 250: 328-336.
[25]Lawson P A. 梭菌屬分類研究進(jìn)展:現(xiàn)狀和展望[J]. 微生物學(xué)通報(bào),2016,43(5):1070-1074.
Lawson P A. The taxonomy of the genus Clostrium: Current status and future perspectives[J]. Microbiology China, 2016, 43(5): 1070-1074. (in Chinese with English abstract)
[26]Hinsby C, Joseph B, Stephen H.a hydrogenotrophic methanogen isolatedfrom a minerotrophic fen peatland[J]. International Journal ofSystematic and Evolutionary Microbiology, 2009, 59: 928-935.
[27]Li Y, Sun Y M, Li L H, et al. Acclimation of acid-tolerant methanogenic propionate-utilizing culture and microbial community dissecting[J]. Bioresoure Technology, 2018, 250: 117-123.
[28]Zhi S L, Li Q, Yang F X, et al. How methane yield, crucial parameters and microbial communities respond to the stimulating effect of antibiotics during high solid anaerobic digestion[J].Bioresource Technology, 2019, 283: 286-296.
[29]Zhou M, Yang H N, Zheng D, et al. Methanogenic activity and microbial communities characteristics in dry and wet anaerobic digestion sludges from swine manure[J]. Biochemical Engineering Journal, 2019, 152: 1073-1790.
Influences of layer inoculation on biogas production and microbial community in solid-state anaerobic fermentation of pig manure
Li Danni1, Gao Wenxuan1, Zhang Keqiang1, Kong Dewang2, Wang Siqi1, Du Lianzhu1※
(1.,,300191,;2.,310020,)
China is a large agricultural country, livestock manure is both agricultural waste and resources. Among the many treatment processes, Solid-State Anaerobic Digestion to produce biogas is one of the effective measures to realize its resource utilization and solve environmental pollution. While high Total Solid (TS) content causing a reduction of methane yieldsor failure of digestion process because the accumulation of Volatile Fatty Acids (VFAs) resulted in the inhibition of methanogens. At present, the research on VFAs mainly focuses on the aspects of co-substrate for digestion, leachate recirculation and external buffer material to increase biogas production. The inoculum has an important impact on the tolerance of intermediate metabolites and the start-up time of anaerobic fermentation. Previous research mainly focuses on microbial acclimation and feedstock/inoculum ratio under the premixing inoculation method (fermentation after mixing the inoculum and substrate), while the exploration of different inoculation methods for SS-AD and the correlation between the dynamic changes of microbial community structure and metabolites (such as VFAs) need to be studied in depth. In this paper, the biogas production performance and micro-ecological succession law of pig manure and maize straw in layer inoculation and premixing inoculation fermentation were compared. A pilot-scale laboratory experiment was performed in a self-made vertical plexiglass reactor with a total volume of 11 L under feedstock/inoculum ratio=25% in SS-AD process (TS=20%). The result showed that, the first peak of TVFAs mass concentration in layer inoculation system reached 33.0 mg/g on the day 15, and had a greater decline until the end of fermentation. The mass concentration of TVFAs in premixing inoculation system was varied in the range of 29.2-38.5 mg/g on days 15-78. The cumulative Specific Methane Yield of layer inoculation fermentation reached 211.5 mL/g is the highest. CH4yield in layer inoculation system was mucher higher than in premixing inoculation even with the same substrate, which indicated that layer inoculation can lead to the comsuption of VFAs over time, make the process run effectively, and reduce the startup time. The SMY of premixing inoculation was under 1.0 mL/g-VS during the whole experiment. In layer inoculation system, the biogas CH4content ranged from 54.0% to 66.0% after day 20. The CH4content in premixing inoculation fermentation showed a rapid increase after 52 days of digestion and reached 58.1% on day 78. High-throughput sequencing results showed that hydrogenotrophic methanogen was the dominant methane production pathway during SS-AD of different inoculation methods. Layer inoculation can increase the richness and diversity of microorganisms in the fermentation system, and the community structure is more stable than premixing inoculation.The results of cluster analysis on microbial diversity showed that the difference both layer inoculation and premixing inoculation systemshowed good similarity in the bacteria and archaea samples of stage I~II and stage III~IV. Further analysis showed that the main environmental factor affecting layer inoculation and premixing inoculation are acetic acid and pH value, respectively. The results of this study provide a scientific basis for alleviating the VFAs inhibition of SS-AD of livestock and poultry farming waste and increasing methane yield.
fermentation; manure; microbial community; layer inoculation; premixing inoculation
李丹妮,高文萱,張克強(qiáng),等. 分層接種對(duì)豬糞厭氧干發(fā)酵產(chǎn)氣性能及微生物群落結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):251-258.doi:10.11975/j.issn.1002-6819.2021.01.030 http://www.tcsae.org
Li Danni, Gao Wenxuan, Zhang Keqiang, et al. Influences of layer inoculation on biogas production and microbial community in solid-state anaerobic fermentation of pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 251-258. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.030 http://www.tcsae.org
2020-08-25
2020-12-18
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0800800);中國(guó)農(nóng)業(yè)科學(xué)院協(xié)同創(chuàng)新任務(wù)(CAAS-XTCX2016015)
李丹妮,研究方向?yàn)檗r(nóng)業(yè)廢棄物資源化利用。Email:18788857190@163.com
杜連柱,研究員,研究方向?yàn)檗r(nóng)業(yè)廢棄物資源化處理與利用。Email:dulianzhu99@163.com
10.11975/j.issn.1002-6819.2021.01.030
X705
A
1002-6819(2021)-01-0251-08